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Abstract. We define ultradistributional wave front sets with respect to translation-modulation invariant
Banach spaces of ultradistributions having solid Fourier image. The main result is their characterisation by
the short-time Fourier transform.

1. Introduction

Hörmander [15] introduced the Sobolev wave front set of a distribution f as the set of points x and
directions ξ at which f does not behave as an element of the Sobolev space Hs; i.e. it is not Hs micro-
regular at (x, ξ). It is one of the most powerfull tools in studying the regularity of solutions of PDEs with
wide range of applications in mathematical physics. Many authors considered various generalisations and
characterisations of the Sobolev wave front set and other similar variants; see [18, 22–24, 26, 27] and the
references there in. This concept was further generalised recently in [5, 6] where the wave front set is defined
with respect to a general Banach spaces of distributions satisfying appropriate assumptions. In the setting
of ultradistributions, the wave front set with respect to Fourier-Lebesgue spaces having sub-exponential
weights was considered in [7, 16] where the authors also gave a discrete characterisation of it.

The goal of this article is to define the wave front set in the setting of non quasi-analytic ultradistributions
with respect to a Banach space of ultradistributions satisfying appropriate assumptions; this generalisation
is in the spirit of [5], where the distributional case was considered. The main result of the article (Theorem
3.10) is its characterisation by the short-time Fourier transform (cf. [21] for a similar characterisation of the
Sobolev wave front set in the distributional setting).

2. Preliminaries

Let Mp, p ∈ N, be a sequence of positive numbers satisfying M0 = M1 = 1 for which the following
conditions hold true:
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(M.1) M2
p ≤Mp−1Mp+1, p ∈ Z+;

(M.2) there exist c0,H ≥ 1 such that Mp ≤ c0Hp min0≤q≤p MqMp−q, p ∈N;
(M.3) there exists c0 ≥ 1 such that

∑
∞

q=p+1 Mq−1/Mq ≤ c0pMp/Mp+1, p ∈ Z+;
(M.4) M2

p/p!2 ≤ (Mp−1/(p − 1)!) · (Mp+1/(p + 1)!).
The sequence Mp = p!s, s > 1, satisfies all of the above conditions. When α ∈ Nd, we set Mα = M|α|. The
associated function to the sequence Mp is defined by M(λ) = supp∈N ln+(λp/Mp), λ > 0 (see [17]). It is
continuous, non-negative, monotonically increasing function, it vanishes for sufficiently small λ > 0 and
increases more rapidly than lnλp as λ tends to infinity for any p ∈N.

Given an open set U ⊆ Rd, we refer to Komatsu [17] for the definition and the basic properties of the
locally convex spaces (from now on abbreviated as l.c.s.) E(Mp)(U) and E{Mp}(U) of ultradifferentiable func-
tions of Beurling and Roumieu type respectively, as well as the corresponding spacesD(Mp)(U) andD{Mp}(U)
of ultradifferentiable functions having compact support in U. Their strong duals are the corresponding
spaces of ultradistributions of Beurling and Roumieu type. We also denote by D(Mp)

K and D{Mp}

K the spaces
consisting of all elements of E(Mp)(U) and E{Mp}(U) respectively, supported by the compact set K ⊂ U (cf.
[17]). The common notation for the symbols (Mp) and {Mp} will be ∗. If ϕ ∈ E∗(U) never vanishes than 1/ϕ
also belongs to E∗(U). More precisely, we have the following result.

Lemma 2.1. Let ϕ ∈ E∗(U) and let V ⊆ U be the open set where ϕ , 0. The function x 7→ 1/ϕ(x) belongs to E∗(V).

Proof. The proof relies on the multidimensional Faá di Bruno formula [3, Corollary 2.10] applied to the
composition of the functions λ 7→ 1/λ and ϕ and the condition (M.4) on Mp; it is similar to the proof of [20,
Lemma 7.5] and we omit it (see [1, Theorem 4.1] for the one dimensional Beurling case and [28, Theorem 3]
for the one dimensional Roumieu case).

The entire function P(z) =
∑
α∈Nd cαzα, z ∈ Cd, is an ultrapolynomial of class (Mp) (resp. of class {Mp}),

whenever the coefficients cα satisfy the estimate |cα| ≤ CL|α|/Mα, α ∈ Nd, for some C,L > 0 (resp. for every
L > 0 and some C = C(L) > 0). The corresponding operator P(D) =

∑
α cαDα is called an ultradifferential

operator of class (Mp) (resp. of class {Mp}) and it acts continuously on E(Mp)(U) and D(Mp)(U) (resp. on
E
{Mp}(U) andD{Mp}(U)) and the corresponding spaces of ultradistributions.

The Fourier transform of f ∈ L1(Rd) is given by F f (ξ) =
∫
Rd e−ixξ f (x)dx, ξ ∈ Rd.

For m > 0, we denote by SMp,m(Rd) the (B)-space of all ϕ ∈ C∞(Rd) for which the norm ‖ϕ‖m =
supα∈Nd m|α|‖eM(m|·|)Dαϕ‖L∞(Rd)/Mα is finite. The spaces of sub-exponentially decreasing ultradifferentiable
functions of Beurling and Roumieu type are defined by

S
(Mp)(Rd) = lim

←−
m→∞

S
Mp,m(Rd) and S{Mp}(Rd) = lim

−→
m→0
S

Mp,m(Rd),

respectively and their strong dualsS′(Mp)(Rd) andS′{Mp}(Rd) are the spaces of tempered ultradistributions of
Beurling and Roumieu type, respectively. When Mp = p!s, s > 1, S{Mp}(Rd) is just the Gelfand-Shilov space
S

s
s(Rd). The ultradifferential operators of class ∗ act continuously on S∗(Rd) and S′∗(Rd) and the Fourier

transform is a topological isomorphism on them. We refer to [2] for the topological properties of S∗(Rd)
and S′∗(Rd).

For f ∈ S′∗(Rd) and 0 , χ ∈ S∗(Rd), the short-time Fourier transform of f with window χ (from now on
abbreviated as STFT [12]; it is also known as the wave-packet transform first introduced by Córdoba and
Fefferman [4]) is defined by Vχ f (x, ξ) = Ft→ξ( f (t)χ(t − x)). For fixed window χ, f 7→ Vχ f is a continuous
operator from S′∗(Rd) into S′∗(R2d) and it restricts to a continuous operator from S∗(Rd) into S∗(R2d).
Furthermore, when f ∈ S′∗(Rd), Vχ f is smooth and, in fact, it is an element of E∗(R2d). If the window χ is in
D
∗(Rd), we can extend the definition of Vχ f even when f ∈ D′∗(Rd) by Vχ f (x, ξ) = 〈e−iξ· f , χ(· − x)〉 and one

can easily verify that Vχ f ∈ E∗(R2d) in this case as well (see Remark 3.1 below).
We denote by Tx and Mξ the translation and modulation operators: Tx f = f (· − x), Mξ f = eiξ· f (·). They

act continuously on S∗(Rd) and, by duality, on S′∗(Rd) as well.
We end the section by recalling the definition and some of the important properties of translation-

modulation invariant (B)-spaces of ultradistributions [9].
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Definition 2.2. ([9, Definition 3.1]) A (B)-space E is said to be a translation-modulation invariant (B)-space of
ultradistributions (in short: TMIB)) of class ∗ if it satisfies the following three conditions:

(a) The continuous and dense inclusions S∗(Rd) ↪→ E ↪→ S′∗(Rd) hold.

(b) Tx(E) ⊆ E and Mξ(E) ⊆ E for all x, ξ ∈ Rd.

(c) There exist τ,C > 0 (for every τ > 0 there exists Cτ > 0), such that1)

ωE(x) := ‖Tx‖Lb(E) ≤ CeM(τ|x|) and νE(ξ) := ‖M−ξ‖Lb(E) ≤ CeM(τ|ξ|), (1)

where ‖ · ‖Lb(E) stands for the norm on L(E) = L(E,E) induced by ‖ · ‖E (the norm on E).

The functions ωE : Rd
→ (0,∞) and νE : Rd

→ (0,∞) defined in (1) are called the weight functions of the translation
and modulation groups of E, respectively (in short its weight functions).

These spaces enjoy a number of important properties; we recall only the necessary ones here and refer
to [9] for the complete account (see also [8, 10]). We start by pointing out that E is separable and the
weight functions ωE and νE are measurable. Moreover, the translation and modulation operators on E form
both C0-groups, i.e. x 7→ Tx f and x 7→ Mx f , Rd

7→ E, are continuous for each f ∈ E. Also E is a Banach
convolution module over the Beurling (convolution) algebra L1

ωE
(Rd) (the weighted L1 space of measurable

functions 1 such that ‖1‖L1
ωE

:= ‖1ωE‖L1 < ∞) and a Banach multiplication module over the Wiener-Beurling

(multiplication) algebra F L1
νE

(see [9, Proposition 3.2]). In particular, multiplication by elements of S∗(Rd)
is a well defined and continuous operation on E. Furthermore, the Fourier image of E, which we denote
by F E, is again a TMIB space of class ∗ with norm ‖F f ‖F E = ‖ f ‖E and, consequently, it enjoys all of the
properties we mentioned above; in particular, its weight functions ωF E and νF E are measurable and satisfy
the estimate (1), with E replaced by F E.

3. The wave front set with respect to a TMIB space of class ∗. Characterisations via the STFT

Let E be TMIB space of class ∗ over Rd. Besides the properties (a), (b) and (c) of Definition 2.2 we
additionally assume that it satisfies the following:

(d) F E is a solid space (cf. [11]), i.e. F E ⊆ L1
loc(Rd) 2) and there exists C0 > 0 such that if 1 ∈ L1

loc(Rd),
f ∈ F E and |1(x)| ≤ | f (x)| a.e, then 1 ∈ F E and ‖1‖F E ≤ C0‖ f ‖F E.

Notice that the solidity implies that if f ∈ F E then | f | ∈ F E and ‖| f |‖F E ≤ C0‖ f ‖F E. Consequently, if
1 ∈ L1

loc(Rd) and f1, . . . , fk ∈ F E are such that |1(x)| ≤
∑k

j=1 | f j(x)| a.e, then 1 ∈ F E and ‖1‖F E ≤ C2
0

∑k
j=1 ‖ f j‖F E.

Following Hörmander [13] (cf. [14, Section 8.1, p. 253]), for f ∈ E′∗(Rd) we define the set ΣE( f ) ⊆ Rd
\{0}

as follows: ξ ∈ Rd
\{0} does not belong to ΣE( f ) if and only if there exists a cone neighbourhood Γ of ξ such

that

θΓF f ∈ F E, (2)

where θΓ denotes the characteristic function of Γ. Clearly ΣE( f ) is a closed cone in Rd
\{0}. From now on,

for a measurable subset G ⊆ Rd, θG will always stand for the characteristic function of G.

1)The closed graph theorem together with the conditions (a) and (b) yield that Tx,Mξ ∈ L(E), for all x, ξ ∈ Rd (see the proof of [10,
Lemma 3.1]); hence, we can take their operator norms in (1).

2)SinceF E is continuously included intoD′∗(Rd), the closed graph theorem for Fréchet spaces immediately implies that the inclusion
F E ⊆ L1

loc(Rd) is continuous.
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Remark 3.1. Before we state the next result we make the following general observation. For every f ∈ E′∗(Rd),
F f ∈ E∗(Rd). Furthermore, if B is a bounded subset of E′∗(Rd) then there exist C1, h1 > 0 (resp. for every h1 > 0
there exists C1 > 0) such that |F f (x)| ≤ C1eM(h1 |x|), ∀x ∈ Rd, ∀ f ∈ B. This easily follows from [17, Proposition 5.11]
and [17, Theorem 8.1 and Theorem 8.7].

On the other hand, if f ∈ E′∗(Rd) satisfies the following estimate: for every h1 > 0 there exists C1 > 0 (resp. there
exist h1,C1 > 0) such that |F f (x)| ≤ C1e−M(h1 |x|), ∀x ∈ Rd, then a straightforward computation gives f ∈ D∗(Rd).

We recall the following lemmas from [19] which will be used in the proof of Proposition 3.4; we state
only the Beurling case of these results since this is the only part we need for the proof of Proposition 3.4.

Lemma 3.2. [19, Lemma 2.1] Let r′ ≥ 1 and k > 0. There exists an ultrapolynomial P(z) of class (Mp) such that P
does not vanish on Rd and satisfies the following estimate: there exists C > 0 such that

|Dα(1/P(x))| ≤ Cα!r′−|α|e−M(k|x|), ∀x ∈ Rd, ∀α ∈Nd.

Lemma 3.3. [19, Lemma 2.4] Let r > 0.

(i) For each χ, ϕ ∈ S(Mp)(Rd) and ψ ∈ SMp,r(Rd) it holds that χ ∗ (ϕψ) ∈ S(Mp)(Rd).

(ii) Let ϕ, χ ∈ S(Mp)(Rd) with ϕ(0) = 1 and
∫
Rd χ(x)dx = 1. For each n ∈ Z+ define χn(x) = ndχ(nx) and ϕn(x) =

ϕ(x/n). Then there exists k ≥ 2r such that the operators Q̃n : ψ 7→ χn ∗ (ϕnψ) are continuous as mappings
from SMp,k(Rd) to SMp,r(Rd), for all n ∈ Z+. Moreover Q̃n → Id, as n→∞, in Lb(SMp,k(Rd),SMp,r(Rd)).

Proposition 3.4. Let ψ ∈ D∗(Rd) and f ∈ E′∗(Rd). Then ΣE(ψ f ) ⊆ ΣE( f ).

Proof. Let 0 , ξ0 < ΣE( f ). There exists a cone neighbourhood Γ1 of ξ0 such that (2) holds. Pick a cone
neighbourhood Γ of ξ0 such that Γ ⊆ Γ1 ∪ {0}. We have

θΓ(ξ)F (ψ f )(ξ) = (2π)−dθΓ(ξ)Fψ ∗ F f (ξ) = I1(ξ)/(2π)d + I2(ξ)/(2π)d,

where

I1(ξ) = θΓ(ξ)
∫
Rd
Fψ(η)(1 − θΓ1 (ξ − η))F f (ξ − η)dη,

I2(ξ) = θΓ(ξ)
∫
Rd
Fψ(η)θΓ1 (ξ − η)F f (ξ − η)dη.

Clearly I1, I2 ∈ L1
loc(Rd). We prove that both I1 and I2 belong to F E which, in turn, will yield the claim in the

proposition. For this purpose we make the following observations: there exist 0 < c < 1 such that

{η ∈ Rd
| ∃ξ ∈ Γ, |η − ξ| ≤ c|ξ|} ⊆ Γ1. (3)

For I1, we avail ourselves of (3) by noticing that if ξ ∈ Γ and ξ − η < Γ1, then |η| > c|ξ|. Thus, applying
Remark 3.1 together with [17, Proposition 3.6] we infer

eM(h|ξ|)
|I1(ξ)| ≤ C1

∫
Rd
|Fψ(η)|eM(h|η|/c)eM(h1(1+c−1)|η|)dη

≤ c0C1

∫
Rd
|Fψ(η)|eM((hc−1+h1c−1+h1)H|η|)dη.

Hence eM(h|·|)I1 ∈ L∞(Rd) for every h > 0 in the (Mp) case and for some 0 < h ≤ 1 in the {Mp} case (in the
{Mp} case we can take h1 arbitrarily small in the above estimates). Because of Lemma 3.2, we can find
an ultrapolynomial P(z) of class (Mp) which does not vanish on the real axis and satisfies the following
estimate: there exists C′ > 0 such that |Dα(1/P(x))| ≤ C′α!e−M(|x|), ∀x ∈ Rd. As P is of class (Mp), there exist
C̃, s ≥ 1 such that |P(x)| ≤ C̃eM(s|x|), ∀x ∈ Rd (see [17, Proposition 4.5]). Thus, in the {Mp} case, x 7→ 1/P(hx/s)
belongs to S{Mp}(Rd) and |I1(ξ)| ≤ C′′/|P(hξ/s)|, ∀ξ ∈ Rd, for some C′′ > 0. The solidity of F E gives I1 ∈ F E
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in the {Mp} case. For the (Mp) case, since S(Mp)(Rd) is continuously included into F E, there exist C′, h′ ≥ 1
such that ‖ϕ‖F E ≤ C′‖ϕ‖h′ , ∀ϕ ∈ S(Mp)(Rd), which in turn yields that the closure of S(Mp)(Rd) in SMp,h′ (Rd),
which we denote by Xh′ for short, is continuously included into F E. Now Lemma 3.3 gives the existence
of h′′ > h′ such that (in the notations of Lemma 3.3) Q̃nφ ∈ S(Mp)(Rd), ∀φ ∈ SMp,h′′ (Rd), and Q̃nφ → φ, as
n → ∞, in the topology of SMp,h′ (Rd). We conclude that SMp,h′′ (Rd) is continuously included into Xh′ . If
P(z) is the same ultrapolynomial as before, than x 7→ 1/P(h′′x) belongs to SMp,h′′ (Rd) (notice that (M.3) gives
h′′|α|α! ≤ C2h′′−|α|Mα, ∀α ∈Nd, for some C2 > 0) and consequently in F E as well. Since |I1(ξ)| ≤ C′′/|P(h′′ξ)|,
∀ξ ∈ Rd, the solidity of F E proves that I1 ∈ F E in the (Mp) case as well.

We turn our attention to I2 next. Let η ∈ Rd be fixed. Then

θΓ(ξ)θΓ1 (ξ − η)|F f (ξ − η)| ≤ |Tη(θΓ1F f )(ξ)|, ∀ξ ∈ Rd.

Since θΓ1F f ∈ F E, the solidity of F E implies that η 7→ F(η) = θΓTη(θΓ1F f ), Rd
→ F E, is well defined

F E-valued mapping and

‖F(η)‖F E ≤ C0ωF E(η)‖θΓ1F f ‖F E. (4)

For η, η0 ∈ Rd, we have

|θΓ(ξ)Tη(θΓ1F f )(ξ) − θΓ(ξ)Tη0 (θΓ1F f )(ξ)| ≤ |Tη(θΓ1F f )(ξ) − Tη0 (θΓ1F f )(ξ)|, ∀ξ ∈ Rd.

Again, the solidity of F E implies

‖F(η) − F(η0)‖F E ≤ C0‖Tη(θΓ1F f ) − Tη0 (θΓ1F f )‖F E → 0, as η→ η0.

Consequently, F is continuous and hence strongly measurable. Now, (4) proves that η 7→ Fψ(η)F(η),
Rd
→ F E, is Bochner integrable. We claim

I2 =

∫
Rd
Fψ(η)F(η)dη ∈ F E. (5)

To verify this, fix ϕ ∈ D∗(Rd). Then〈∫
Rd
Fψ(η)F(η)dη, ϕ

〉
=

∫
Rd
Fψ(η)〈F(η), ϕ〉dη

=

∫
R2d
Fψ(η)θΓ(ξ)θΓ1 (ξ − η)F f (ξ − η)ϕ(ξ)dξdη,

where, the very last integral is absolutely convergent. We conclude〈∫
Rd
Fψ(η)F(η)dη, ϕ

〉
= 〈I2, ϕ〉.

As ϕ ∈ D∗(Rd) is arbitrary, we deduce (5), which completes the proof of the proposition.

Following Hörmander [13] (cf. [14, Section 8.1, p. 253]), for f ∈ D′∗(Rd) and x ∈ Rd, we define

Σx,E( f ) =
⋂

χ∈D∗(Rd), χ(x),0

ΣE(χ f ).

Clearly Σx,E( f ) is a closed cone subset of Rd
\{0}.

Proposition 3.5. Let f ∈ D′∗(Rd), x ∈ Rd and Γ be an open cone such that Σx,E( f ) ⊆ Γ. There exists χ ∈ D∗(Rd)
satisfying χ(x) , 0 and having support arbitrarily close to x such that ΣE(χ f ) ⊆ Γ. In particular, Σx,E( f ) = ∅ if and
only if there exists χ ∈ D∗(Rd), satisfying χ(x) , 0, such that χ f ∈ E.

Proof. The proof is the same as in [14, Section 8.1, p. 253-254] but now applying Proposition 3.4 and Lemma
2.1.
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We can now define the wave front set of f ∈ D′∗(Rd) with respect to E.

Definition 3.6. For f ∈ D′∗(Rd), we define the E-wave front set of f by

WFE( f ) = {(x, ξ) ∈ Rd
× (Rd

\{0})| ξ ∈ Σx,E( f )}.

Remark 3.7. Clearly WFE( f ) is a closed subset of Rd
× (Rd

\{0}) and it is conic in the second variable, i.e. if
(x, ξ) ∈WFE( f ), then (x, λξ) ∈WFE( f ), ∀λ > 0. Hence, we can consider it as a closed subspace of Rd

× Sd−1.

Remark 3.8. When E is a Sobolev space Hs(Rd), s ∈ R, and f ∈ D′(Rd), then the definition of WFE( f ) coincides
with the Sobolev wave front set of f as defined by Hörmander [15, Definition 8.2.5, p. 188; Proposition 8.2.6, p. 189].

Remark 3.9. For f ∈ D′∗(Rd), we can define the set sing suppE f ⊆ Rd whose complement is given by the points
at which f locally behaves as an element of E. More precisely, x0 ∈ Rd does not belong to sing suppE f if and only
if there exists χ ∈ D∗(Rd) satisfying χ(x0) , 0 such that χ f ∈ E (because of Lemma 2.1, this is the same as if we
furthermore require for χ to be identically equal to 1 on a neighbourhood of x0). Clearly sing suppE f is closed in Rd

and Proposition 3.5 proves that the projection of WFE( f ) on the first component is exactly sing suppE f .

We can now formulate and prove the main result of the article.

Theorem 3.10. Let f ∈ D′∗(Rd) and (x0, ξ0) ∈ Rd
× (Rd

\{0}). The following conditions are equivalent.

(i) (x0, ξ0) <WFE( f ).

(ii) There exist a cone neighbourhood Γ of ξ0 and a compact neighbourhood K of x0 such that the mapping
χ 7→ θΓF (χ f ),D∗K → F E, is well-defined and continuous.

(iii) There exist a cone neighbourhood Γ of ξ0 and a compact neighbourhood K of x0 such that

θΓVχ f (x, ·) ∈ F E, ∀χ ∈ D∗K−{x0}
, ∀x ∈ K,

the mapping x 7→ θΓVχ f (x, ·), K→ F E, is continuous and the mapping

χ 7→ θΓVχ̄ f , D∗K−{x0}
→ C(K;F E), (6)

is continuous.3)

(iv) There exist a cone neighbourhood Γ of ξ0, a compact neighbourhood K of x0 and χ ∈ D∗(Rd), satisfying χ(0) , 0
such that θΓVχ f (x, ·) ∈ F E, ∀x ∈ K, and supx∈K ‖θΓVχ f (x, ·)‖F E < ∞.

Proof. (i) ⇒ (ii). Pick a cone neighbourhood Γ1 of ξ0 and χ ∈ D∗(Rd) with χ(x0) , 0 such that θΓ1F (χ f ) ∈
F E. Let K1 be a compact neighbourhood of x0 such that χ never vanishes on K1 and take a compact
neighbourhood K of x0 such that K ⊂ int K1. Fix an open cone Γ 3 ξ0 satisfying Γ ⊆ Γ1∪{0} and find 0 < c < 1
such that (3) holds true. Repeating the proof of Proposition 3.4 verbatim with χ f ∈ E′∗(Rd) in place of f
we conclude that θΓF (ψχ f ) ∈ F E, for all ψ ∈ D∗K. Lemma 2.1 infers the function x 7→ 1/χ(x), int K1 → C,
belongs to E∗(int K1). Thus, for each ψ ∈ D∗K, we have ψ f = (ψ/χ)χ f , with ψ/χ ∈ D∗K. We deduce that
θΓF (ψ f ) ∈ F E, for all ψ ∈ D∗K. Since ψ 7→ θΓF (ψ f ), D∗K → S

′∗(Rd), is continuous we conclude that the
mapping ψ 7→ θΓF (ψ f ),D∗K → F E, has closed graph (F E is continuously included into S′∗(Rd)). The Ptak
closed graph theorem [25, Theorem 8.5, p. 166] implies that it is continuous (D∗K is barrelled and F E is a
(B)-space and consequently a Ptak space; see [25, Section 4.8, p. 162]).
(ii) ⇒ (iii). Let K1 be a compact neighbourhood of x0 and Γ a cone neighbourhood of ξ0 such that
χ 7→ θΓF (χ f ), D∗K1

→ F E, is well-defined and continuous. Without losing of generality, we can assume

3)
C(K;F E) stands for the (B)-space of all continuous functions K→ F E.
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that K1 = B(x0, r), for some r > 0. Let K = B(x0, r/4). For every x ∈ K and χ ∈ D∗K−{x0}
, the function

t 7→ χx(t) = χ(t − x) belongs toD∗K1
and thus θΓVχ f (x, ·) = θΓF (χx f ) ∈ F E. Fix χ ∈ D∗K−{x0}

. Our immediate
goal is to prove that the mapping x 7→ θΓVχ f (x, ·), K→ F E, is continuous. Let x′ ∈ K be arbitrary but fixed.
The Taylor formula yields

χ(t − x) − χ(t − x′) =
∑
|β|=1

(x′ − x)β
∫ 1

0
∂βχ(t − x′ + s(x′ − x))ds.

When x ∈ K, the function

t 7→ χx,x′,β(t) =

∫ 1

0
∂βχ(t − x′ + s(x′ − x))ds

belongs toD∗K1
and the set {χx,x′,β| x ∈ K, |β| = 1} is bounded inD∗K1

. Thus, there exists C′ > 0 such that

‖θΓF (χx,x′,β f )‖F E ≤ C′, ∀x ∈ K, ∀|β| = 1.

Since

|θΓ(ξ)Vχ f (x, ξ) − θΓ(ξ)Vχ f (x′, ξ)| =

∣∣∣∣∣∣∣∣
∑
|β|=1

(x′ − x)βθΓ(ξ)F (χx,x′,β f )(ξ)

∣∣∣∣∣∣∣∣ ,
for all ξ ∈ Rd, x ∈ K, the solidity of F E proves

‖θΓVχ f (x, ·) − θΓVχ f (x′, ·)‖F E ≤ C0C′d|x − x′| → 0, as x→ x′,

which, in turn, verifies the continuity of x 7→ θΓVχ f (x, ·), K → F E. It remains to prove the continuity
of the mapping (6). Let B be a bounded subset of D∗K−{x0}

. One easily verifies that {χx| x ∈ K, χ ∈ B} is a
bounded subset of D∗K1

. As ψ 7→ θΓF (ψ f ), D∗K1
→ F E, is continuous and θΓVχ̄ f (x, ·) = θΓF (χx f ), ∀x ∈ K,

∀χ ∈ D∗K−{x0}
, we infer that the set {θΓVχ̄ f (x, ·)|χ ∈ B, x ∈ K} is bounded in F E and consequently the image

of B under the mapping (6) is bounded in C(K;F E). Since D∗K−{x0}
is bornological, we conclude that (6) is

continuous.
(iii)⇒ (iv) is trivial and (iv)⇒ (i) follows easily by specialising x = x0.
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[9] P. Dimovski, S. Pilipović, B. Prangoski, J. Vindas, Translation-modulation invariant Banach spaces of ultradistributions, Journal

of Fourier Analysis and Applications 25(3) (2019) 819–841.
[10] P. Dimovski, B. Prangoski, J. Vindas, On a class of translation-invariant spaces of quasianalytic ultradistributions, Novi Sad

Journal of Mathematics 45 (2015) 143–175.
[11] H. G. Feichtinger, Compactness in translation invariant Banach spaces of distributions and compact multipliers, Journal of

Mathematical Analysis and Applications 102 (1984) 289–327.
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[15] L. Hörmander, Lectures on Nonlinear Hyperbolic Differential Equations, Mathématiques et Applications 26, Springer-Verlag,
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