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Abstract. In this paper, we suggest a new iterative scheme for finding a common element of the set of
solutions of a split equilibrium problem and the set of fixed points of 2-generalized hybrid mappings in
Hilbert spaces. We show that the iteration converges strongly to a common solution of the considered
problems. A numerical example is illustrated to verify the validity of the proposed algorithm. The results
obtained in this paper extend and improve some known results in the literature.

1. Introduction

Let H; and H; be real Hilbert spaces with the inner product (-, -) and the norm || - ||. F;: C; X C; = Rand
Fy: C; x C; — R are two equilibrium functions, where C; and C, are nonempty closed convex subsets of
H; and H,, respectively. If A : H; — H> is a bounded linear operator, then split equilibrium problem (SEP)
is defined as follows:

Find x* € C; such that

Fi(x*,x) 20 Vx € (Cy, (1)
and y* = Ax* € C; such that

Ey,»=20 Yyel,. ()
The set of all solutions of this split equilibrium problem is denoted by (), i.e,

Q={zeC:z€EP(F;) such that Az € EP(F,)},
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where EP(F;) and EP(F;) denote the sets of all solutions of the equilibrium problems (1) and (2), respectively.

Equilibrium problem has received much attention due to its applications in a large variety of problems
arising in physics, optimizations, economics and some others. The split equilibrium problem (1)-(2) consti-
tute a pair of equilibrium problems where is the generalization of split feasibility problems. Some iterative
methods have been rapidly established for solving these problems (see [1-10]).

Let H be a real Hilbert space and C be a nonempty closed convex subset of H. A mapping T : C — Cis
said to be:

(1) nonexpansive if ||T(x) = Tyl < llx — yll, Vx, y € C;

(2) quasi-nonexpansive if ||T(x) — pll < |lx —pl| for all x € C and p € F(T), where F(T) denotes the set of fixed
points of T;

(3) nonspreading if

2T() = TWIF < IT(x) = ylI? + IT(y) = %1%, Vx, y € C;

(4) firmly nonexpansive if
ITx = Tyl* < (Tx - Ty, x - y),¥x,y € C;

It is obvious that the above inequality is equivalent to
ITx = Tyl < ke = ylI2 = (T = Dx = (I = T)yl2, Vx,y € C; 3)
(5) a-inverse strongly monotone if there exists a > 0 such that
(x=y,Tx=Ty) > a|Tx - Tyllz, Vx,yeC;

(6) hybrid if
3IT(x) = TWIP < llx = yl* + ITx = yI* + Ty — I, ¥x,y € C;

(7) (a0, B)-generalized hybrid if there exist @, f € R such that
allT(x) = TP + (1 = a)llx = Tyl* < BIITx = yl* + (1 = Pllx = yl*, Vx,y € G
(8) 2-generalized hybrid mapping if there exist a1, ay, p1,p2 € R such that for all x,y € C
allT?x = Tyl + aalTx = Tyl? + (1 = a1 = a)lix = Tyl < BillTx = yl* + Ball Tx = yi? + (1 = pu = p)llx = yIP?,

such a mapping is called a (a1, ay, f1, f2)-generalized hybrid mapping.

It is also easy to see that

a (1, 0)-generalized hybrid mapping is nonexpansive.

a (2, 1)-generalized hybrid mapping is nonspreading.

a (3/2,1/2)-generalized hybrid mapping is hybrid.

a (0, a, 0, B)-generalized hybrid mapping is (a», f)-generalized hybrid.

a 2-generalized hybrid mapping is quasi-nonexpansive.

In [11], Hojo et al. give two examples of 2-generalized hybrid mappings which are not generalized
hybrid mapping.

Recently, the existence of fixed points and the convergence theorems of hybrid mappings have been
studied by many authors (see [12-20]).

Very recently, Alizadeh and Moradlou [21-23] have obtained some weak convergence theorems for
2-generalized hybrid mapping and equilibrium problems.

Motivated by the above works, in this paper we introduce and consider a new iterative algorithm for
a common element of the sets of solutions of the split equilibrium problems and common fixed points of
2-generalized hybrid mapping in Hilbert spaces. Under suitable conditions, some strong convergence for
the sequences generated by the algorithm to a common solution of the problems is proved. The results
presented in the paper extend and improve the corresponding results announced by Alizadeh and Moradlou
[21], and some others.
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2. Preliminaries and lemmas

In this section, we give some definitions and preliminaries which will be used in the sequel.

Let H be a real Hilbert space and C be a nonempty closed convex subset of H. The operator Pc denotes
the Metric projection from H onto C. It is a fact that Pc is a firmly nonexpansive mapping from H onto C.
Further, for any x € H, z=Pcxifand only if (x —z,z —y) >0, Yy e C.

Lemma 2.1 ([24]). Let H be a real Hilbert space and T: H — H be a nonexpansive mapping. Then for all
(x,y) € Hx F(T), we have

= T,y = T < 3lle = TP

Lemma 2.2 (Demiclosedness principle). Let T be a nonexpansive mapping on a closed convex subset C of a real
Hilbert space H. Then I — T is demiclosed at any piont y € H, that is, if x, — x and x, — Tx, — y € H, then
x=Tx=uy.

To obtain our main results, we need the following assumptions.

Assumption 2.3 ([25, 26]). Let F: C XC — R be an equilibrium function satisfying the following assumptions:
(1) F(x,x)=0,Vx € C;
(2) F is monotone, i.e., F(x,y) + F(y,x) <0, Vx,y € C;
(3) F is hemicontinuous with respect to the first variable, i.e., foreach x, y,z € C, lim sup F(tz+(1-t)x, y) < F(x, y);

t—0*

(4) for each x € C, the function y +— F(x, y) is convex and lower semi-continuous.

Lemma 2.4 ([27]). Let C be a nonempty closed convex subset of a real Hilbert space H and F: C X C — R be an
equilibrium function which satisfies the Assumption 2.3. Then for all r > 0, the resolvent of the equilibrium function
TE : H — C defined by

TEx)={z€ C: F(z,y) + %(y—z,z—x) >0, YyeC},VxeH,

is well defined and satisfies the following conditions:
(1) TE(x) is nonempty and single-valued for each x € H;
(2) TF is firmly nonexpansive, i.e. for any x,y € H,
ITy () = Ty )P < (T7(x) = T7 (), x = y;
(3) E(TE) = EP(F);
(4) the set EP(F) is closed and convex;
(5) for 1,5 > 0 and for all x, y € H, one has

s
ITF @) = TE@IP < e =yl + 11 = ST ) = =l
Lemma 2.5 ([28]). Let H be a a real Hilbert space. For all x,y € H,
llax + (1 = a)yl* = alldl® + (1 - a)llylP - a(l - a)llx - yI*, Ya € R.

Now, we give a new iterative scheme as follows:

Let C; be a nonempty closed convex subset of a real Hilbert space H; and S : C; — C; is a 2-generalized
hybrid mapping.

For an initial point xy € Cy, let x; = Pc,xp and D; = Cy. Then

y = T 1= yA (L= T;2) Al
o = (1= Bu)u, + 2 112 Shu,

Yo = (1= ap)u, + 2 1 Sku, (4)
D1 ={x € Dy : [lyn — xI| < |lx, — I},
Xpl1 = PDonO/ Yn>1.

For this iterative scheme, we will discuss its strong convergence and also prove that its limit point belongs
to F(S) N Q, where F(S) is a set of fixed points of S.
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3. The main results

In this section, we show some strong convergence theorems for finding a common element of the
solution set of split equilibrium problems and the set of fixed points of 2-generalized hybrid mapping in a
Hilbert space.

Throughout this section we need the following assumptions:

(A1) C; € Hy and C; C H, are nonempty closed convex subsets of the real Hilbert spaces Hy and Hy,
respectively.

(A2) A:H; — H,is abounded linear mapping.

(A3) S:Cy — C;is a2-generalized hybrid mapping.

(A4) F1:C1 xCy = R, Fp: C; x C; — R are two equilibrium functions such that Assumption 2.3 holds.
(A5) T,F’ '1Hy — Cy, Tfﬂ > : Hy — C; are the resolvent of the equilibrium functions F; and F,, respectively.
We also need the following lemma.

Lemma 3.1 ([26]). Assume that the assumptions (A1—A5) are satisfied and r,, € (r, +oo) withr > 0,y € (0, %), where
L is the spectral radius of A*A. Then A*(I - T{*)Ais a $-inverse strongly monotone mapping and I — yA*(I — TI2)A
is a nonexpansive mapping.

Theorem 3.2. Assume that the assumptions (A1 — AS5) are satisfied and 0 < o < @, By < p < 1,7 < 1y < 00, for
a,pe0,1),r>0y¢€(, %), where L is the spectral radius of A*A. In addition, if ® = F(S) N Q # 0, then for any
xg € Cy, the sequence {x,} defined by (4) converges strongly to some point p € ©.

Proof. We shall divide the proof into five steps.

Step(D):®@c D, VYn>1.

Obviously, ©® C Dy = C;. By induction, assume that ® C D,, for some n > 1. We only need to show that
© C Dyy1. Forany p € ©, we have p = Tfnlp and (I — yA*(I - Tf:)A)p = p from Lemma 2.4. The Lemma 3.1
results in

I (L= y A (L= Ty 2) Ay = Ty (1= yA (L= T, ) Al
I = yA* (I = Ty)A)x, = (I = yA'(I = T;2) Aypll
s = pll- 5)

lln = pli

INIA

Since p € F(S) and S is quasi-nonexpansive, we get

IS0, —pll - < llon = pll
~ ~ &n—l . ~
= 110~ B+ ) S =
k=0
ﬁ n-1
< (=Bl = pll+ =21 Y (S s =)
k=0
‘B n-1
< (=Bl = pll+ =5 Y 1S s =
k=0
ﬁ n—-1
< (=Bl = pll+ =5 3 I(Sun =
k=0
<l = pll (6)
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Combining (4), (5), (6) and Lemma 2.5, we obtain

n—-1
ayn
lys = pI? = 1L = )ty + =2} Sty = plP
k=0

n—1

= |1 - an)(u, — P) + an(% Z Skvn - P)”z
k=0

n-1

n-1
1 1
_ _ 12 - k., _ 2 _ _ _ - k 2
= (- an)llun = pl + aull ;:0(5 Un = PII” = an(l = an)lluen — — ;:O S ol

IA

1 n—1 1 n-1
A = a)lln — pl? +an;§uskvn —plP = an(1 = )l — Z;;Sk”””z

n—1

1
(1 = a)lluy = plI* + anlloy — pl* = an(l = ap)lluy, — - kZ_;‘ Sku,lI?

IA

1 n-1
< o = pIP = an(L = alley = = )" S0P
k=0
<l = plP?
<l =P, @

which implies that p € D,,.1. Therefore, ® C D,;4;.

Step (II): The sequence {x,} is a Cauchy sequence.

According to (4) and the Step (I), it is obvious that D,, is nonempty closed and convex subset of C;. Since
® C Dyy1 C Dy, for all n > 1, we obtain from x,,.1 = Pp,,, xo that

lxn1 — xoll = IPp,,, X0 — xoll < llp — xoll, Vp € ©,
which implies that {x,} is bounded. By x, = Pp,xo, we have
(X0 = X, X — Xns1) = 0.

Therefore,
0 <(x0— X, Xn = Xnr1) < —lxu = xol* + [1Xns1 — Xollllxo — xall-

Hence,
Ixn = xoll < lIXn+1 — x0ll, V21,

which implies that lim ||x, — x|| exists. For any n > m > 1, x,, = Pp, xo, we also have
n—oo

I = Xm + Xm — xO”z

2
Il — xoll
¢ = 2l + Nt = xoll> + 242 = X, X — Xo)

2 2
Iy = xmll® + 112 — xoll°.

v

Therefore, we get
e P <1l — xall = b — xalP® — 0 8
[l = 2mll™ < Il = x0ll” = Il — %oll” — as n,m — oo. ®)
Hence {x,} is a Cauchy sequence. We may assume that
Xy — X5, asn — oo. 9)

Step (I): lim || u, — %Z,’Z& Sku, ||1= 0.
n—oo
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Since x+1 € D41 C Dy, by the definition of D41, we have

”yn — Xpll < = X1l

It follows from (8) that

B flyn = 2l = 1im i, = 24al] = 0. (10)

Therefore, we obtain from (8) and (10)

1y — xull < lyn — Xnsall + IXps1 = x4l = 0 asn — co. (11)

Further, from (7), we have

n-1
1
Ny — pI* < lln — pI? = (1 — @)l — = Z Sku,l7. (12)
n k=0
Therefore,
1 n-1
(1 = o)l = kz_;‘ Skl < M = pIP = llya = pIP,
< Al = pIP = llya = pII%,
<l = yall(lxn = pll + llyn — plD)-

By0<a<a, <p <1land (11), we have

n-1

|, — %Z Skull = 0, asn — oo. (13)
k=0
Furthermore, p € ® ensures p = TE 'pandp = (I - yA*(I - Tfn 2)A)p. Therefore, we have from Lemma 3.1 and
3)
lty = pl? = T = yA'(I = Ty2)Alx, = Ty T = yA (= T,)AlpIP
< = yA' (I - T;2)Alx, — [ - yA (I - T;2)Alpl?
I = T =y A = T;) Al — (L= Ty = yA (L= Ty AlplP?
=y = plP = 2y — p, A"(I = Ty Ax, — A'(1 - T;2)Ap)
+Y2IAY(I = TI2)Ax, — A(I = T2 Apl?
I =TI =y A = T;) Al — (L= Ty = yA (L= Ty AlplP
2 * *
<l = pI +y 0y = DIAT = TDAx P = I = TE)IT = pA'( = T) ALl (14)

From (12) and (14), we get

2 *
V(G = IA A= T;2)Ax P

+ (I = ToOI = yA (I = Ti)Alx|?

< e = pIP = Nl = pIP

< e = pIP =Ny = pI?

<l = yall(lx, = pll + lly, = pll). (15)

Since y € (0, 1), using (11), we have

lim [|A*(I - TE)Ax,qll = 0,  lim [|(I = T;)[I = yA*(I - T{?)Alxll = 0. (16)
n—oo n—oo
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. Fy - .
Since T,! is firmly nonexpansive, so we have

TSI - yA'(I - T2 Alx, — T2 pl?

I = yA*(I - T;2)Alx, — pli?

= by = plIP + Y2IA (I = TE2)AxAP + 2)¢p = x,, A*(I = T2)Axy)
e = pIP + Y2IAT = TE) AP + 2y(Ap — Axy, (I = T Axy),

2
Nl = pli

IN

and

VAT - T2) Ayl

VA = Tr2)Axy, AA (I = T}2)Ax,,)
Ly?I( = Tr)Axal”.

IA

We also have from Lemma 2.1

2y(Ap — Axy, (I — TI2)Axy,) 29(Ap — T2 Axy — (Axy — TE Axy), (I = Ti2)Ax,)

= 2y{(Ap — TP Axy, Axy — T2 Ax,) — |Ax, — TE2 Axy?)
< 2pl3MAx, ~ TR AP - A%, - THAx,IP)
= —yllAx, - T2 Ax,|.
Therefore, we obtain
s = pIP < llos = pIP + L2 = T Al = yllAx, = Tr2 Axl?
Il = pI? + y(Ly = DI = Tr)Axl?,

which implies from (12) that

—y(Ly = DI = TAxNP <y = pIP = Il — plI?
< Al = pIP = Iy — pIP
<l = yall(lxn = pll + lye = plD).

Duetoy € (0, %) and (11), we have
lim [|(I — T*)Ax,|| = 0. (17)
n—oo

Hence, we obtain from (16)

T I = YA (I = Ti2)Alx — x|
ITET = yA*(I = TE2)Alx, — [[ = yA (L= TE)Axl + I = yA (I = Tr2)Alx, — xull
(I = TIOI = yA*(I = TP2)Alxll + YA = TE)Alxall - 0, as n — oo, (18)

“”n _xn“

IA

Using (4) and Lemma 2.5, we have

n-1
2 ‘Bﬂ k 2
o, = pli (L = Br)un + o kE_O S un —pll

Y Su, - pI?
k=

-1

n-1
(1= Bl = pIP + Bull s Y (S50 = pIIP = Bl = Bl — 3 S
=0 =0

(1 - ,Bn)(”n - P) + ﬁn(

S|



IA

IA

IN
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1 n-1 1 n-1
_ _ |2 - ko, 012 _ _ = k 2
(L= ol = pI + Bu Y 115500 = pIP = Bu(L = B)lltn = = ), Sl
k=0 k=0
1 n-1
(1- ﬁn)”un - P”z + ﬁn”un - P”z - ﬁn(l - ﬁn)”un - E Z 5an||2
k=0

n-1
_ 2 _ _ _ 1 k 2
it = pIP = Bu(1 = Bl — — ; SEuuy |- (19)

So, we get from (19) and (5)

”yn

- pll?

IA

IA

IA

IA

IA

IA

n—1
o
L Zs"vn ~plP

—_

n—1
I = )it = p) + an(= Y S0, = p)IP
k=

:

(A = aw)llun = pIP +an|I—Z(Skv =PI — (1 = an)llien — —ZS"WII2

n—1 n—1

(1= an)lluy = pI? + Znskv —;a||2—an(1—azn)uun——Zskvnu2

n—1
1 =a)llu, — P||2 + ayllo, — P||2 —ay(1 = ay)llu, — = Z Skvnuz

(1 = ap)lluy — pl* + anllv, — plI*

n-1
1
(1= an)lits = pIP + anlllie = pIP = Bl = Bu)llutn — — kz S 1]
1 n-1
—_pl2 — _ _ 2 k,, 112
it =PI = (1 = Bl n;Sunn

n—1
1
s =PI = a1 = Bu)llen = = 3" S, (20)
k=0

which implies from (20) and 0 < a < a, < p < 1 that

n—-1
1
apu(1 = Bllien =~ 3" S u |
k=0

n-1
1
< @Bl = Bollluy = — ¥ Sl
k=0
<l = pl? = lly, — pIP?
< (bw = pll+llya = pIDAbn = yal). (21)

In virtueof 0 < a < B, < f <1, (9), (11) and (21), we get

lim ||ju, — =

n—oo

Z Suyll = (22)

Step (IV): x* € © = F(S) N Q), where x* is the limit in (3.5).
To do so, we firstly show that x* € Q.
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By the boundedness of A and (9), we get Ax, — Ax*. Then we have from Lemma 2.4 and (17)
F. F T F
IT,2Ax, — T, * Axyll < |1 - r—|||Tr,,2Axn —Ax,|| >0, asn — oo
n

and
ITy2Ax, — Axull < ITP Axy — T2 Axull + IITS2Axy — Axyll = 0, asn — oo.

Since T%? is nonexpansive, we easily get from Lemma 2.2 and Lemma 2.4
TR Ax = Ax*, ie, Ax" € F(T™?) = EP(F,).
Let w, = (I — yA*(I - T:?)A)x,. By (16) we have
s = xll = lyA" (L= T;2)Axall = 0, asn — .

We also have from (16)
.
1T w0 = T wall < 11 = =T, wn = w,ll > 0, asn— .
n

Therefore,
F F. F F.
T ' wy, — wull < | T wy = Ty wull + I Ty,) wy — wyll = 0, asn — oo.

Since T}' is nonexpansive, we get from Lemma 2.2 and Lemma 2.4
Thx' = x*, ie, x* € F(TE) = EP(F,).

Therefore, x* € Q).
Now, we prove that x* € F(S).
By means of (18) and (22), we easily get from x, — x*

n-1
1 Y Su, o x', as n— oo, (23)
s
Since S is a 2-generalized hybrid mapping, there exist a1, a2, f1, 2 € R such that for all x,y € C;
arl|$%x = SylP + azliSx = Syl + (1 - a1 - a2)llx - Syll? < BillS%x - yIP
+BallSx = yIP* + (1 = 1 = B)llx — yII*.
Since F(S) # 0, then S is quasi-nonexpansive. So ||S"u, — pll < |[u, — pll < llx, — pll,which implies that {S"u,,}
is bounded. Since S is a 2-generalized hybrid mapping, we have forall y € C; and k=0,2,3,....,n -1
0 < BullS™*x, — ylP + Ball Sy — Yl + (1 = p1 = P)IIS* % — yII?
—]|S*%x, = Syl — aallS* iy — Syl — (1 — ay — )lIS*x, — Syl
= BullIS2x, = SylP +2(52x, = Sy, Sy — y) + ISy = yIP} + B2{lIS* " x, — SylIP
+2(5"*1x, = Sy, Sy — ) + ISy = yIP} + (1 = B1 = B)lIS x, — Syl
¥2(55%, = Sy, Sy — 1) + ISy — YIP) - arllS**2x, - Syl - asllS x,, - Syl
—(1 - ay — a)||S*x, — Syl
= ISy — yI? + 2415 %x + B2 xy + (1 = B1 — B2)S s = Sy, Sy — )
+(B1 — an){1S2x, = Syll* = 1S x, — SylP} + (B2 — ax){l1S** x, = SyIP* = 1IS*x,, — Syll*)
= ISy - yII2 +2(Skx, — Sy, Sy—y)+ 2<ﬁ1(5k+2xn — Sfx,) + ﬁz(Sk“xn - Sx,), Sy—
+(B1 — a){lIS2x, = Syl? = 115" %, = SylP} + (B2 — ax){IS x = Syl” = [1S*x, — SylIP).
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Summing these inequalities from k = 0,1, ...,n — 1 and diving by 1, we have by denoting z, = 1 Yoo Skuy,for
alln>1

0 < lISy—yl*+ 2z, — Sy, Sy —y) + 2%(51(5”“% = 5" = Sxp = Xn) + B2(S" %0 = Xu), Sy = )
1
+(p1 — 061)Z{||5”+1xn = Syl + 118"x, = Syl* = 1Sx, = Syl* = Ilx, — Syl*}

+(2 = 2)1 15" — Sy = Iy = SyIP)
From (23) and the boundedness of {S"u,}, we have
0 < ISy =yl +2¢x" = Sy, Sy — ).
Denote y = x*, we have
0 <|ISx* — x*|* + 2(x" — Sx*, Sx* — x*)y = —||Sx* — x*||*.

Hence x* € F(S). This shows thatx* € ®. 0 O

4. Numerical Example

In this section, a numerical example will be illustrated to verify the validity of the proposed algorithm
in Section 3.

Example 4.1. Consider the following split equilibrium problem driven by 2-generalized hybrid mapping S: find
x € R such that

Fl(X,FJE) >0, Vx € C,
y=Ax ey,

Fz(y,@ >0, V?E C,,
x € F(S),

(24)

where
Hi=H; =R,
G =1[-3,0],
Cp =10, +00),
Fi(u,v) = (u—1)(v—u),Yu,v € Cy,
Fo(x,y) = (x + 15)(y — x), Yx, y € Cy,
Ax =3x, Vx € R,

Sx = %x, Vx € Cy.

By choosing

—_

V=§-

It is easy to check that F; and F; satisfy all conditions in Lemma 3.1, i.e. Assumption 2.3. Analogously to
the Theorem 3.2, we abide by the following processes to obtain the solution of (24).
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1

Uy gxnr

=Gt - )Y Ly
3 6n n'3 6n 3k "
1 1 1.1 1.1

Yn (E - %)un + E(E + ﬁ)kzo FOn-

It is easy to get that 0 € F(0) () Q.
Moreover, numerical results in Table 1 for {x,} also is demonstrated as follows

Table 1:

Numerical results for xo = =2 and xo = -1

n Xy n Xy
1 —2.0000 1 1.0000

2 —1.0400 2 —5.2000 x 1071
3 —5.3541 3 —2.6770 x 1071
4 —2.7456 x 1071 4 —1.3728 x 1071
5 —1.4054 x 107! 5 —7.0270 x 1072
6 6

-7.1863 X 1072 -3.5932 x 1072

98 -9.1955x107% 98 —4.5978 x 107%
99  -4.6901x107% 99 -2.3450x107%
100 -2.3921x107% 100 -1.1960 x 10~%

See table 1 for the values xg = —2 or xy = —1, we obtain x, — 0, as n — oo.
See Figure 1 and Figure 2 for the values xop = x; = =1 and xp = x; = —2. The computations associated
with example were performed using MATLAB software.

-1.2r

-1.4}

. . . . 2 . . . L
20 40 60 80 100 0 20 40 60 80 100
Figure 1 Figure 2

Figure 1: A plotofx,, n=0,1,2,---,100, for Example 4.1
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