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Abstract. Let A be a Banach algebra. An element a ∈ A has generalized Hirano inverse if there exists
b ∈ A such that

b = bab, ab = ba, a2
− ab ∈ Aqnil.

We prove that a ∈ A has generalized Hirano inverse if and only if a − a3
∈ A

qnil, if and only if a is the sum
of a tripotent and a quasinilpotent that commute. The Cline’s formula for generalized Hirano inverses is
thereby obtained. Let a, b ∈ A have generalized Hirano inverses. If a2b = aba and b2a = bab, we prove that
a + b has generalized Hirano inverse if and only if 1 + adb has generalized Hirano inverse. The generalized
Hirano inverses of operator matrices on Banach spaces are also studied.

1. Introduction

Let A be a Banach algebra with an identity. The commutant of a ∈ A is defined by comm(a) = {x ∈
A | xa = ax}. The double commutant of a ∈ A is defined by comm2(a) = {x ∈ A | xy = yx for all y ∈ comm(a)}.
An element a ∈ A has g-Drazin inverse (i.e., generalized Drazin inverse) in case there exists b ∈ A such that

b = bab, b ∈ comm(a), a − a2b ∈ Aqnil.

The preceding b is unique, if it exists, and we denote it by ad. Here,Aqnil denote the set of all quasinilpotents
of the Banach algebraA, i.e.,

A
qnil = {a ∈ A | 1 + ax ∈ A is invertible for all x ∈ comm(a)}.

Let υ(a) = limn→∞ ||an
||

1
n . We useA−1 to denote the set of all units inA. We note that

A
qnil = {a ∈ A | 1 + λa ∈ A−1 f or all λ ∈ C}

= {a ∈ A | limn→∞ ||an
||

1
n = 0, i.e., υ(a) = 0}(see [7]).

The motivation of this paper is to extend generalized Drazin inverses in Banach algebras to a wider case
by means of tripotents p, i.e, p3 = p. An element a ∈ A has generalized Hirano inverse if there exists b ∈ A
such that

b = bab, b ∈ comm(a), a2
− ab ∈ Aqnil.
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We may replace the double commutator for the commutator in the preceding definition for a Banach algebra
(see Proposition 2.9). Many elementary properties of generalized Hirano inverses were investigated in [2].

As it is well known, a ∈ A has g-Drazin inverse if and only if there exists an idempotent e ∈ comm(a)
such that a + e ∈ A−1 and ae ∈ Aqnil. Here, the spectral idempotent e is unique, and it is denoted by aπ. In
Section 2, we prove that a ∈ A has generalized Hirano inverse if and only if a − a3

∈ A
qnil, if and only if a is

the sum of a tripotent and a quasinilpotent that commute.
Let a, b ∈ A. Then ab has g-Drazin inverse if and only if ba has g-Drazin inverse and (ba)d = b((ab)d)2a.

This was known as Cline’s formula for g-Drazin inverses (see [10]). In Section 3, we extend Cline’s formula
for generalized Hirano inverses.

In Section 4, we are concerned on additive property for generalized Hirano inverses. Let a, b ∈ A have
generalized Hirano inverses. If a2b = aba and b2a = bab, we prove that a + b has generalized Hirano inverse
if and only if 1 + adb has generalized Hirano inverse.

Finally, in the last section, we investigate generalized Hirano inverses for operator matrices on Banach
spaces.

Throughout the paper, all Banach algebra are complex with identity 1. Let X be an arbitrary complex
Banach space and L(X) be the Banach algebra of all bounded operators on X.

2. Generalized Hirano inverses

The aim of this section is to present new characterizations of generalized Hirano inverses which will be
used repeatedly. We begin with

Lemma 2.1. [19, Lemma 2.10 and Lemma 2.11] LetA be a Banach algebra, a, b ∈ A, a2b = aba and b2a = bab.

(1) If a, b ∈ Aqnil, then a + b ∈ Aqnil.
(2) If a or b ∈ Aqnil, then ab ∈ Aqnil.

Following Mosić (see [12]) an element a ∈ A has gs-Drazin inverse if there exists b ∈ A such that b = bab,
b ∈ comm(a) and a − ab ∈ Aqnil. It was proved that a ∈ A has gs-Drazin inverse if and only if there exists an
idempotent e ∈ comm(a) such that a − e ∈ Aqnil (see [6, Theorem 3.2]. We have

Lemma 2.2. LetA be a Banach algebra, and let a ∈ A. Then the following are equivalent:

(1) a has gs-Drazin inverse.
(2) a − a2

∈ A
qnil.

Proof. =⇒Write a = e + w with e2 = e ∈ comm(a),w ∈ Aqnil. Then a − a2 = (1 − 2e − w)w ∈ Aqnil, by Lemma
2.1.
⇐= Let q := a − a2. Then 4q(4q − 1)−1

∈ A
qnil. Consider the infinite series

−
1
2

∞∑
k=1

(
1
2
k

) (
4q(4q − 1)−1

)k
,

where the coefficients are binomial coefficients. Clearly, υ
(
4q(4q − 1)−1

)
= 0. Hence the series converges

absolutely to an element z. Moreover, we have the formal relation

1 −
√

1 − 4q(4q − 1)−1 = 2z.

This implies that
z2
− z = q(4q − 1)−1.

Here, z commutes with every element of A which commutes with q(4q − 1)−1. That is, there exists z ∈ A
such that z2

− z = q(4q − 1)−1 and z ∈ comm2(q(4q − 1)−1) (see [14, Lemma 2.3.8]).
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Let 0 , λ ∈ C. Set y = 2λz. Then y2
− 2λy = 4λ2q(4q − 1)−1

∈ A
qnil. Hence,

(y − λ)2 = y2
− 2λy + λ2

= λ2 + 4λ2q(4q − 1)−1

∈ A
−1.

It follows that y − λ ∈ A−1, and so y ∈ Aqnil. This implies that z = 1
2λ
−1y ∈ Aqnil.

Let f = a − (2a − 1)z. Then a − f = (2a − 1)z ∈ Aqnil. Since a ∈ comm(a), we see that a ∈ comm(q(4q − 1)−1);
hence, a ∈ comm(z), and so az = za. We easily see that (1 − 2a)2(1 − 4q)−1 = 1; hence,

(a − (2a − 1)z)(1 − a + (2a − 1)z)
= (a − a2) + (−(2a − 1)(1 − a) + a(2a − 1))z − (2a − 1)2z2

= (a − a2) + (2a − 1)2(z − z2)
= q − (2a − 1)2q(1 − 4q)−1

= 0,

and so (a − (2a − 1)z)2 = a − (2a − 1)z. That is, f 2 = f ∈ comm(a), as desired.

Lemma 2.3. LetA be a Banach algebra, and let a ∈ A. Then the following are equivalent:

(1) a has generalized Hirano inverse.
(2) a2

∈ A has gs-Drazin inverse.
(3) There exists b ∈ comm(a) such that

b = (ab)2, a2
− a2b ∈ Aqnil.

Proof. (1)⇒ (3) By hypothesis, there exists c ∈ comm(a) such that c = c2a and a2
− ac ∈ Aqnil. Let b = c2. Then

b ∈ comm(a), b = c4a2 = b2a2 = (ab)2. Moreover, we have a2
− a2b = a2

− ac ∈ Aqnil, as desired.
(3)⇒ (2) By assumption, we have b ∈ comm(a) such that b = (ab)2, a2

−a2b ∈ Aqnil.Hence b ∈ comm(a2), b =
ba2b. Therefore a2

∈ A has gs-Drazin inverse.
(2) ⇒ (1) Since a2

∈ A has gs-Drazin inverse, then there exists c ∈ comm2(a2) such that c = c2a2 and
a2
− a2c ∈ Aqnil (see [6, Remark 2.2]). Set b = ac. Since a ∈ comm(a2), we see that ca = ac; hence, ab = ba.

Moreover, b = b2a and a2
− ab = a2

− a2c ∈ Aqnil. Therefore a has the generalized Hirano inverse, as
asserted.

Theorem 2.4. LetA be a Banach algebra, and let a ∈ A. Then the following are equivalent:

(1) a has generalized Hirano inverse.
(2) a − a3

∈ A
qnil.

Proof. =⇒ In view of Lemma 2.3, a2
∈ A has gs-Drazin inverse. It follows by Lemma 2.2 that, a(a − a3) =

a2
− a4

∈ A
qnil, and so (a − a3)2 = a(a − a3)(1 − a2) ∈ Aqnil by Lemma 2.1. If x ∈ comm(a − a3), then

x2
∈ comm(a − a3)2; and so 1 − (a − a3)2x2

∈ A
−1. Thus, 1 − (a − a3)x ∈ A−1. We infer that a − a3

∈ A
qnil, as

required.
⇐= Set b = a2+a

2 and c = a2
−a
2 . Then we check that

b2
− b = 1

4 (a4 + 2a3
− a2
− 2a) = 1

4 (a + 2)(a3
− a);

c2
− c = 1

4 (a4
− 2a3

− a2 + 2a) = 1
4 (a − 2)(a3

− a).

Hence b2
−b, c2

−c ∈ Aqnil. Clearly, a2 = a2+a
2 + a2

−a
2 = b+c, and so a2

−a4 = (b+c)−(b+c)2 = (b−b2)+(c−c2)−2bc.
On the other hand, bc = a4

−a2

4 , and so

1
2

(a2
− a4) = (b − b2) + (c − c2) ∈ Aqnil.

In light of Lemma 2.2, a2
∈ A has gs-Drazin inverse. This completes the proof by Lemma 2.3.
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Corollary 2.5. LetA be a Banach algebra, and let a ∈ A. If a ∈ A has generalized Hirano inverse, then an
∈ A has

generalized Hirano inverse for any n ∈N.

Proof. In view of Theorem 2.4, a − a3
∈ A

qnil. Then an
− (an)3 = an

− (a3)n = (a − a3) f (a) ∈ Aqnil for some
polynomial f (t) with integral coefficients. According to Theorem 2.4, an

∈ A has generalized Hirano
inverse, as asserted.

Lemma 2.6. LetA be a Banach algebra, and let a ∈ A. Then a has generalized Hirano inverse if and only if a2+a
2 and

a2
−a
2 have gs-Drazin inverses.

Proof. =⇒ Set b := a2+a
2 . Then

b2
− b = 1

4 (a + 2)(a3
− a)

∈ A
qnil.

In light of Lemma 2.2, b ∈ A has gs-Drazin inverse. Likewise, a2
−a
2 has gs-Drazin inverse, as desired.

⇐= Set b = a2+a
2 and c = a2

−a
2 . Then a2 = b + c. In view of Lemma 2.2, b2

− b, c2
− c ∈ Aqnil. Since bc = cb,

as in the proof of Theorem 2.4,

1
2

(a2
− a4) = (b − b2) + (c − c2) ∈ Aqnil.

Hence a2
∈ A has gs-Drazin inverse. This completes the proof by Lemma 2.3.

We have accumulated all the information necessary to prove the following.

Theorem 2.7. LetA be a Banach algebra, and let a ∈ A. Then the following are equivalent:

(1) a ∈ A has generalized Hirano inverse.
(2) There exists e3 = e ∈ comm(a) such that a − e ∈ Aqnil.

Proof. =⇒ Let b = a2+a
2 and c = a2

−a
2 . In view of Lemma 2.6, b and c have gs-Drazin inverses. According to [6,

Theorem 3.2], for a Banach algebraA, we indeed have f 2 = f ∈ comm2(b) and 12 = 1 ∈ comm2(c) such that

b − f , c − 1 ∈ Aqnil.

As ab = ba and ac = ca, we see that f a = a f and 1a = a1. Hence 1b = b1 and f c = c f . This implies that
f1 = 1 f . Therefore a = b − c = ( f − 1) + (b − f ) − (c − 1). Clearly, (b − f )(c − 1) = (c − 1)(b − f ). In light of
Lemma 2.1, (b− f )− (c− 1) ∈ Aqnil. Moreover, we check that ( f − 1)3 = f − 1. Set e = f − 1. Then a− e ∈ Aqnil,
as required.
⇐= By hypothesis, there exists e3 = e ∈ comm(a) such that w := a − e ∈ Aqnil. Hence, a = e + w, and so

a2 = e2 + (2e + w)w. Then a2
− e2 = (2e + w)w ∈ Aqnil. In light of [6, Theorem 3.2], a2

∈ A has gs-Drazin
inverse. Therefore we complete the proof, by Lemma 2.3.

Corollary 2.8. Let C be the field of complex numbers, and let A ∈Mn(C). Then the following are equivalent:

(1) A has generalized Hirano inverse.
(2) A is the sum of a tripotent and a nilpotent matrices that commutate.
(3) The eigenvalues of A are only −1, 0 or 1.
(4) A is similar to dia1(J1, · · · , Jr), where

Ji =


λ 1

λ
. . .
. . . 1

λ

 , λ = −1, 0 or 1.
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Proof. In view of Lemma 2.3, A ∈ Mn(C) has generalized Hirano inverse if and only if A2
∈ Mn(C) has

gs-Drazin inverse. We note that Mn(C)qnil is just the set of all n × n complex nilpotent matrices over C.
Therefore we are done by [15, Example 2.5].

We close this section with a characterization of a generalized Hirano inverse in terms of its double
commutant.

Proposition 2.9. LetA be a Banach algebra, and let a ∈ A. Then the following are equivalent:

(1) a has generalized Hirano inverse.
(2) There exists e3 = e ∈ comm2(a) such that a − e ∈ Aqnil.
(3) There exists b ∈ comm2(a) such that

b = (ab)2, a2
− a2b ∈ Aqnil.

Proof. (1)⇒ (2) In view of Lemma 2.6, a2+a
2 and a2

−a
2 have gs-Drazin inverses. As in the proof of Theorem 2.7,

we can find idempotents f , 1 ∈ comm2(a) such that a − ( f − 1) ∈ Aqnil. Let e = f − 1. Then e3 = e ∈ comm2(a),
as required.

(2)⇒ (3) Set b = (a2 + 1− e2)−1e2, as in the proof of Theorem 2.7, we have b = (ab)2, a2
− a2b ∈ Aqnil. Since

e ∈ comm2(a), we check that b ∈ comm2(a), as desired.
(3)⇒ (1) This is obvious by Lemma 2.3.

3. Multiplicative property

LetA be a Banach algebra, and let a, b ∈ A. In [10, Lemma 2.2], it was proved that ab ∈ Aqnil if and only
if ba ∈ Aqnil. We generalized this fact as follows.

Lemma 3.1. LetA be a Banach algebra, and let a, b, c, d ∈ A. If

(ac)2a = (db)2a,
(ac)2d = (db)2d,

then the following are equivalent:

(1) (ac)2
∈ A

qnil.
(2) (bd)2

∈ A
qnil.

Proof. As (ac)2a = (db)2a, we have acacaca = dbdbaca. Let aca = a′ , c = c′ , dbd = d′ and b = b′ . Then we
have a′c′a′ = d′b′a′ . Also by (ac)2d = (db)2d we have acacdbd = dbdbdbd which implies a′c′d′ = d′b′d′. Let
(ac)2

∈ A
qnil, then acac ∈ Aqnil which implies that a′c′ ∈ Aqnil. By applying [11, Lemma 3.1] we conclude that

d′b′ ∈ Aqnil and so (bd)2
∈ A

qnil. The converse follows by a similar way.

Under the hypothesis of Lemma 3.1, we note that ac ∈ Aqnil and bd ∈ Aqnil are equivalent. Also we easily
prove that ac ∈ Ad if and only if bd ∈ Ad. We come now to the main result of this section.

Theorem 3.2. LetA be a Banach algebra, and let a, b, c, d ∈ A. If

(ac)2a = (db)2a,
(ac)2d = (db)2d,

then the following are equivalent:

(1) ac ∈ A has generalized Hirano inverse.
(2) bd ∈ A has generalized Hirano inverse.
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Proof. (1) ⇒ (2) In view of Theorem 2.4, ac − (ac)3
∈ A

qnil. By Lemma 2.1, ac(ac − (ac)3) ∈ Aqnil which
implies that (ac)2

− (ac)4
∈ A

qnil. Thus we have, ((1 − acac)ac)2 = ((ac)2
− (ac)4)(1 − acac) ∈ Aqnil. Let

a′ = (1 − acac)a, c′ = c, b′ = b and d′ = (1 − dbdb)d. Then (a′c′ )2
∈ A

qnil. Also

(a′c′ )2a′ = ((1 − acac)ac)2((1 − acac)a)
= (ac)2

− 2(ac)4 + (ac)6)(a − (ac)2a)
= (ac)2a − 3(ac)4a + 3(ac)6a − (ac)8a
= (db)2a − 3(db)4a + 3(db)6a − (db)8a
= ((1 − dbdb)db)2a′

= (d′b′ )2a′ .

By the same way we can prove that (a′c′ )2d′ = (d′b′ )2d′ . Then by Lemma 3.1, (b′d′ )2
∈ A

qnil which implies
that (bd − (bd)3)2

∈ A
qnil and so bd − (bd)3

∈ A
qnil. Then by Theorem 2.4, bd has generalized Hirano inverse.

(2)⇒ (1) This is similar.

Corollary 3.3. LetA be a Banach algebra, and let a, b, c, d ∈ A. If

aca = dba,
dbd = acd,

then the following are equivalent:

(1) ac ∈ A has generalized Hirano inverse.
(2) bd ∈ A has generalized Hirano inverse.

Proof. Let aca = dba and dbd = acd. Then (ac)2a = (db)2a and (ac)2d = (db)2d. So the result follows from
Theorem 3.2.

Corollary 3.4. LetA be a Banach algebra, and let a, b, c ∈ A. If aba = aca, then the following are equivalent:

(1) ac ∈ A has generalized Hirano inverse.
(2) ba ∈ A has generalized Hirano inverse.

Proof. Let d = a. It is easy to show that (ac)a = (db)a and (ac)d = (db)d. So the result follows from Theorem
3.2.

In particular, ab ∈ A has generalized Hirano inverse if and only if ba ∈ A has generalized Hirano inverse.
Corollary 3.3 and Corollary 3.4 are just special cases of Theorem 3.3 in [13].

Corollary 3.5. LetA be a Banach algebra, and let a, b, c, d ∈ A. If acac = dbdb, then the following are equivalent:

(1) ac ∈ A has generalized Hirano inverse.
(2) bd ∈ A has generalized Hirano inverse.

Proof. It is easy to show that (ac)2a = (db)2a and (ac)2d = (db)2d. So the proof is true by Theorem 3.2.

We note that if aca = dba, dbd = acd, then (ac)2a = (db)2a, (ac)2d = (db)2d. But the converse is not true.

Example 3.6. Let σ be an operator, acting on separable Hilbert space l2(N), defined by

σ(x1, x2, x3, x4, · · · ) = (0, x1, x2, 0, 0, · · · ),

and letA = M2

(
L(l2(N))

)
. Choose

a =

(
0 σ
0 0

)
, b =

(
1 0
0 0

)
, c =

(
1 0
1 1

)
, d = a.

Then (ac)2a = (db)2a, (ac)2d = (db)2d, but aca , dba. In this case, ac ∈ A has generalized Hirano inverse.
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4. Additive property

Now we are concerned on additive property of generalized Hirano inverses in a Banach algebra A.
Since every generalized Hirano invertible element in a Banach algebra has g-Drazin inverse, we now derive

Lemma 4.1. Let A be a Banach algebra, and let a, b ∈ A have generalized Hirano inverses. If a2b = aba and
b2a = bab, then ab has generalized Hirano inverse.

Proof. One easily checks that ab− (ab)3 = ab− (aba)bab = ab−a2(b2a)b = ab−a2(bab)b = ab−a(aba)b2 = ab−a3b3.
Set x = (a − a3)b and y = a3(b − b3). Then ab − (ab)3 = x + y.

Let c = a − a3. Then
c2b = (a − a3)2b

= (a2
− 2a4 + a6)b

= a2b − 2a4b + a6b
= (a − a3)b(a − a3)
= cbc.

Likewise, we have b2c = bcb. In light of Theorem 2.4, a − a3
∈ A

qnil. It follows by Lemma 2.1, that
x ∈ Aqnil. Similarly, y ∈ Aqnil. The reader could check x2y = xyx and y2x = yxy. By using Lemma 2.1 again,
x + y ∈ Aqnil. Therefore ab − (ab)3 = x + y ∈ Aqnil. This completes the proof by Theorem 2.4.

Lemma 4.2. Let A be a Banach algebra, and let a, b ∈ A have generalized Hirano inverses and ab = ba. If 1 + adb
has generalized Hirano inverse, then a + b has generalized Hirano inverse.

Proof. Since a ∈ A has generalized Hirano inverse, it has generalized Drazin inverse. It follows from ab = ba
that adb = bad, and then 1 + adb− (1 + adb)3 = adb− (adb)3

− 3adb(1 + adb) ∈ Aqnil. By virtue of Theorem 2.4 and
Lemma 2.1, we have

ad
− (ad)3 = (ad)4a3

− (ad)4a = (ad)4(a3
− a) ∈ Aqnil.

Hence ad
∈ A has generalized Hirano inverse. In light of Lemma 4.1, adb ∈ A has generalized Hirano

inverse, and so adb − (adb)3
∈ A

qnil. In view of Lemma 2.1, we have 3adb(1 + adb) ∈ Aqnil, and then

3ab(a + b) = 3(a − a2ad)b(a + b) + 3a2b(aad + adb)
= 3(a − a2ad)b(a + b) + 3a2b(aad + a(ad)2b)
= 3(a − a2ad)b(a + b) + 3a3adb(1 + adb)
∈ A

qnil.

Consequently, (a + b) − (a + b)3 = (a − a3) + (b − b3) − 3ab(a + b) ∈ Aqnil. Accordingly, a + b has generalized
Hirano inverse, by Theorem 2.4.

Let p ∈ A be an idempotent, and let x ∈ A. Then we write

x = pxp + px(1 − p) + (1 − p)xp + (1 − p)x(1 − p),

and induce a representation given by the matrix

x =

(
pxp px(1 − p)

(1 − p)xp (1 − p)x(1 − p)

)
p
,

and so we may regard such matrix as an element inA. For any idempotent e inA, (eAe)qnil
⊆ A

qnil.
We now ready to prove the following.

Theorem 4.3. Let A be a Banach algebra, and let a, b ∈ A have generalized Hirano inverses. If a2b = aba and
b2a = bab, then a + b has generalized Hirano inverse if and only if 1 + adb has generalized Hirano inverse.
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Proof. =⇒ Write 1 + adb = x + y where x = 1 − aad and y = ad(a + b). Then x2 = x ∈ A has generalized
Hirano inverse and xy = 0. Since a(ab) = a2b = aba and ad

∈ comm2(a), we see that ad(ab) = (ab)ad. Hence
yx = ad(a + b)(1 − aad) = ad(aad)b(1 − aad) = ad(ab)ad(1 − aad) = 0.

In light of [19, Lemma 2.5], one checks that (ad)2b = (ad)(adb) = (adb)ad, and so (ad)2(a + b) = ad(a + b)ad.
Moreover, we have abad = aadb and b2ad = badb. Thus (a + b)2ad = (a + b)ad(a + b). As in the proof of Lemma
4.2, ad has generalized Hirano inverse. In light of Lemma 4.1, ad(a + b) ∈ A has generalized Hirano inverse.
Since 1 + xdy = 1 + xy = 1, we see that, 1 + adb = x + y ∈ A has generalized Hirano inverse, by Lemma 4.2.
⇐= Choose p = aad. In view of [19, Lemma 2.5], aadb(1 − aad) = abad(1 − aad) = 0. Then

a =

(
a1 0
0 a2

)
p
, b =

(
b1 0
∗ b2

)
p
,

where a1 = pap, a2 = (1 − p)a(1 − p), b1 = pbp and b2 = (1 − p)b(1 − p). Hence,

a + b =

(
a1 + b1 0
∗ a2 + b2

)
p
.

Step 1. By using [19, Lemma 2.5], we have

(aad)2b = a(aad)adb = a(adb)aad = (aad)b(aad),
b2(aad) = b(bad)a = (bad)(ba) = b(aad)b.

It follows by Lemma 4.1 that (aad)b has generalized Hirano inverse. Clearly, we have 1 + (a2ad)daadb =
1 + adb ∈ A has generalized Hirano inverse. Since (a2ad)(aadb) = (aadb)(a2ad), by Lemma 4.2, we have
a2ad + aadb = aad(a + b) ∈ A has generalized Hirano inverse. In view of Corollary 3.4, we see that a1 + b1 =
(aad)(a + b)(aad) ∈ A has generalized Hirano inverse.

Step 2. b ∈ Aqnil. Clearly, a2 = a − a2ad
∈ A

qnil. In view of [19, Lemma 2.5], we compute(
b(1 − aad)

)2
= (b − baad)(b − baad)
= b2

− b2aad
− baadb + ba(adb)aad

= b2
− b2aad

− baadb + baaad(adb)
= b2(1 − aad).

By induction, we have
(
b(1− aad)

)n
= bn(1− aad) for any n ∈N. Since limn→∞ ||bn

||
1
n = 0, we easily check that

lim
n→∞
||

(
b(1 − aad)

)n
||

1
n = 0.

Hence b(1 − aad) ∈ Aqnil. Then b2 = (1 − aad)b(1 − aad) ∈ Aqnil. We easily verify that a2
2b2 = a2b2a2 and

b2
2a2 = b2a2b2. In light of [19, Lemma 2.10], a2 + b2 ∈ A

qnil. In light of [2, Lemma 5.1], a + b ∈ A has
generalized Hirano inverse.

Step 3. b < Aqnil. Since b− b3
∈ A

qnil, by the argument in Section 2, we have (b− b3)(1− aad) ∈ Aqnil. Then
we check that

(1 − aad)b −
(
(1 − aad)b(1 − aad)

)3
= (1 − aad)(b − b3)(1 − aad) ∈ Aqnil.

By virtue of Theorem 2.4, (1 − aad)b ∈ A has generalized Hirano inverse. It follows by Corollary 3.4 that
b2 = (1 − aad)b(1 − aad) ∈ A has generalized Hirano inverse. Clearly, a2 = a − a2ad

∈ A
qnil. We easily verify

that a2
2b2 = a2b2a2 and b2

2a2 = b2a2b2. By Step 2, a2 + b2 ∈ A has generalized Hirano inverse.
Accordingly, a + b ∈ A has generalized Hirano inverse by [2, Lemma 5.1].

Corollary 4.4. LetA be a Banach algebra, and let a, b ∈ A have generalized Hirano inverses. If ab = ba, then a + b
has generalized Hirano inverse if and only if 1 + adb has generalized Hirano inverse.
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Proof. This is obvious, by Theorem 4.3.

For further use, we record the following.

Proposition 4.5. LetA be a Banach algebra, and let a, b ∈ A. If a, b have generalized Hirano inverses and ab = 0,
then a + b has generalized Hirano inverse.

Proof. In view of Theorem 2.4, a − a3, b − b3
∈ A

qnil. It follows by [3, Lemma 2.1] that a + b − (a + b)3 =(
(a − a3) − b(a + b)a

)
+ b − b3

∈ A
qnil. By using Theorem 2.4 again, a + b has generalized Hirano inverses.

5. Splitting approach

We are now concerned on the generalized Hirano inverse for a operator matrix M. Here,

M =

(
A B
C D

)
(1)

where A,D ∈ L(X) have generalized Hirano inverses and X is a complex Banach space. Then M is a
bounded linear operator on X ⊕ X. Here, L(X) denotes the Banach algebra of bounded linear operators on
X. Using different splitting of the operator matrix M as P + Q, we will apply preceding results to obtain
various conditions for the existence of the generalized Hirano inverse of M.

Lemma 5.1. Let A,D ∈ L(X) have generalized Hirano inverses and B ∈ L(X). Then
(

A B
0 D

)
∈ M2(L(X)) has

generalized Hirano inverse.

Proof. In view of Theorem 2.4, A − A3,D −D3
∈ L(X)qnil. As in a Banach algebraA, a ∈ Aqnil if and only if

for any λ ∈ C, 1 − λa ∈ A−1, we easily see that(
A B
0 D

)
−

(
A B
0 D

)3

=

(
A − A3

∗

0 D −D3

)
∈M2(L(X))qnil.

According to Theorem 2.4, we obtain the result.

Lemma 5.2. LetA be a Banach algebra, and let a ∈ A have generalized Hirano inverse. If e2 = e ∈ comm(a), then
ea ∈ A has generalized Hirano inverse.

Proof. Since a ∈ A has generalized Hirano inverse, we have a− a3
∈ A

qnil, and so ea− (ea)3 = e(a− a3) ∈ Aqnil,
by Lemma 2.1, This completes the proof by Theorem 2.4.

Theorem 5.3. Let A,D ∈ L(X) have generalized Hirano inverse and M be given by (5.1). If BC = CB = 0,
CA(I − Aπ) = DπDC and AπAB = BD(I −Dπ), then M ∈M2(L(X)) has generalized Hirano inverse.

Proof. Let

P =

(
A(I − Aπ) B

0 DDπ

)
, Q =

(
AAπ 0

C D(I −Dπ)

)
.

Then M = P + Q. Since A(I − Aπ) = A(AAd), it follows by Lemma 5.2 that A(I − Aπ) has generalized
Hirano inverse. On the other hand, DDπ = D−D2Dd is quasinilpotent, and so DDπ has generalized Hirano
inverse. In light of Lemma 5.1, P ∈ M2(L(X)) has generalized Hirano inverse. Likewise, Q ∈ M2(L(X)) has
generalized Hirano inverse. It is easy to verify that

PQ =

(
0 BD(I −Dπ)

DDπC 0

)
=

(
0 AAπB

CA(I − Aπ) 0

)
= QP.
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Also we have

Pd =

(
(A(I − Aπ))d X

0 DdDπ

)
=

(
Ad X
0 0

)
where X = (Ad)2 ∑

∞

n=0(Ad)nB(DDπ)n. Hence,

PdQ =

(
Ad X
0 0

) (
AAπ 0

C D(I −Dπ)

)
=

(
XC XD(I −Dπ)
0 0

)
,

where XC = (Ad)2(B +
∑
∞

n=1(Ad)nB(DDπ)n)C = 0 as BC = 0, B(DDπ)nC = 0. Moreover, we have

XD(I −Dπ)
= (Ad)2(B +

∑
∞

n=1(Ad)nB(DDπ)n)D(I −Dπ)
= (Ad)2BD(I −Dπ) + (Ad)2 ∑

∞

n=1(Ad)nBDn+2DπDd

= (Ad)2AπAB
= 0,

and so PdQ = 0. Thus, I2 + PdQ ∈ M2(L(X)) has generalized Hirano inverse. Therefore we complete the
proof by Corollary 4.4.

In the proof of Theorem 5.3, we choose

P =

(
A(I − Aπ) B

0 D2Dd

)
, Q =

(
AAπ 0

C DDπ

)
.

Analogously, we can derive

Proposition 5.4. Let A,D ∈ L(X) have generalized Hirano inverses and M be given by (5.1). If BC = CB = 0,
CA(I − Aπ) = (I −Dπ)DC and AπAB = BDDπ, then M ∈M2(L(X)) has generalized Hirano inverse.

We now turn to the operator matrix M with trivial generalized Schur complement, i.e., D = CAdB (see
[4, Theorem 5.2.1] ). We have

Theorem 5.5. Let A ∈ L(X) have generalized Hirano inverse, D ∈ L(X) and M be given by (5.1). Let W =
AAd + AdBCAd. If AW has generalized Hirano inverse,

AπBC = BCAπ = AAπB = 0,D = CAdB,

then M has generalized Hirano inverse.

Proof. We easily see that

M =

(
A B
C CAdB

)
= P + Q,

where

P =

(
A AAdB
C CAdB

)
,Q =

(
0 AπB
0 0

)
.

By assumption, we verify that QP = 0. Clearly, Q is nilpotent, and so it has generalized Hirano inverse.
Furthermore, we have

P = P1 + P2, P1 =

(
A2Ad AAdB
CAAd CAdB

)
, P2 =

(
AAπ 0
CAπ 0

)



H. Chen, M. Sheibani / Filomat 33:19 (2019), 6239–6249 6249

and P2P1 = 0. Obviously, P2 has generalized Hirano inverse. Moreover, we have

P1 =

(
AAd

CAd

) (
A AAdB

)
.

By hypothesis, we see that (
A AAdB

) ( AAd

CAd

)
= AW

has generalized Hirano inverse. In light of [2, Corollary 4.2], P1 has generalized Hirano inverse. Thus,
by Proposition 4.5, P has generalized Hirano inverse. By using Proposition 4.5 again, M has generalized
Hirano inverse, as asserted.
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[3] D.S. Cvetković-Ilić; D.S. Djordjević and Y. Wei, Additive results for the generalized Drazin inverse in a Banach algebra, Linear

Algebra Appl., 418(2016), 53–61.
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