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Abstract. This paper concerns the dynamics of a stochastic competitive Lotka-Volterra system with Markov
switching and Lévy noise. The results show that stochastic permanence and extinction are characterized
by two parameters B; and B,: if ;8 # 0, then the system is either stochastically permanent or extinctive.
That is, it is extinctive if and only if B8; < 0 and B, < 0; otherwise, it is stochastically permanent. Some
existing results are included as special cases.

1. Introduction

Recently, stochastic population systems driven by white noise have been received great attention (see
e.g. [1-11]). The stochastic two-species competitive Lotka-Volterra system can be expressed as follows:
{ dX(f) ZX(t) {[7’1 - ﬂnX(l’) - alzy(t)] dt + GldW(t)} ’ (1)

dy(t) =y(t) {[r2 — anx(t) — any(t)] dt + codW(t)},

where x(t) and y(t) are the densities of the two species at time ¢, 1 and 1, > 0 are the intrinsic growth rates,
a11 and a; > 0 are the intra-specific competition rates, 41> and a1 > 0 are the interspecific competition rates.
W(t) is a standard Wiener process defined on a complete probability space (Q, , P) with a filtration {F}}0
satisfying the usual conditions. Jiang et al. [4] and Li et al. [5] studied the persistence, extinction, global
attractivity and stationary distribution of system (1).

However, in the real world population systems often suffer sudden environmental perturbations which
cannot be described by white noise, for instance, earthquakes, hurricanes, planting, harvesting, etc (see e.g.
[12-18]). Bao et al. (see [17, 18]) pointed out that introducing Lévy jumps into the underlying population
system may be a reasonable way to describe these phenomena. Liu et al. [15] investigated the following
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stochastic competitive Lotka-Volterra system with Lévy noise:

dx(t) =x(t") {[rl — a1 x(t7) —appy(tT)] dt + o1 dW(t) + fzyl(y)ﬁ(dt, d,u)} ,
2)
dy(t) =y(t") {[rz —anx(t7) — any(t7)] df + o2dW() + fz y2(N(dt, du)},

where x(t7) and y(t7) stand for, respectively, the left limits of x(f) and y(t). N is a Poisson counting measure
with characteristic measure A on a measurable subset Z of [0, +o0) with A(Z) < +co and N(dt,dp) =
N(dt, du) - A(dp)dt. yi(u) > =1 (u € Z) are bounded functions (i = 1,2). Liu et al. [15] established sufficient
and necessary conditions of persistence in mean and extinction for each population. However, they did not
investigate stochastic permanence of system (2).

On the other hand, parameters in some population systems may suffer abrupt changes, for example,
some authors (see e.g. [8, 10]) pointed out that the growth rates of some species in summer will be much
different from those in winter, and one can use a continuous-time Markov chain with a finite state space to
describe these abrupt changes (see e.g. [12, 15, 19]). Especially, Takeuchi et al. [20] investigated a predator-
prey Lotka-Volterra system with regime switching and revealed the significant effect of environmental noise
on the population system: both its subsystems develop periodically but switching between them makes
them become neither permanent nor dissipative (see e.g. [20-22]).

Motivated by above discussions, in this paper we study stochastic permanence and asymptotic behaviors
of the following stochastic competitive Lotka-Volterra system with Markov switching and Lévy noise:

dx(t) =x(t7) {[m(p(t)) —an(p()x (t7) = an(p(t)y (t7)] dt + o1 (p(t))dW(t) + fz Y1, p()N(dt, d#)},
3)
dy(t) =y (t7) {[rz(p(t)) — a1 (p(D))x (£7) — axa(p(t)y (£7)] dt + o2(p())dW(t) + fz Y2, p(H)N(d, d#)} ,

where p(t) is a right-continuous Markov chain on (Q, ¥, P), taking values in a finite state space § = {1,2, ..., S}.
System (3) is operated as follows: If p(0) = iy, then system (3) obeys

dx(t) =x(t7) {[rl(i) —ap1()x () — ar(@)y ()] dt + o1 ()AW() + L y1(y, HN(dt, dy)} ,
4)
dy(t) =y (") {[rz(i) —ax1(i)x (7) — axn@)y (t7)] df + o2()AW(t) + fz ya(u, HN(dt, dy)} ,

with 7 = iy until time 7; when p(t) jumps to i; from ip; system (3) will then obey system (4) with i = i; from 7;
until 7, when p(t) jumps to i, from 7;. System (3) will go on switching as long as the Markov chain jumps.
That is to say, system (3) can be regarded as system (4) switching from one to another in accordance with
the law of the Markov chain. The different systems (4) (i € 5) are therefore referred to as the subsystems of
system (3). If the switching between environmental regimes disappears, in other words, p(t) has only one
state, then system (3) degenerates into system (4).

2. Global positive solutions

Throughout this paper, the generator I' = (y;j)sxs of p(t) is given by

. o Jyiic+o(9), i#],
Plp(t+c)=jlpt) =i} = o ()

e TP } 1+vyic+o(e), i=],
where ¢ > 0. Here y;; represents the transition rate from i to j and y;; > 0 if i # j, while y;; = -}, ji Vij-

We assume that p(t), W(t) and N are mutually independent. As a standing hypothesis we also assume that
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p(t) is irreducible. Under this hypothesis, system (3) can switch from any regime to any other regime and
p(t) has a unique stationary probability distribution @ = (11, 72, ..., ) € RP® which can be determined by
solving the following linear equation:

nl =0, (6)

subject to

-

;=1and 7; >0, Vi€S. (7)
=1

In this paper, we impose the following assumptions:
(Hy) 7j(i) > 0, ap(i) > 0 and there exist y;(i) > (i) > =1 such that
Vi) < yip i) <yi0) (weZ), Yies, jk=1,2.
(Hz) Forsome i€§, rj(i) >0, aj(i) > 0 and there exist y}(i) > 7j.(i) > =1 such that
vir@ <yl i) <yi0) (wez), jk=1,2.
(H3;) Forsome j€S5, yij >0, Yi#j.
(Hy) 1({) > 0 and a11({) > 0, Vi€ S.

For convenience, define

R2 = {a = (a1,a) € R | a; > 0, i = 1,2, X(t) = (x(t), y(t)", |IX(O)] = \Jx2(t) + y2(1),
t
w(p)y =71 f v(s)ds, (v(t))" = limsup(v(t)), (v(t)). = litm inf(v(t)),
0 — 400

t—+o0

rj= II;[E%X {rj(i)}, rj= r%isn {rj(z')} , = I]E?)z( {r_j} , A = II;[E%X {ajk(i)} ;A = r%isn {ajk(i)} (k=1,2),

(8)

o= max {|lo;(i , V* = maX ) ix i , )/*- i ,
ieS,j:1,2{| ]( ) } i€$, j=1,2 {l I ( )| | ]( )l}
a?(i)

By() =10~ 5 = [ [ =In (14 )| A, B = - 5,

s s s
B(i) = min (B}, B; = ; miBi(i), B} = Z‘ niBi(i), B = ; :B(i).
Theorem 2.1. Under (Hy). For any initial value X(0) € R2, system (3) has a unique global solution X(t) € R3 on
t>0as.

Proof. Consider the following stochastic differential equation:
du(t) =[Bi(p(®) - an1(p(H)e"® — ana(p(H)e”®] dt + o1 (p(H)AW(H) + f In[1 +y1(g, p®)] N(dt, dp),
z

do() = [Ba(p(t) - an(p(1)e™ - an(p(®)e”®] dt + o2(p(H)AW() + fz In[1+ a0, p)] N(dt, d), )
1(0) =Inx(0), v(0) = In y(0).

Since the coefficients of system (9) are locally Lipschitz continuous, from [23] and [24] we observe that
system (9) admits a unique local solution (u(t), v(t))T on t € [0, 7.) a.s., where 7, is the explosion time. By
[td’s formula, X(t) = (e*®,e?®)T is the unique local solution to system (3) with initial value X(0) € R2. The
proof of its global solution is almost identical to that for systems with Markov switching driven by white
noise (see e.g. [7, 19, 25]), and here is omitted. O
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3. Extinction

Theorem 3.1. Under (Hy). Let X(t) be the solution to system (3) with initial value X(0) € R2.
(1) If B1 <0, then lim;_, 0 x(t) = 0 a.s. Moreover, if By > 0, then

B, . B

— <(Y(t))« < 1) < — as.

o () < (y(t)) iz (10)
(2) If By <0, then lim;_, 1o y(t) = 0 a.s. Moreover, if By > 0, then

By . B

— (x(f)). < (x(t)) < — as.

- (x(#))s < (x(8) . (11)

Proof. From system (9), we compute

t t t 2
In(5) = fo Bi(p(s)ds - fo o (p()x(s)ds - fo m(p(s))y(s)ds{;MU(t),
-

(12)
t t t 2
in(35) = [ Batponds = [ ampxrds = [ amlpouerds + Y M),
j=1
where, for j = 1,2,
t t s
Mji(t) = fo ai(p(s)dW(s), M (t) = fo fz In[1+ (1, p(s))| N(ds, d). (13)
Based on (13), we deduce
t
M(0) = [ oHpenas < o,
Ot 2 2 2 (19
(Mp() = fo fz fIn[1+ 7, p)]) A(dpo)ds < igl%z{[ln (1+:0)] [in(1+7:0)] }A(Z)t.
By Lemma 3.1 in [17], we obtain
Jim tIMi(t) = 0 as. (i,j = 1,2). (15)
According to system (12), we have
2
£ In (58) =(B1(p(1)) — an(p®)x(®) — (ana(p®)y®) + 7 Y Muj(h),
7 (16)
£ In (55) =(Ba(p(1)) = (@ (p)(B) = (analp®)y(®) + 7Y May(t).
j=1
Combining (15) with (16) yields
limsup lnx(t) < (Bi(p(1)))" = B4, limsup tlny(t) < (Ba(p(1)))" = Bo. (17)

t—+o0 t—+o0

Now, we only prove (1), the proof of (2) is analogous. In view of (17), if B; < 0, then lim;_, . x(f) = 0 a.s.
Hence, for Ve € (0,1), there exist T > 0 and ). € ¥ such that for any ¢ > T and w € Q,, P(Q);) > 1 — ¢ and
x(t, w) < €. On the one hand, from the second equation of system (12), we have

t ¢ 2
In({75) < fo Ba(p(s))ds — ax fo y(s)ds+Z;M2]~(t). a8)
p
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According to Lemma 2 in [15], we deduce (y(f))* < % a.s. On the other hand, for any ¢ > T, we deduce

t T t 2
In(45) = fo Bo(p(s))ds — @z fo x(s)ds — @are(t - T) — fo y(s)ds+ZM2j(t). (19)

=1

B,

By Lemma 2 in [15] and the arbitrariness of ¢, we obtain (y(f)). > =

a.s. The proof is complete. [J

Corollary 3.2. Under (Hy). The solutions of system (4) have the following properties:
(1) If B1(i) < 0, B2(i) < 0, then limy—, 400 x(t) = 0, limy—, 400 y(£) = 0 as.;
(2) If By(i) < 0, By(i) > 0, then limy_, o0 x(£) = 0, limy_ oo (y(£)) = 222 g.5.;

ax (i)

(3) If B1(i) > 0, By(i) < 0, then limy_, oo (x(£)) = 242 lim;_, o y(£) = 0 a.s.

a1 (i)’

4. Stochastic permanence

Definition 4.1. System (3) is said to be stochastically permanent, if, for Ve € (0, 1), there exist 6. = 0.(€) > 0 and
0" = 0%(€) > 0 such that

litmian{lX(t)I >0.}>1-¢ litmian{IX(t)I <6t=1-e (20)
—+00 —+00

Remark 4.2. The above stochastic permanence definition of multi-population system was first proposed by Li et al.
[5] and has been intensively applied (see e.g. [6, 17, 22, 26, 27]).

Lemma 4.3. Under (Hy). Let X(t) be the solution to system (3) with initial value X(0) € R2, then for any 61 > 0
and 0, > 0, there exists a constant K(61, 62) > 0 such that

limsup E [xgl (t) + yez(t)] < K(61, 67). (21)

t—+o00
Proof. Define W(x, y) = x% + y%. By Ito’s formula, we compute

LIW(x, )] =0:1x% [r1(p(8) — any (p(H)x — apa(p(B))y] + LU0 0,

+x0 fZ {1+ 10 o] = 1= 011 (, p(E)| A(dpr)

+ 00y [12(p(8)) — am (p(B)x — am(p(B)y] + L= D o,

#3104 vaGs pI" 1= 6272t pOD) M) -
<0:x% [ﬁ - @x] + 923/92 [E - @y] + “72 (Q%xel + 9%}/92)

+x0 Lmax {[1 + V;(i)]gl -1- 917/1*(i)} Aldu)

i€$
0, % /e 0> o
+y max [1 + 7/2(1)] — 1= 02y2.(1) t A(dp).
Z €S
From (22) we observe that there exists a constant K(61, 8;) > 0 such that
LIW(x, y)] + W(x, y) < K(01, 62). (23)

Based on Itd’s formula and (23), we obtain £ [e/W(x, y)] < e'K(01, 62). Hence, integrating d[e'W(x(t), y(1))]
from 0 to t and then taking expectations lead to

SB[ (1) + ()] < OI” + [yO)]" + K(©1,02) (¢! ~1), e

which implies the required assertion (21). O
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Now, we are in the position to prove stochastic permanence of system (3). For convenience, let C be a
vector or matrix. Denote by C > 0 all elements of C are positive. Let

YOS ={C = (ci)sus 1 0 < 0,1 # j}. (25)
We shall also need the following two classical results.

Lemma 4.4. (see Lemma 5.3 in [23]) If C = (cij)sxs € Y5 has all of its row sums positive, that is, for Vi € S,
Y. cij > 0, then det(C) > 0.

Lemma 4.5. (See Theorem 2.10 in [23]) If C = (cij)sxs € Y°*°, then the following statements are equivalent:
(1) C is a nonsingular M-matrix;
(2) All of the principal minors of C are positive; that is,

11 Ci2 ... C1k
C1 Cp ... Ok

>0 for Vk € 5. (26)
Ck1 Ck2 ... Ckk

(3) C is semi-positive; that is, there exists x > 0 in RS such that Cx > 0.

Lemma 4.6. Under (H3). If B > O, then there exists a constant 6y > 0 such that for any 0 < 6 < 6y, G(0) =
diag (v1(0), ..., vs(0)) — T is a nonsingular M-matrix, where

vi(6) =B(i)6 — S 67 — f [T9G) -1 - 0InT ()] Adp),
Z

,|In (1 + 1}21&;( {y}(i)})‘} .

Proof. Without loss of generality, let j = S, thatis, forall 1 <i < S-1, y;5 > 0. By Appendix A in [28], under
(H3), B8 > 01is equivalent to

(27)
InT'(i) = max {

In (1 +min {yj*(i)})

B(1) -y ... —vis
B(:2) —):/22 —)jzs o, (28)
B(.S) —7;52 —);ss
Compute
v1(0) —Y12 p —V1s S
det G(0) = V2f9) 2(9):_m T S Y weme, (29)
e

where M;(0) represents the corresponding minor of v;(0) in the first column. According to (27), we deduce
that v;(0) = 0 and 242 ,_, = B(i). Hence,

B(1) -yi2 ... =Yis

2) —ym ... -
—[detG(6]|@0—ZB(1)M(O) (:) yzzz y:zs. (30)

B(S) -ys2 ... =Vss
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Combining (28) with (30) yields that % [detG(0)]lp=0 > 0. Clearly, detG(0) = 0. Hence, there exists a
constant 0 < 6y < 1 such that for any 0 < 6 < 6y, det G(0) > 0 and

v,-(G) > =Yis, 1< i <S-1. (31)

Foreachk =1,2,...,5 -1, consider the leading principal sub-matrix

v1(0) = y11 712 .. Y1k
GA(6) = —):/21 Vz(e):— VY2 o ... —)jzk 32)
—7;k1 —7;k2 e Vk(Q)‘— Vik
of G(0). Obviously, G¢(6) € Y**. Moreover, in the light of (31), we compute
k s
Vi) = Y i =viO) + Y yij 2 vil0) +yis > 0, i=1,2,... k. (33)

j=1 j=k+1

By Lemma 4.4, det Gx(0) > 0. That is to say, all the leading principal minors of G(0) are positive. Hence,
the required assertion follows from Lemma 4.5. [

Similarly, we obtain

Lemma 4.7. Under (Hs). If By > 0, then there exists a constant 6y > 0 such that for any 0 < 6 < 6y,

G(0) = diag (1/1(9),..., 1/5(9)) —T' is a nonsingular M-matrix; If B, > 0, then there exists a constant 6y > 0
such that for any 0 < 0 < é?), (f(§) = diag (1{(5), vy @) — I is a nonsingular M-matrix, where

vi(0) =B1()6 — 267 - f {14107 =1+ 6In[1+1(, D]} Adp),
Z.

V10) =Ba(00 — 526 — [ {14 7200, 01 =1+ OIn [1-+ g, D]} Ak

Lemma 4.8. Let X(t) be the solution to system (3) with initial value X(0) € R2. If there exists a constant 6 > 0 such
that G(0) is a nonsingular M-matrix, then there exists H(0) > 0 such that

limsup E [(x(t) + y(t))_e] < H(6). (34)

t—+o00

Proof. According to Lemma 4.5 (3), there exists p = (p1,p2, -, pS)T > 0 such that G(O)p > 0, namely, for
VieS, vi(O)pi — Z,S:1 yijpj > 0. Hence, there exists a constant x > 0 such that

S
Vi(e)Pi - Z Yijpj — Kpi > 0, Vies. (35)
=1

DefineV=x+y, U=, U= pi (1 + U)°. By Ito’s formula, we compute

L[ekta] — Kekta +eftyp [ﬁ] = ot {Kﬁ + L[ﬁ]}/ (36)
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where

S
il + L[U] =xpi 1+ W7+ Y yip; 1+ W) = pi0 (1 + )77 Oy
j=1

2 2
+pi0 1+ U)971 a1 (p(£)x +(ﬂ12(P(f))+‘;1221(P(f)))xy+ﬂ22(P(f))]/

+pi0 1+ U)°" u(al(P(t))x;az(p(t))y)z

+p0(+ WU fz DO ) (g 37)
+p 20 (14 ) 2 (2 (p(t»x;az(p(t))y)z

tpi L [(1 v (u,p(t))icwz(y,p(t))y)s -1+ u)e] AMdw)

=0 [u9] ul + F U,

where limy;_, 1 % =0and

S
o] _ r(p@®)x+r2(pH)y a1(pH)x+aa(p®)y |2
O[U] =xpi + Y, yijp; — pi0 RSO0 1y, (D CORTRON)
j=1

- 2
+pi0 f Y1(H,p(f))xyz(y,p(f))y Adp) + pi 6(62 1)) (Ul(P(t))X;UZ(P(t))y> (38)
z

, v 0
*pi fz [( V+71(H,p(t))sz(w(f))y) B 1] Adp).

+oo xt
n=0 n!’

Based on Jensen’s inequality and e* =}, we derive

S
(0] [UG] <xp; + ; Viipj — pi6 1]1;111r21 {B]‘(p(t))} +pi 92202

% -0 y1(u Vo (U
+pi L [(1 " h(H/P(t))x;Vz(H,P(f))y) —1+60In (1 + Jl(hp(t))xy ( /P(t))y)] A(dp)
s (39)
. 2 52 . .
<ipi+ Y yipj - piBAO + piEE + py f [T°G) - 1 - O1nT()] A(dp)

j=1 z

s
=Kpi + Z vijpj — pivi(0) < 0.
j=1
In view of (36), (37) and (39), there exists H(0) > 0 such that
L[e*U®)] < H(©O)e, (40)
Integrating d [e’“a(t)] from 0 to t and then taking expectations yield

E[pie [1+ U®]°] - pi 11+ U©)]° < ZO (e - 1). (41)

According to (41), we deduce

0 H(O) 1 \0
E[1+U®) < 00 + (1+ o) €™ (42)

Define H(0) = —HO__ From (42) we obtain the required assertion. [J

K minjes {p;}
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Lemma 4.9. Let X(t) be the solution to system (3) with initial value X(0) € R2. If By < 0and there exists a constant
0 > 0 such that (f(?) is a nonsingular M-matrix, then there exists IT(?) > 0 such that

limsup [E [y_e(t)] < 17(5) (43)

t—>+o00

Proof. Define U= i By Itd’s formula, we obtain

d[u]=u {—rz(p(t)) + a2(p(t) + fz LU0\ (dp) + 20 a21(p(t))x} dt
(44)

~axp )TN0 - [ TN e, .
Z

Based on Lemma 4.5 (3), there exists p = (p1, pa, ..., ps)! > 0 such that 5(\6)'1'5 > 0, that is to say, for Vi € 5,
vi(O)p; — Z]szl yijpj > 0. Thus, there exists a constant ¥ > 0 such that

s
VO — ), yip; ~ ¥pi > 0, Vi €. (45)
j=1
In the light of (45), for any sufficiently small ¢ > 0,
s
viO)pi = ) v - ¥pi — piamOe > 0, Vi €. (46)
j=1

According to the proof of Theorem 3.1, for Ve € (0, 1), there exist T > 0 and Q. € ¥ such that forany ¢t > T
and w € O, P(Q,) > 1 - ¢ and x(t, w) < €. Applying Itd’s formula again, we compute

clevm ()| = (e a) + lm(e+0))), 47)
where
i (1+0) + z[m ; a)e]

=xp; (1 + fl)e +pi6 (1 + U) L [U] e 1)ploz(p(if))llz (1 + U g Z y,]p] 1 + U) (48)
j=1

+ fz [7(1 - %)9 F(1+0) + o2 T (14 1) ])\(dy).

Based on (44), we compute
k‘ﬁ(1+ﬁ)e+z[ﬁ(1+ﬁ)9]

i (1+0) + ﬁeﬁ(uﬁ)@‘l[ Ba(p(t)) + 20 4 fz In (1 + y2(u, p) Adp) + 222 4 g, (p(t))x]
(49)

0 __ —~\0
+ 2005, (p(t))u2(1+u +Zy,]p] (1+10) +fz 71+ i) —pi<1+U)]/\(d/J)
j=1

_0(T°)T° + F(T),
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Hu)
where hmu_> voo T T 0 and

o (U?) =xp; + pi0 [ Ba(p(t) + 202 f In (1 +y2(y, (t))/\(dy)+a21(p(t))x]

+ 52OV | Z Viipy + f [P+ yala, p) ™ = i A

(50)
=i + Z yijpj = Pvi(©) + i0ax (p(H)x

=1

<kp; + Z Viibj — pivi(0) + pifaze < 0.
=1

In view of (47), (49) and (50), there exists 77@) > 0 such that

— ——\0 ——
z [erp, (1+00) ] < H@)e". (51)
—\0
Integrating d [e pi 1 + U(t)) ] from 0 to t and then taking expectations yield

E[ﬁeﬂ [1+ U ] pif1+ U(O)] ”‘9 2 (e -1). (52)
Based on (52), we deduce

E[1+Uw| < % (1+45) ™. (53)

Define H(0) = O _ Then the required assertion follows from (53). O

K Minjes { pi }

In a similar way, we obtain

Lemma 4.10. Let X(t) be the solution to system (3) with initial value X(O) € R2. If B, < 0 and there exists a
constant 6 > 0 such that G(G) is a nonsingular M-matrix, then there exists H(G) > 0 such that

lim sup E [x~%()] < H(0). (54)

t—+o00

Theorem 4.11. Under (Hy) and (H3). If B8 > O, then system (3) is stochastically permanent.
Proof. Noting that

XO < 2% [x(t) + y®] ™, (55)
thanks to Lemma 4.8, we deduce

lim sup E [|X(t)| ] < 22 H(6). (56)

t—>+o00

1
From Chebyshev’s inequality, for Ve € (0, 1), there exists 0. = ‘[ (%) % > 0 such that

lim sup P {IX(t)] < 6.} = limsup P{IX()" > &'} < (5.)° limsup E[IX() ] < e (57)

t—+o0 t—+00 t—+00
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In other words,

11t1£1+1£fP {IX@®]=0.}=1-e€. (58)

The rest of (20) follows from combining Lemma 4.3 with Chebyshev’s inequality. Hence, system (3) is
stochastically permanent. [

Corollary 4.12. Under (Hy). If B(i) > O, then system (4) is stochastically permanent.
Theorem 4.13. Under (Hy) and (H3). If 818, < 0, then system (3) is stochastically permanent.

Proof. We only prove that if 8; < 0 and B, > 0, then system (3) is stochastically permanent, the proof of the
1

other case is similar. By Chebyshev’s inequality, for Ye € (0, 1), there exists 6. = (1%)9 > 0 such that

lim sup P {|X(#)| < 6.} < limsup P {y‘l(t) > (5:1} < (5,)% lim sup E [y_e(t)] < 5.)° I@ =€ (59)

t—+00 t—+00 t—+00

In view of (59), we obtain

htTJ}ng {IX®=0.}=1-e€. (60)

The second part of (20) follows from combining Lemma 4.3 with Chebyshev’s inequality. So system (3) is
stochastically permanent. [

Corollary 4.14. Under (Hy). If B1(i)B2(i) < 0, then system (4) is stochastically permanent.

Remark 4.15. Theorem 4.13 implies that in the sense of Definition 4.1, although one species is extinctive, system (3)
can still be stochastically permanent. Therefore, it is interesting to study a new definition of stochastic permanence
(see [29]) and "stochastic persistence in probability” (see e.g. [30, 31]) of system (3).

5. Asymptotic properties

Theorem 5.1. Under (Hy). The solution (x(t), y(t))" of system (3) with initial value X(0) € R? satisfies

In[x(t) + y(O] _

limsup <las. (61)

t—+o00 Int

Proof. 1t is easy to see that

d [x(8) + y(B)] < [r1(p®)x(B) + r2(pO)y(B)] dt + [o1(p(E))x(E) + o2(p(O) (O] AW (E)

— 62
+ fz (1w, p(O)x(E) + ya(p, p(£))y(H] N(AL, dp). (©2
Integrating both sides of (62) from ¢ to u (u > t) yields
[x(u) + y()] - [x(t) + y(B)] < f [r1(p(9)x(s) + r2(p(s))y(s)] ds + f [o1(p(8))x(s) + 02(p(s))y(s)] AW(s)
t t (63)

+ f fz 1 (g, pENXE) + (it p) (S N(ds, dp).
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According to (63), we compute

t+1
E| sup [x(u)+ y(u)]] <E [x(t) + y(t)] + rj: E [x(s) + y(s)] ds

t<u<t+1

+ ]E[ sup f [o1(p(s))x(s) + o2(p(s))y(s)] dW(s)] (64)

t<u<t+1

+

sup f f [y1(, p(s))x(s) + Y2, p(s))y(s)] N(ds, dy)]

t<u<t+1
In view of the Burkholder-Davis-Gundy inequality (see e.g. pp.264-265 in [24]) and Young inequality, we
deduce

t+1 0.5

[01(p()x(S) + 2(p(E)y6)] ds)

0.5

IE[ sup f [o1(p(s))x(s) + a2(p(s))y(s)] dW(s)] <JE (];

t<u<t+1 Jt
0.5

11 11
<JE ([ o [x(s) + y(s)]2 ds) <JE (02 t suF 1 [x(u) + y(u)] ft [x(s) + y(s)] ds)

(65)
<JE —1 sup [x(u) + y(u)] + ]fM[X(S)Jr (s)]ds
2] p Y y

t<u<t+1

22
=%1E( sup [x(u)+y(u>}) oL f E[x(s) + y(o)] ds

t<u<t+1
Making use of the Burkholder-Davis-Gundy inequality and Holder’s inequality, we obtain

[ sup f f (11, pDXE) + vt PN Y] N(ds, du)]

t<u<t+1
0.5

f+1
SﬂE( f f [w,p(s))x(s)+yz<u,p<s)>y<s>]2N(ds,dw)
t Z

0.5

t+1
E * > N(ds,d 66
5 ( [ [0 6o+ P nes m) (66)

f+1 0.5
s1(1E [ [ (x<s>+y<s))]2N<ds,du>)

=1( fz I A(du))o's (lE f - [x(s) + y(s)I° ds)

Substituting (65) and (66) into (64), we have

0.5

t+1

t+1
IE( sup [x(u) + y(u)]) <2E[x(t) + y(1)] + 2rf E [x(s) + y(s)] ds + o?J? f E [x(s) + y(s)] ds
¢ t

t<u<t+1
0.5 f+1
+21( fz [y*]zwm) ( f E[x(s)+y<s)]2ds)

t+1 f+1
<2F [x(t) + y(t)] + 2r f E [x(s) + y(s)] ds + o* f E [x(s) + y(s)] ds
t t

0.5 f+1 0.5
+2](fZ [7/*]2 /\(dy)) (2]; ]E[xz(s)+y2(s)] ds)

0.5

(67)
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Based on Lemma 4.3, there exists K*(01, 0) > 0 such that sup,, E [x91 (t) + yez(t)] < K*(64,0). Hence,

0.5
]E( sup [x(u)+y(u)]) gzK*(l,l)+2r1<*(1,1)+02]21<*(1,1)+2](21<*(2,2) fz [y*]zA(dy)) =K. (68)

t<u<t+1
Therefore, from (68) we get
]E( sup [x(u) + y(u)]) <K k=1,2,.. (69)
k<u<k+1
Then by Chebyshev’s inequality and (69), we observe that for Ve € (0, 1),
Plw: £+ y(t k1+€<1z k=1,2 70
w: sup [x(t)+y(t)] > < e k=12, (70)

k<t<k+1

Using Borel-Cantelli’s lemma, we obtain that there exists a set (3, € ¥ with P((),) = 1 and an integer-valued
random variable k, such that for every w € Q,,

sup [x(t) + y(B] < k'*° (71)

k<t<k+1

holds whenever k > k,(w). Thus, for almostall w € Q,if k > k,andk <t <k+1,

() + y(O] _ 0 ($0Pecrses [XO +y0O]) mnptee 72)
Int - Int sire

Int

In view of (72), we deduce

lim sup In [x(t) + y(t)]

<l+e€as. 73
t—+o00 lnt - €as ( )

So the desired assertion (61) follows from letting e — 0* in (73). O

6. Conclusions and an example

This paper concerns permanence and asymptotic behaviors of a stochastic competitive Lotka-Volterra
system with Markov switching and Lévy noise. Corollaries 4.12 and 4.14 tell us that for some i € 5, if
B(i) > 0 or B1(i)B2(i) < 0, then system (4) is stochastically permanent. Theorems 4.11 and 4.13 tell us that if
for Vi € 5, system (4) is stochastically permanent, then as the result of Markov switching, system (3) remains
stochastically permanent. On the other hand, Corollary 3.2 indicates that for some i € §, if max;-12{B;(i)} <0,
then system (4) is extinctive. Theorem 3.1 tells us that if for Vi € §, system (4) is extinctive, then as the result
of Markov switching, system (3) remains extinctive. However, Theorems 4.11, 4.13 and 3.1 provide a more
interesting result that if some subsystems are stochastically permanent while some are extinctive, again as
the result of Markov switching, system (3) may be stochastically permanent or extinctive, depending on
the signs of B; and B,. That is,

Theorem 6.1. Under (Hy) and (Hs). If 818, # 0, then system (3) is either stochastically permanent or extinctive.
That is, it is extinctive if and only if By < 0 and B, < 0. Otherwise, it is stochastically permanent.

Next, consider the following stochastic logistic model with Markov switching and Lévy noise:

dx(t) = x(t7) {[rl(p(t)) — a1 (p()x (£7)] dt + o1 (p(t)dW(t) + ‘fz yi(u, p(t))ﬁ(dt, dy)} . (74)
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Theorem 6.2. Under (Hy) with j = k = 1 and (H3). If 81 # 0, then system (74) is either stochastically permanent
or extinctive. That is, it is stochastically permanent if and only if 81 > 0, while it is extinctive if and only if 81 < 0.

Corollary 6.3. Under (H3) and (Hy). If B] # 0, then the following stochastic logistic model with Markov switching
dx(t) =x(t) {[r1(p(t)) — a1 (p(t))x(t)] dt + o1(p(t))dW(t)} (75)

is either stochastically permanent or extinctive. That is, it is stochastically permanent if and only if B] > 0, while it
is extinctive if and only if B] < 0.

Remark 6.4. Corollary 6.3 implies that Theorem 6.2 contains Theorem 6.1 in [22] as a special case.
Corollary 6.5. Under (Hy) with j = k = 1. If B1(i) # 0, then the following stochastic logistic model with Lévy noise

dx(t) =x(t7) {[rl(i) —an(D)x (7)) dt + o1 () dW(¢) + f y1(u, HN(dt, dy)} (76)
z
is either stochastically permanent or extinctive. That is, it is stochastically permanent if and only if B1(i) > 0, while
it is extinctive if and only if B1(i) < 0.
Remark 6.6. Corollary 6.5 implies that Theorem 6.2 contains Remark 1 in [15] as a special case.

Our results are illustrated by considering the following stochastic competitive Lotka-Volterra system
with Markov switching and Lévy noise:

dx(t) =x () {[Vl(P(f)) —an(p()x (7) — arz(p(t))y (£7)] At + o1 (p(£))AW(E) + fZ 1, pON(, d#)} /
(77)

dy(t) =y (t7) {[rz(p(t)) —ax(p())x (t7) — ax(p(t)y ()] dt + o2 (p(H)dW(E) + fz V2, p(H)N(dt, d#)} ,

where p(t) is a right-continuous Markov chain taking values in § = {1,2}. System (77) may be regarded as
the result of regime switching, which switches between the following two subsystems:

dx(t) =x (t‘){% - @ - Zyét_)— dt + dW(b) + f N(dt, dy)},
V4
._ R 78)
(1 x@) 2y) 2 ~ }
dyt) =y () 4] = = 2L Y gy Saw Ndt, du) b,
v =) {[5- 252 - 22 v Fawor+ [ Nearaw
and
dx(t) =x (r){ g - @ - @ dt + ldW(t) + f Ndt, dy)},
: g (79)
dy(t) =y(t){ 4_x(t) y )]dt —dW(t)+fN(dt dy)}
97 79 3
Here, A(Z) = and
n=2,  n)=5 n@=2 n@=j
m)=y =g w@=; @O=g
6112(1) 23, ﬂzz(l) = %, 012(2) = %, 6122(2) %, (80)
2 1 1
01(1) :1, 02(1) = 5, 01(2) = 5, 02(2) g,
Vl(‘u/ 1) :1/ ‘)/2([1/ 1) = 1/ 71([1/ 2) = 1/ VZ(H/ 2) 1.
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Based on (80), we compute

2In2-7 In2-2 2In2-7

By(1) =g By(1) = — B(1) = 13

2In2+7 2In2+5 2In2+5

Bi(2) =222t Boy= ZREFY gy 2R EY
1(2) T 2(2) T ) 13

From Corollary 3.2, system (78) is extinctive. By Corollary 4.12, system (79) is stochastically permanent.
Case 1. Let the generator of the Markov chain p(t) be

-5 5
I'=ijae = ( 1 _1)- (82)
Solving equation (6) yields the unique stationary probability distribution

T = (111, T2) = (%, g) (83)

Thus, we have

8= miBG) = 21“1% > 0. (84)
i=1

Therefore, according to Theorem 4.11, system (77) is stochastically permanent.
Case 2. Let the generator of the Markov chain p(t) be

-1 1
= ()/ij)zxz = ( 3 _3). (85)
Solving equation (6) yields the unique stationary probability distribution

7t = (111, ) = (2, }L) (86)

Then, we get
2 4In2 -7 2 8In2-7
B, = Z niBi(i) = ———L <0, B, = Z miBa(i) = ——=—L <. (87)

P 36 p 72

So based on Theorem 3.1, system (77) is extinctive.
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