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Available at: http://www.pmf.ni.ac.rs/filomat

The Moore-Penrose Inverse in Rings with Involution

Sanzhang Xua,∗, Jianlong Chenb

aFaculty of Mathematics and Physics, Huaiyin Institute of Technology, Huaian, 223003, China
bSchool of Mathematics, Southeast University Nanjing 210096, China

Abstract. Let R be a unital ring with involution. In this paper, we first show that for an element a ∈ R, a
is Moore-Penrose invertible if and only if a is well-supported if and only if a is co-supported. Moreover,
several new necessary and sufficient conditions for the existence of the Moore-Penrose inverse of an element
in a ring R are obtained. In addition, the formulae of the Moore-Penrose inverse of an element in a ring are
presented.

1. Introduction

Let R be a ∗-ring, that is a ring with an involution a 7→ a∗ satisfying (a∗)∗ = a, (ab)∗ = b∗a∗ and (a+b)∗ = a∗+b∗.
We say that b ∈ R is the Moore-Penrose inverse of a ∈ R, if the following hold:

aba = a, bab = b, (ab)∗ = ab (ba)∗ = ba.

There is at most one b such that above four equations hold. If such an element b exists, it is denoted by
a†. The set of all Moore-Penrose invertible elements will be denoted by R†. An element b ∈ R is an inner
inverse of a ∈ R if aba = a holds. The set of all inner inverses of a will be denoted by a{1}. An element a ∈ R
is said to be group invertible if there exists b ∈ R such that the following equations hold:

aba = a, bab = b, ab = ba.

The element b which satisfies the above equations is called a group inverse of a. If such an element b exists,
it is unique and denoted by a#. The set of all group invertible elements will be denoted by R#.

An element a ∈ R is called an idempotent if a2 = a. a is called a projection if a2 = a = a∗. a is called normal
if aa∗ = a∗a. a is called a Hermite element if a∗ = a. a is said to be an EP element if a ∈ R†∩R# and a† = a#. The
set of all EP elements will be denoted by REP. ã is called a {1, 3}-inverse of a if we have aãa = a, (aã)∗ = aã.
The set of all {1, 3}-invertible elements will be denoted by R{1,3}. Similarly, an element â ∈ R is called a
{1, 4}-inverse of a if aâa = a, (âa)∗ = âa. The set of all {1, 4}-invertible elements will be denoted by R{1,4}.
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We will also use the following notations: aR = {ax | x ∈ R}, Ra = {xa | x ∈ R}, ◦a = {x ∈ R | xa = 0} and
a◦ = {x ∈ R | ax = 0}.

In [2], Chen showed that the equivalent conditions such that a ∈ R to be an EP element are closely related
with powers of the group and Moore-Penrose inverse of a. In [12], Mosić and Djordjević presented several
equivalent conditions, which ensure that an element a ∈ R is a partial isometry and EP. These conditions
involve elements a, a∗, a†, a# and also powers of these elements. In [13], more new characterizations of EP
elements in rings are given by Mosić and Djordjević, which involve powers of their group and Moore-
Penrose inverse. In [19], Tian and Wang presented some necessary and sufficient conditions such that
A ∈ Cn×n to be an EP matrix, which also involve powers of their group and Moore-Penrose inverse, where
Cn×n stands for the set of all n × n matrices over the field of complex numbers. Motivated by the above
facts, in this paper, we will show that the existence of the Moore-Penrose inverse of an element in a ring R
is closely related with powers of some Hermite elements, idempotents and projections.

Recently, Zhu, Chen and Patrı́cio in [20] introduced the concepts of left ∗-regularity and right ∗-regularity.
We call an element a ∈ R is left (right) ∗-regular if there exists x ∈ R such that a = aa∗ax (a = xaa∗a). They
proved that a ∈ R† if and only if a is left ∗-regular if and only if a is right ∗-regular. Motivated by the above
results, we will give more equivalent conditions for an element in a ring to be Moore-Penrose invertible.

In [4], Hartwig proved that for an element a ∈ R, a is {1, 3}-invertible with {1, 3}-inverse x if and only if
x∗a∗a = a and, similarly, a is {1, 4}-invertible with {1, 4}-inverse y if and only if aa∗y∗ = a. In [14], one has the
following result in complex matrices case, a ∈ R† if and only if a ∈ Ra∗a∩ aa∗R. In addition, if a = aa∗y = xa∗a
for some x, y ∈ R, then a† = y∗ax∗.

It is well-known that an important feature of the Moore-Penrose inverse is that it can be used to represent
projections. Let a ∈ R†, then we have two projections p = aa† and q = a†a. In [3], Han and Chen proved
that a ∈ R{1,3} if and only if there exists unique projection p ∈ R such that aR = pR. And, it is also proved
that a ∈ R{1,4} if and only if there exists unique projection q ∈ R such that Ra = Rq. We will show that the
existence of the Moore-Penrose inverse is closely related with some Hermite elements and projections.

In [7, Theorem 2.4], Koliha proved that a ∈ A† if and only if a is well-supported, whereA is a C∗-algebra.
In [8, Theorem 1], Koliha, Djordjević and Cvetković proved that a ∈ R† if and only if a is left ∗-cancellable
and well-supported. Where an element a ∈ R is called well-supported if there exists projection p ∈ R such
that ap = a and a∗a + 1 − p ∈ R−1. In Theorem 3.7, we will show that the condition that a is left ∗-cancellable
in [8, Theorem 1] can be dropped. Moreover, we prove that a ∈ R† if and only if there exists e2 = e ∈ R such
that ea = 0 and aa∗ + e is left invertible. And, it is also proved that a ∈ R† if and only if there exists b ∈ R such
that ba = 0 and aa∗ + b is left invertible.

In [4], Hartwig proved that a ∈ R{1,3} if and only if R = aR ⊕ (a∗)◦. And, it is also proved that a ∈ R{1,4} if
and only if R = Ra ⊕◦ (a∗). Hence a ∈ R† if and only if R = aR ⊕ (a∗)◦ = Ra ⊕◦ (a∗). We will show that a ∈ R† if
and only if R = a◦ ⊕ (a∗a)nR. It is also shown that a ∈ R† if and only if R = a◦ + (a∗a)nR , for all choices n ∈ N+,
where N+ stands for the set of all positive integers.

2. Preliminary

In this section, several auxiliary lemmas are presented.

Lemma 2.1. [4, p.201] Let a ∈ R. Then we have the following results:

(1) a is {1, 3}-invertible with {1, 3}-inverse x if and only if x∗a∗a = a;

(2) a is {1, 4}-invertible with {1, 4}-inverse y if and only if aa∗y∗ = a.

The following two Lemmas can be found in [14] in the complex matrix case, one can see that these are
also valid for an element in a ring with involution.

Lemma 2.2. Let a ∈ R. Then a ∈ R† if and only if there exist x, y ∈ R such that x∗a∗a = a and aa∗y∗ = a. In this case,
a† = yax.
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Lemma 2.3. Let a ∈ R†. Then:

(1) aa∗, a∗a ∈ REP and (aa∗)† = (a∗)†a† and (a∗a)† = a†(a∗)†;

(2) If a is normal, then a ∈ REP and (ak)† = (a†)k for any k ∈ N+.

We will give a generalization of Lemma 2.3(1) in the following lemma.

Lemma 2.4. Let a ∈ R†. Then (aa∗)n, (a∗a)m
∈ REP for any n,m ∈ N+.

Proof. Suppose a ∈ R†, by Lemma 2.3 and (aa∗)∗ = aa∗, we have

((aa∗)n)† = ((aa∗)†)n and ((a∗a)n)† = ((a∗a)†)n, (1)
(aa∗)† = (a∗)†a† and (a∗a)† = a†(a∗)†, (2)

aa∗(aa∗)† = (aa∗)†aa∗ and a∗a(a∗a)† = (a∗a)†a∗a. (3)

Thus we have

(aa∗)n((aa∗)n)†(aa∗)n (1)
= (aa∗)n((aa∗)†)n(aa∗)n

(2)
= (aa∗)n((a∗)†a†)n(aa∗)n (3)

= (aa∗(a∗)†a†aa∗)n = (aa∗)n;

((aa∗)n)†(aa∗)n((aa∗)n)†
(1)
= ((aa∗)†)n(aa∗)n((aa∗)†)n

(2)
= ((a∗)†a†)n(aa∗)n((a∗)†a†)n (3)

= ((a∗)†a†aa∗(a∗)†a†)n (1)
= ((aa∗)n)†;

[(aa∗)n((aa∗)n)†]∗
(1)
= [(aa∗)n((aa∗)†)n]∗

(3)
= [(aa∗(aa∗)†)n]∗

(3)
= (aa∗)n((aa∗)n)†;

[((aa∗)n)†(aa∗)n]∗
(1)
= [((aa∗)†)n(aa∗)n]∗

(3)
= [((aa∗)†aa∗)n]∗

(3)
= ((aa∗)n)†(aa∗)n;

(aa∗)n((aa∗)n)†
(1)
= (aa∗)n((aa∗)†)n

(3)
= (aa∗(aa∗)†)n (3)

= ((aa∗)†aa∗)n (3)
= ((aa∗)n)†(aa∗)n.

By the definition of the EP element, we have (aa∗)n
∈ REP. Similarly, (a∗a)m

∈ REP.

Definition 2.5. An element a ∈ R is ∗-cancellable if a∗ax = 0 implies ax = 0 and yaa∗ = 0 implies ya = 0.

The equivalence of conditions (1), (3) and (5) in the following lemma was also proved by Puystjens and
Robinson [16, Lemma 3] in categories with involution.

Lemma 2.6. [9, Theorem 5.4] Let a ∈ R. Then the following conditions are equivalent:
(1) a ∈ R†;
(2) a∗ ∈ R†;
(3) a is ∗-cancellable and aa∗ and a∗a are regular;
(4) a is ∗-cancellable and a∗aa∗ is regular;
(5) a ∈ Ra∗a ∩ aa∗R.

Lemma 2.7. Let a ∈ R†. Then for any n,m ∈ N+, we have

(1) (aa∗)n((aa∗)n)†a = a;

(2) a((a∗a)m)†(a∗a)m = a.
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Proof. (1) If n = 1 and aa∗(aa∗)†aa∗ = aa∗, by a is ∗-cancellable, we have

aa∗(aa∗)†a = a.

Suppose the result hold for n = k, ie.,

(aa∗)k((aa∗)k)†a = a. (4)

By Lemma 2.3, we have

(aa∗)k+1[(aa∗)k+1]†a

= aa∗(aa∗)k[(aa∗)†]k+1a = aa∗(aa∗)k[(aa∗)†]k(aa∗)†a

= aa∗(aa∗)k[(aa∗)†]k(a∗)†a†a = aa∗(aa∗)k[(aa∗)†]k(a†)∗a†a

= aa∗(aa∗)k[(aa∗)†]k(a†aa†)∗a†a = aa∗(aa∗)k[(aa∗)†]kaa†(a†)∗a†a
(4)
= aa∗aa†(a†)∗a†a = aa∗(aa†)∗(a†)∗(a†a)∗

= a(aa†a)∗(a†aa†)∗ = aa∗(a†)∗

= a(a†a)∗ = aa†a = a.

(5)

Thus, the result follows by induction.
(2) It is similar to (1).

Lemma 2.8. [20, Theorem 2.16, 2.19 and 2.20] Let a ∈ R. The following conditions are equivalent:

(1) a ∈ R†;

(2) a ∈ aa∗aR;

(3) a ∈ Raa∗a.

In this case, a† = (ax)∗axa∗ = a∗ya(ya)∗, where a = aa∗ax = yaa∗a.

Lemma 2.9. [15, Proposition 2] Let a ∈ R. If aR = a∗R, then the following are equivalent:

(1) a ∈ REP;

(2) a ∈ R†;

(3) a ∈ R#.

3. Main results

In this section, several necessary and sufficient conditions for the existence of the Moore-Penrose inverse
of an element in a ring R are given.

Theorem 3.1. Let a ∈ R. Then the following conditions are equivalent for any m,n ∈ N+:

(1) a ∈ R†;

(2) a ∈ R(a∗a)m
∩ (aa∗)nR;

(3) a ∈ a(a∗a)nR;

(4) a ∈ R(aa∗)na;

(5) (aa∗)n
∈ R† and (aa∗)n[(aa∗)n]†a = a;
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(6) (a∗a)n
∈ R† and a[(a∗a)n]†(a∗a)n = a;

(7) a is ∗-cancellable and (aa∗)m and (a∗a)n are regular;

(8) a is ∗-cancellable and (a∗a)na∗ is regular;

(9) a is ∗-cancellable and a∗(aa∗)n is regular;

(10) a is ∗-cancellable and (aa∗)n
∈ R#;

(11) a is ∗-cancellable and (a∗a)n
∈ R#;

(12) a is ∗-cancellable and (aa∗)n
∈ R†;

(13) a is ∗-cancellable and (a∗a)n
∈ R†.

In this case, a† = y∗1(aa∗)m+n−2ax∗1 = x∗2(a∗a)2n−1x2a∗ = a∗y2(aa∗)2n−1y∗2, where a = x1(a∗a)m, a = (aa∗)ny1, a =
a(a∗a)nx2, a = y2(aa∗)na, for some x1, x2, y1, y2 ∈ R.

Proof. (1)⇒ (2) By Lemma 2.7 we can get

(aa∗)n((aa∗)n)†a = a (6)

and

a((a∗a)m)†(a∗a)m = a. (7)

By (6) and (7), we have a ∈ R(a∗a)m
∩ (aa∗)nR.

(2)⇒ (1) Suppose a ∈ R(a∗a)m
∩ (aa∗)nR, then for some x1, y1 ∈ R, we have

a = x1(a∗a)m and a = (aa∗)ny1. (8)

If m = n = 1, it is easy to see that a ∈ R† by Lemma 2.6. Next, we suppose m,n > 1. By (8) and Lemma
2.1, we have

[x1(a∗a)m−1]∗ ∈ a{1, 3} and [(aa∗)n−1y1]∗ ∈ a{1, 4}. (9)

Thus by (9) and Lemma 2.2, we have a ∈ R† and

a† = a(1,4)aa(1,3)

= [(aa∗)n−1y1]∗a[x1(a∗a)m−1]∗

= y∗1(aa∗)n−1a(a∗a)m−1x∗1
= y∗1(aa∗)m+n−2ax∗1.

(1)⇒ (3) By Lemma 2.3, we have

a∗a = a∗aa†(a†)∗a∗a (10)

and

a†(a†)∗a∗a = a∗aa†(a†)∗. (11)
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Thus

a = aa†a = (aa†)∗a = (a†)∗a∗a
(10)
= (a†)∗a∗aa†(a†)∗a∗a

(11)
= (a†)∗(a∗a)2a†(a†)∗

= ((a†)∗a∗a)a∗aa†(a†)∗ = (aa†a)a∗aa†(a†)∗

= aa∗aa†(a†)∗

(10)
= a(a∗aa†(a†)∗a∗a)a†(a†)∗

(11)
= a(a∗a)2(a†(a†)∗)2

= · · · · · ·

= a(a∗a)n(a†(a†)∗)n.

Hence a ∈ a(a∗a)nR.
(3)⇒ (1) Suppose a ∈ a(a∗a)nR, then for some x2 ∈ R we have a ∈ a(a∗a)nx2 = aa∗a(a∗a)n−1x2 ∈ aa∗aR. Thus

by Lemma 2.8, we have a ∈ R† and

a† = [a(a∗a)n−1x2]∗a(a∗a)n−1x2a∗

= x∗2(a∗a)n−1a∗a(a∗a)n−1x2a∗

= x∗2(a∗a)2n−1x2a∗.

(1)⇔ (4) It is similar to (1)⇔ (3) and suppose a = y2(aa∗)na for some y2 ∈ R, by Lemma 2.8, we have

a† = a∗y2(aa∗)n−1a[y2(aa∗)n−1a]∗

= a∗y2(aa∗)n−1aa∗(aa∗)n−1y∗2
= a∗y2(aa∗)2n−1y∗2.

(1)⇒ (5) It is easy to see that by Lemma 2.4 and Lemma 2.7.
(1)⇒ (6) It is similar to (1)⇒ (5).
(5)⇒ (4) Suppose (aa∗)n

∈ R† and (aa∗)n((aa∗)n)†a = a. Let b = (aa∗)n[(aa∗)n]†, then b∗ = b and ba = a. Thus

a = ba = b∗a = [(aa∗)n((aa∗)n)†]∗a = ((aa∗)n)†(aa∗)na ∈ R(aa∗)na.

(6)⇒ (3) It is similar to (5)⇒ (4).
(1)⇒ (7) It is easy to see that by Lemma 2.4.
(7)⇒ (1) Let m = n = 1, then by Lemma 2.6, we have a ∈ R†.
(1)⇒ (8) By Lemma 2.4, we have (a∗a)n

∈ REP and ((a∗a)n)† = (a†(a∗)†)n. Let c = (a†)∗((a∗a)†)n, then

(a∗a)na∗c(a∗a)na∗ = (a∗a)na∗(a†)∗((a∗a)†)n(a∗a)na∗

= (a∗a)n[a∗(a†)∗(a∗a)†]((a∗a)†)n−1(a∗a)na∗

= (a∗a)n[a∗(a†)∗a†(a∗)†]((a∗a)†)n−1(a∗a)na∗

= (a∗a)n[a†aa†(a∗)†]((a∗a)†)n−1(a∗a)na∗

= (a∗a)n(a∗a)†((a∗a)†)n−1(a∗a)na∗

= (a∗a)n((a∗a)†)n(a∗a)na∗

= (a∗a)n((a∗a)n)†(a∗a)na∗

= (a∗a)na∗.

Thus (a∗a)na∗ is regular.
(8)⇒ (1) Suppose a is ∗-cancellable and (a∗a)na∗ is regular. Let n = 1, then by Lemma 2.6, we have a ∈ R†.
(1)⇔ (9) It is similar to (1)⇔ (8).
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(1)⇒ (10)-(13) It is easy to see that by Lemma 2.4.
The equivalence between (10)-(13) can be seen by Lemma 2.9.
(12)⇒ (9) Suppose a is ∗-cancellable and (aa∗)n

∈ R#, then

(aa∗)n = (aa∗)n[(aa∗)n]#(aa∗)n. (12)

Pre-multiplication of (12) by a∗ now yields

a∗(aa∗)n = a∗(aa∗)n[(aa∗)n]#(aa∗)n

= a∗(aa∗)n[(aa∗)n]#[(aa∗)n]#(aa∗)n(aa∗)n

= a∗(aa∗)n[(aa∗)n]#[(aa∗)n]#(aa∗)n−1a[a∗(aa∗)n].

Thus a∗(aa∗)n is regular.

Definition 3.2. [17] Let a, b ∈ R, we say that a is a multiple of b if a ∈ Rb ∩ bR.

Definition 3.3. Let a, b ∈ R, we say that a is a left (right) multiple of b if a ∈ Rb (a ∈ bR).

The existence of the Moore-Penrose inverse of an element in a ring is priori related to a Hermite element.
If we take n = 1, the condition (2) in the following theorem can be found in [17, Theorem 1] in the category
case.

Theorem 3.4. Let a ∈ R. Then the following conditions are equivalent for any n ∈ N+:

(1) a ∈ R†;

(2) There exists a projection p ∈ R such that pa = a and p is a multiple of (aa∗)n;

(3) There exists a Hermite element q ∈ R such that qa = a and q is a left multiple of (aa∗)n;

(4) There exists a Hermite element r ∈ R such that ra = a and r is a right multiple of (aa∗)n;

(5) There exists b ∈ R such that ba = a and b is a left multiple of (aa∗)n.

Proof. (1)⇒ (2) Suppose a ∈ R† and let p = aa†, then p2 = p = p∗ and pa = a. By Lemma 2.3, we have

aa∗(a†)∗a†aa∗ = aa∗ (13)

and

aa∗(a†)∗a† = (a†)∗a†aa∗. (14)

p = aa† = (aa†)∗ = (a†)∗a∗

= (a†)∗(aa†a)∗ = (a†)∗a†aa∗

(13)
= (a†)∗a†aa∗(a†)∗a†aa∗

(14)
= [(a†)∗a†]2(aa∗)2

= · · · · · ·

= [(a†)∗a†]n(aa∗)n.

(15)

By p = p∗ and (15), we have

p = p∗ = [[(a†)∗a†]n(aa∗)n]∗ = (aa∗)n[[(a†)∗a†]n]∗. (16)

By (15) and (16), we have p is a multiple of (aa∗)n.
(2)⇒ (3) It is obvious.
(3)⇒ (4) Let r = q∗.
(4)⇒ (5) Suppose r∗ = r, ra = a and r is a right multiple of (aa∗)n, then

r = (aa∗)nw for some w ∈ R. (17)
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Let b = r, then ba = a and by r∗ = r, we have

b = r = r∗
(17)
= ((aa∗)nw)∗ = w∗(aa∗)n. (18)

That is b is a left multiple of (aa∗)n.
(5) ⇒ (1) Since b is a left multiple of (aa∗)n, then b ∈ R(aa∗)n, post-multiplication of b ∈ R(aa∗)n by a now

yields ba ∈ R(aa∗)na. Then by ba = a, which gives a ∈ R(aa∗)na, thus the condition (4) in Theorem 3.1 is
satisfied.

Similarly, we have the following theorem.

Theorem 3.5. Let a ∈ R. Then the following conditions are equivalent for any n ∈ N+:

(1) a ∈ R†;

(2) There exist a projection w ∈ R such that aw = a and w is a multiple of (a∗a)n;

(3) There exist a Hermite element u ∈ R such that au = a and u is a right multiple of (a∗a)n;

(4) There exist a Hermite element v ∈ R such that av = a and v is a left multiple of (a∗a)n;

(5) There exist c ∈ R such that ac = a and c is a right multiple of (a∗a)n.

If we take n = 1, the condition (2) in the following theorem can be found in [17, Theorem 1] in the
category case.

Theorem 3.6. Let a ∈ R. Then the following conditions are equivalent for any n ∈ N+:

(1) a ∈ R†;

(2) There exists a projection q ∈ R such that qa = 0 and (aa∗)n + q is invertible;

(3) There exists a projection q ∈ R such that qa = 0 and (aa∗)n + q is left invertible;

(4) There exists an idempotent f ∈ R such that f a = 0 and (aa∗)n + f is invertible;

(5) There exists an idempotent f ∈ R such that f a = 0 and (aa∗)n + f is left invertible;

(6) There exists c ∈ R such that ca = 0 and (aa∗)n + c is invertible;

(7) There exists c ∈ R such that ca = 0 and (aa∗)n + c is left invertible.

In this case, a† = a∗yi(aa∗)2n−1y∗i , i ∈ {1, 2, 3}, where 1 = y1((aa∗)n + q) = y2((aa∗)n + f ) = y3((aa∗)n + c), for some
y1, y2, y3 ∈ R.

Proof. (1)⇒ (2) Suppose a ∈ R† and let q = 1 − aa†, then q2 = q = q∗ and qa = (1 − aa†)a = 0. By Lemma 2.3,
we have

aa∗(a†)∗a† = (a†)∗a†aa∗. (19)
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Moreover,

(aa∗ + q)((a†)∗a† + 1 − aa†)

= (aa∗ + 1 − aa†)((a†)∗a† + 1 − aa†)

= aa∗(a†)∗a† + aa∗(1 − aa†) + (1 − aa†)(a†)∗a† + (1 − aa†)2

= aa∗(a†)∗a† + 1 − aa†

= aa† + 1 − aa† = 1.

((aa∗)2 + q)[((a†)∗a†)2 + 1 − aa†]

= ((aa∗)2 + 1 − aa†)[((a†)∗a†)2 + 1 − aa†]
(19)
= (aa∗(a†)∗a†)2 + (aa∗)2(1 − aa†) + (1 − aa†)((a†)∗a†)2 + (1 − aa†)2

= (aa†)2 + 1 − aa†

= aa† + 1 − aa† = 1.
· · · · · ·

((aa∗)n + q)[((a†)∗a†)n + 1 − aa†] = 1.

Similarly, we also have [((a†)∗a†)n + 1 − aa†]((aa∗)n + q) = 1. Thus, (aa∗)n + p is invertible.
(2)⇒ (3) It is clear.
(3) ⇒ (1) Suppose q2 = q = q∗, pa = 0 and (aa∗)n + q is left invertible, then 1 = y1((aa∗)n + q) for some

y1 ∈ R. By pa = 0, we have
a = y1((aa∗)n + q)a = y1(aa∗)na ∈ R(aa∗)na.

That is the condition (4) in Theorem 3.1 is satisfied and

a† = a∗y1(aa∗)n−1a[y1(aa∗)n−1a]∗

= a∗y1(aa∗)n−1aa∗(aa∗)n−1y∗1
= a∗y1(aa∗)2n−1y∗1.

(1)⇒ (4) Let f = q = 1 − aa†, then by (1)⇒ (2), we have f 2 = f ∈ R, f a = 0 and (aa∗)n + f is invertible.
(4)⇒ (5) It is clear.
(5) ⇒ (1) Suppose f 2 = f ∈ R, f a = 0 and (aa∗)n + f is left invertible, then 1 = y2((aa∗)n + f ) for some

y2 ∈ R. By f a = 0, we have
a = y2((aa∗)n + f )a = y2(aa∗)na ∈ R(aa∗)na.

That is the condition (4) in Theorem 3.1 is satisfied and

a† = a∗y2(aa∗)n−1a[y2(aa∗)n−1a]∗

= a∗y2(aa∗)n−1aa∗(aa∗)n−1y∗2
= a∗y2(aa∗)2n−1y∗2.

(1)⇒ (6) Let c = q = 1− aa†, then by (1)⇒ (2), we have ca = 0 and (aa∗)n + c is invertible. Since c = q and
q2 = q = q∗, thus (aa∗)n + q is invertible implies (aa∗)n + c is invertible.

(6)⇒ (7) It is clear.
(7)⇒ (1) Suppose ca = 0 and (aa∗)n + c is left invertible, then 1 = y3((aa∗)n + c) for some y3 ∈ R. By ca = 0,

we have
a = y3((aa∗)n + c)a = y3(aa∗)na ∈ R(aa∗)na.

That is the condition (4) in Theorem 3.1 is satisfied and

a† = a∗y3(aa∗)n−1a[y3(aa∗)n−1a]∗

= a∗y3(aa∗)n−1aa∗(aa∗)n−1y∗3
= a∗y3(aa∗)2n−1y∗3.
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Similarly, we have the following theorem.

Theorem 3.7. Let a ∈ R. Then the following conditions are equivalent for any n ∈ N+:

(1) a ∈ R†;

(2) There exists a projection p ∈ R such that ap = 0 and (a∗a)n + p is invertible;

(3) There exists a projection p ∈ R such that ap = 0 and (a∗a)n + p is right invertible;

(4) There exists an idempotent e ∈ R such that ae = 0 and (a∗a)n + e is invertible;

(5) There exists an idempotent e ∈ R such that ae = 0 and (a∗a)n + e is right invertible;

(6) There exists b ∈ R such that ab = 0 and (a∗a)n + b is invertible;

(7) There exists b ∈ R such that ab = 0 and (a∗a)n + b is right invertible.

In this case, a† = x∗i (a
∗a)2n−1xia∗, i ∈ {1, 2, 3}, where 1 = ((aa∗)n + p)x1 = ((aa∗)n + e)x2 = ((aa∗)n + b)x3 , for some

x1, x2, x3 ∈ R.

Definition 3.8. [8, Definition 5 and p.374] Let a ∈ R, we call a is well-supported if there exist a projection p ∈ R
such that ap = 0 and a∗a + p is invertible. we call a is co-supported if there exist a projection q ∈ R such that qa = 0
and aa∗ + q is invertible.

Let a ∈ R, we call a is weak-supported if there exists b ∈ R such that ab = 0 and a∗a + b is invertible. We
call a is coweak-supported if there exists c ∈ R such that ac = 0 and aa∗ + c is invertible. Let a ∈ R, we call a
is right weak-supported if there exists b ∈ R such that ab = 0 and a∗a + b is right invertible. We call a is left
coweak-supported if there exists c ∈ R such that ac = 0 and aa∗ + c is left invertible.

Theorem 3.9. Let a ∈ R. Then the following conditions are equivalent:

(1) a ∈ R†;

(2) a is weak-supported;

(3) a is right weak-supported;

(4) a is coweak-supported;

(5) a is left coweak-supported.

Proof. By the proof of Theorem 3.6 and Theorem 3.7.

If we take n = 1 in the equivalent condition (2) in Theorem 3.7, one can see that the condition a is left
∗-cancellable in [8, Theorem 1] can be dropped. In [8], Koliha, Djordjević and Cvetkvić also proved that
a ∈ R† if and only if a is right ∗-cancellable and co-supported. If we take n = 1 in the equivalent condition
(2) in Theorem 3.6, one can see that the condition a is right ∗-cancellable can be dropped. Thus we have the
following corollary.

Theorem 3.10. Let a ∈ R. Then the following conditions are equivalent:
(1) a ∈ R†;
(2) a is well-supported;
(3) a is co-supported.

Theorem 3.11. Let a ∈ R. Then the following conditions are equivalent for any n ∈ N+:
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(1) a ∈ R†;

(2) R = a◦ ⊕ (a∗a)nR;

(3) R = a◦ + (a∗a)nR;

(4) R = (a∗)◦ ⊕ (aa∗)nR;

(5) R = (a∗)◦ + (aa∗)nR;

(6) R =◦ a ⊕ R(aa∗)n;

(7) R =◦ a + R(aa∗)n;

(8) R =◦ (a∗) ⊕ R(a∗a)n;

(9) R =◦ (a∗) + R(a∗a)n.

Proof. (1)⇒ (2) Suppose a ∈ R†, then by Theorem 3.1 we have a ∈ a(a∗a)nR, that is

a = a(a∗a)nb for some b ∈ R. (20)

Thus a[1 − (a∗a)nb] = 0, which is equivalent to 1 − (a∗a)nb ∈ a◦.
By 1 = 1 − (a∗a)nb + (a∗a)nb ∈ a◦ + (a∗a)nR, we have

R = a◦ + (a∗a)nR. (21)

Let u ∈ a◦ ∩ (a∗a)nR, then we have

au = 0 and u = (a∗a)nv, for some v ∈ R. (22)

Hence

u = (a∗a)nv = a∗a(a∗a)n−1v = (a(a∗a)nb)∗a(a∗a)n−1v

= b∗(a∗a)na∗a(a∗a)n−1v = b∗(a∗a)n(a∗a)nv

= b∗(a∗a)nu = b∗(a∗a)n−1a∗(au)
= 0.

Whence R = a◦ ⊕ (a∗a)nR.
(2)⇒ (3) It is clear.
(3)⇒ (1) Suppose R = a◦ + (a∗a)nR, Pre-multiplication of R = a◦ + (a∗a)nR by a now yields

aR = aa◦ + a(a∗a)nR. (23)

By aa◦ = 0, we have a ∈ a(a∗a)nR, that is the condition (3) in Theorem 3.1 is satisfied.
By the equivalence between (1), (2) and (3) and Lemma 2.6, which implies the equivalence between (1),

(4) and (5). The equivalence between (1), (6)-(9) is similar to the equivalence between (1), (2)-(5).
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