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Abstract. In this paper, we study a general system of variational inequalities with a hierarchical variational
inequality constraint for an infinite family of nonexpansive mappings. We introduce general implicit and
explicit iterative algorithms. We prove the strong convergence of the sequences generated by the proposed
iterative algorithms to a solution of the studied problems.

1. Introduction

Let X be a Banach space with its dual X*. Let @ # C C X be a closed convex set. Let T : C — C be
a mapping. Fix(T) stands for the set of fixed points of T. Recall that T is nonexpansive if ||[Tu — To|| <
[lu—oll, Yu,v € C. T is said to be a contraction if there exists a constant ¢ € [0,1) such that ||[Tu — To|| <
ollu — ol|, Yu,v € C. The normalized dual mapping J : X — 2X' is defined as

J(x) = {p € X" : {x, ) = IIxI* = IpIP}, Vx € X,

where (-, -) denotes the generalized duality pairing between X and X".
Let A,B : C — X be two mappings and @, ¢ be two positive real numbers. The general system of
variational inequalities (GSVI) is to find (x*, y*) € C x C satisfying

{(@Ay* +x -y, J(x—x") >0, Vxe(C

1
(cBx"+y —x",J(x-y) >0, VxeC @

The system of variational inequalities plays a crucial tool in science, engineering and economics. Namely,
the practical problem can be formulated in the form of a system of variational inequalities; see e.g., [1, 2, 7—
9, 19] and the references therein.

Note that problem (1) can be reduced to the following classical variational inequality (VI) of finding
x* € Csuch that

(Ax*,x—x")>0, VYxeC 2)
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This problem is a fundamental problem in the variational analysis; in particular, in the optimization theory
and mechanics; seee.g., [10-13, 15,17, 18,23,29-39] and the references therein. A large number of algorithms
for solving this problem are essentially projection algorithms.

In a Banach space setting and A = B, x* = y*, the VI is defined by

(Ax", J(x —x")) =0, Yx e C. 3)

Aoyama, liduka and Takahashi [3] proposed an iterative scheme to find the approximate solution of (3).
Let {Tk};? , be a sequence of nonexpansive self-mappings. Let {@y};”, be a sequence in [0, 1]. Qin, Cho, Kang
and Kang [21] considered the nonexpansive mapping W defined by

Uir1 =1,
Uy = o Tl + (1 — @),
Uk—1 = @1 Ti1 Upr + (1 — @p-1)],

Ui = @;TiUgj + (1 — @), 4)
Uiy = @i Tisa Ui + (1 — @i-1)],

Uyo = @2 ToUys + (1 — @),
Wi = Uk = o1 Tilko + (1 —@1)], Vk> 1,

and consequently, they proposed the following iterative algorithm

xp = x € C chosen arbitrarily,
Y = X + (1 — ) Wiy, 5)
Xip1 = et + (1= i)y, Yk > 0.

Under some mild assumptions, they derived the strong convergence of the sequence {x;} generated by (5)
to a common fixed point of an infinite family of nonexpansive self-mappings {Ti};” , on C in a reflexive and
strictly convex Banach space X.

Very recently, in order to solve GSVI (1), Ceng, Gupta and Ansari [7] proved the convergence of implicit
and explicit algorithms. For each t € (0, 1), choose a number 6; € (0, 1) arbitrarily. Then the net {z;} defined
by z; = tQc(I = ®A)Qc(I — ¢B)z: + (1 = )Qc(I — 6:F)Qc( — @A)Qc(I — ¢cB)z; converges in norm, as t — 0%, to
the unique solution x* € GSVI(C, A, B) to the following VI:

(F(x"), j(x = x)) > 0, ¥x € GSVI(C, A, B). 6)

In [5], Buong and Phuong introducd a mapping Vy, defined by

V=V, Vi=TT*" ..T, T'=(1-a)l+aT;, i=1,2,..,k 7)
where
a; € (0,1) and Za,- < 0. (8)

i=1
Buong and Phuong presented the following iterations

xx = V(I — okF)xy, Yk =1, 9)
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and
xXx = (I — ok F)xg + (I — ) Viexy, Yk > 1. (10)

The purpose of this paper is to find a solution of GSVI (1) with a HVI constraint for an infinite family
of nonexpansive mappings {T;}:?, in Banach spaces. We introduce general implicit and explicit iterative
algorithms, which are based on the viscosity approximation method, hybrid steepest-descent method and
Korpelevich’s extragradient method. Under some suitable control conditions on the parameter sequences
in [0, 1], we prove the strong convergence of the sequences generated by the proposed iterative algorithms
to a solution of the GSVI (1) with a HVI constraint by using new V-mappings instead of W-ones. Our
results improve and extend the corresponding results in [5, 7, 14].

2. Preliminaries and Algorithms

Let X be a real Banach space. A function g : [0, c0) — [0, o) is called the modulus of smoothness of X:
for u,v € X, o(t) = sup{3(llu + oll + llu = ol) = 1 : |lull =1, [[o]l = 7).

Lemma 2.1. ([26]) Let X be a g-uniformly smooth Banach space with 1 < q < 2. Then
[l + 0l < Hull” + q¢v, J;)) + 2lxoll?,  Yu,veX,

where ], is the generalized duality mapping from X into 2% defined by J,(u) = {¢ € X* : (u, @) = |lull?, Pl =
llulli71}, Yu € X.

Lemma 2.2. ([26]) Let X be a real Banach space and | be the normalized duality map on X. Then, for any given
x,y € X, the following inequality holds:

llu + ol* < Jul* + 20, j(u + )y, Vj(u+v) € J(u +0).

Let Q : C — D be a mapping where D C C be a set. Q is said to be sunny if Q[su + (1 —s5)Q(u)] = Q(u),
whenever su + (1 —s)Q(u) e Cforu e Cand s > 0.

Lemma 2.3. ([22]) Let C be a nonempty closed convex subset of a smooth Banach space X and § # D C C. Let
Q : C — D be a retraction. Then the following are equivalent

(i) Q is sunny and nonexpansive;

(i) 1Q(u) = Q@)I* < (u - v, J(Qu) = Q))), Yu,v e C;
(iii) (u—Q), J(v—-Qu))) <0, Yue C,veD.

Lemma 2.4. ([28]) Let X be a uniformly smooth Banach space, C be a nonempty closed convex subset of X, T : C — C
be a nonexpansive mapping with Fix(T) # 0, and f € Q. Then {u;} defined by u; = sf(u;) + (1 — s)Tu; converges
strongly to a point in Fix(T) as s — 0*.

Recall that a gauge ¢ : [0, 00) — [0, o) is a continuous strictly increasing function such that ¢(0) = 0 and
@(t) = o0 as t — co. The duality map J, : X — 2% is defined by

Jo(u) = {u” € X* = Cu,u”) = llullp(llull), 1l = (lul)}, Yu € X.
Lemma 2.5. ([20]) Assume that X has a weakly continuous duality map ], with gauge ¢.

(i) Forall u,v € X, we have ®(||lu + v||) < D(||ull) + (v, Jo(u + v)).
(ii) Let the sequence (X 3)uy — u. Then,

lim sup O(||ux — oll) = lim sup O(|ux — ull) + D(|lv — ull), Yo € X.

k—o0 k— 00
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Lemma 2.6. ([16]) Let X be a reflexive Banach space which have a weakly continuous duality map ], with gauge .
Let ) # C C X be a closed convex set. Let T : C — C be a nonexpansive mapping with Fix(T) # 0, and let f : C — C
be a contraction. Then u; defined by uy = sf(u;) + (1 — s)Tu; converges strongly to a point in Fix(T) as s — 07.

A mapping F with domain D(F) and range R(F) in a real Banach space X is called

(i) v-strongly accretive if for each u, v € D(F), there exists j(u —v) € J(u — v) such that
(Fu—Fo, j(u—0)) > v|lu— ol> for some v € (0,1).
(ii) v-strictly pseudocontractive [4] if for each u, v € D(F), there exists j(u — v) € J(u — v) such that
(Fu - Fv, j(u —0)) < |lu —|* = v|lu —v — (Fu — Fo)|* for some v € (0, 1).
It is easy to see that last inequality is equivalent to
((I=Fyu—=(I=Fv, j(u—-10)) 2 vll(l = Fju — (I - ol (11)

Lemma 2.7. ([7]) Let C be a nonempty closed convex subset of a real smooth Banach space X. Let Qc : X — bea
sunny nonexpansive retraction. Let A, B : C — X be two nonlinear mappings and @, ¢ be two positive numbers. For
given u*,v* € C, (u*,v") is a solution of the GSVI (1) if and only if u* € GSVI(C, A, B) where GSVI(C, A, B) is the set
of fixed points of the mapping G := Qc(I — ®@A)Qc(I — ¢B) and v* = Qc(u* — cBu*).

Lemma 2.8. ([5]) Let C be a nonempty closed convex subset of a strictly convex Banach space X and let {T;}*_, be

k nonexpansive self-mappings on C such that the set of common fixed points F := (\'_, Fix(T;) # 0. Let a,b and
a;, 1=1,2,...,k, be real numbers such that 0 <a < a; < b < 1, and let Vi be a mapping, defined by (7) for all k > 1.
Then, Fix(Vy) = F

Lemma 2.9. ([5]) Let C be a nonempty closed convex subset of a Banach space X and let {T;};°, be an infinite family
of nonexpanswe self-mappings on C such that the set of common fixed points F := (N 1F1x(T) # (. Let Vi bea
mapping, defined by (7), and let ; satisfy (8). Then, for each x € C and i > 1, limy_,, VX exists.

Lemma 2.10. ([5]) Let C be a nonempty closed convex subset of a strictly convex Banach space X and let {T;}:, be an
infinite family of nonexpansive self-mappings on C Such that the set of common fixed points F := (2, Fix(T;) # 0.
Let a; satisfy the first condition in (8). Then, Fix(V) =

Lemma 2.11. ([5]) Let C be a nonempty closed convex subset of a strictly convex and smooth Banach space X. Let
Qc : X = C be a sunny nonexpansive retraction. Let A,B : C — X be two mappings and @, ¢ be two positive
numbers such that the mapping G : C — C is a nonexpansive mapping where G := Qc(I — ®A)Qc(I — ¢B). Let
{Ti}2, be an infinite family of nonexpansive self-mappings on C such that ¥ := (2, Fix(T;) N GSVI(C, A, B) # 0.
Let ; satisfy the first condition in (8). Then, Fix(V o G) = F

Lemma 2.12. ([6]) Let C be a nonempty closed convex subset of a real smooth Banach space X and F : C — X be a
mapping.

(a) If F is v-strictly pseudocontractive, then F is Lipschitz continuous with constant 1+ 1.

(b) If F is v-strongly accretive and v-strictly pseudocontractive with v + v > 1, then I — F is contractive with

constant =X € (0,1).
(c) IfF is v-strongly accretive and v-strictly pseudocontractive with v+v > 1, then for any fixed number @ € (0,1),
I - ®F is contractive with constant 1 — o(1 — {/1=2) € (0, 1).

Recall that X satisfies Opial’s property provided, for each sequence u; € X, the condition u; — u implies
limsup, _, , llux — ull < limsup,_,  llux —vll, Yo € X, v # u. Denote by w,(ux) the weak w-limit set of {u}, i.e.,

wy(ug) = {it € X : uy, — 1 for some subsequence {uy,} of {u}}. (12)
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Lemma 2.13. ([25]) Let {ax} and {by} be sequences of nonnegative real numbers such that Y}, by < 00 and ag, <
a + by for all k > 1. Then limy_, ay exists.

Lemma 2.14. ([27]) Assume that {ax} is a sequence of nonnegative real numbers satisfying the condition:
A < (1 —cax +crve + €, Vh21,

where {¢x} € [0,1], {vi} € Rand {e;} C [0, o) such that

(i) Yieli k= 09;
(it) limsup,_, vk <0o0r Y12, lcxvil < oo;
(iii) Y poq €k < 0.

Then, limy_, a; = 0.

Lemma 2.15. ([24]) Let {x,} and {z,} be bounded sequences in a Banach space X and let {ay} be a sequence in [0, 1]
such that 0 < liminfy_,, ax < limsup,_,  ax < 1. Suppose that xi41 = agxi + (1 — ax)z, Yk > 1, and

lim sup(||zk+1 — zkll = ke — x%ll) < 0.

k— o0

Then limy_,, ||zx — x¢l] = 0.

3. Main results

In this section, we introduce our iterative algorithms and give the convergence analysis.

Theorem 3.1. Let C be a nonempty closed convex subset of a reflexive and strictly convex Banach space X. Assume,
in addition, X either is uniformly smooth or has a weakly continuous duality map ], with gauge ¢. Let Qc be a
sunny nonexpansive retraction from X onto C. Let A, B : C — X be two nonlinear mappings and @, ¢ be two positive
numbers such that the mapping G : C — C is a nonexpansive mapping where G := Qc(I — ®A)Qc(I — ¢B). Let
F : C — X be v-strongly accretive and v-strictly pseudocontractive withv+v > 1. Let T; : C — C be a nonexpansive
mapping for each i = 1,2, ... such that F := (2, Fix(T;) N GSVI(C, A, B) # 0, and f € Q with contractive constant
0 € (0,1). Let {Vi};2, be defined by (7) and (8). Given sequences {uc}h?,, {tkh, in [0,1] and {@}? | in (0,1], the
following conditions are satisfied:

(C1) 0<te<1-9p Vk=1,;
(C2) limsup,_,, i < 1and lim_,.(tx@x) /7% = 0.
For given xo € C, define a sequence {xi} iteratively by

{yk = [(1 = ) Vi + 4 Qc(I — @rF)]Gx,
Xp = ka(xk) +(1- Tk)ykr Vk > 1.

(13)
Then,
x> X' eF o wlll - Hll + wll( = G)xill — 0.
(i) If X is uniformly smooth, then X' € F solves the VI
(I=-HX" X' =p)) 20, feQpefF;
(ii) If X has a weakly continuous duality map ], with gauge ¢, then X* € F solves the VI

(I-HX"Jo(XT=p)) 20, feQpef.
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Proof. Without loss of generality, we assume that {Lk};il c [0,b] c [0,1). Note that limy_, (r@x = 0. Let the
mapping Gy : C — C be defined as Gyx := Qc(I — @xF)x where 0 < @ < 1. In terms of Lemma 2.12 we know

that Gy is a contraction with contractive constant 1 — @7, where 7 = 1 — ,/ 1% € (0,1). Then, (13) can be
rewritten as

Xy = ka(xk) + (1 = )G Gy + (1 — 1) Vi Gxy], Yk > 1. (14)
Define a mapping Uix = 1 f(x) + (1 — 7)[1GrGx + (1 — 1) ViGx], ¥Yx € C. Utilizing Lemma 2.12, we have

IUix = Uyl < wll f) = Fll + (1 = llIGiG = GGl + (1 = )[[ViGx = ViG]
< teolly = yll+ (1 = 7)lu(1 = @k lIGx = Gyll + (1 = t)lIGx = Gyll]
= Teolly — yll + (1 = ) (A = @ DlIGx = Gyl
< Tollx = yll + (1 = w)llx = yli
=1 -1 -9wlkx -yl
This means that Uy : C — Cis a contraction. Thus, the fixed point equation (14) has a unique solution x; € C

foreach k > 1.
Letp € ¥. Then, Gp = pand p = Vip for all k > 1. From Lemma?2.12, it follows that for each k > 1,

Ik = pll < Tl f () = pll + (1 = Tl GG + (1 — 1) VG = pll
< (ol = pll + 11f(p) = pl) + (1 — ) [tlIGkGxx — Gip + Gip = pll + (1 — w)llxe — pll]
< (ol = pll + llf () — pll) + (1 = T)[(1 = @rD)llxe — pll + w@xllF(p)ll] (15)
< w(ollxe — pll + llf () — pll) + (1 = T)llxk = pll + wexlIFp)II
= (1 -1 - ow)llxx — pll + @l f(p) — pll + wa@xl[FE(@)Il-

Therefore,

If®) —pll | waor IF@)II

—p|l <
llxe = pll < -0 % 1-g

which together with limy_,«(tx@k)/ 7k = 0, implies that

limsup [|x, — pll < “f(lpf_@p“

k—o0

This shows that {xk}}‘i1 is bounded. So, the sequences {F(ka)},‘:‘;l, {Vkak};il, {Gkak};‘;l and {yk};‘;l, where

Vi = GrGxy + (1 — 1) Vi Gxy, are also bounded.
Suppose that x; —» X' € F ask — co. Then X' = G(X") and X' = V; X" for all k > 1. It is clear that as

k — oo,
e = G)xill < llxie = Gl < ek — XTI + |G — XTI < 2l — XT|| — 0.
That is, limy_,e [|tx(I — G)xk|| = 0. From (13) and limy_,., @y = 0 it follows that
lye — XTIl < wllGkGa — XM + (1 — o)l ViGaye — X|
= yl|GkGxx — G X' + G X = XTI + (1 — t)lIViGxg — X |
< ul(1 = @)l — X + 10 — @)X = XTI+ (1 = )l — X
< uellle = XM+ @lIFGHIN + (1 = we)llxe — X7

= e = XTI + 4@l FX) = 0 as k — oo,
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that is, limy_e ||k — X'|| = 0. Again from (13) we obtain

T (f () = 20l = 1| = (1 = 7)) (ke — 20l
<y = xell <l = XM+ lye = XTI > 0 ask — oo,

that is, limy_ [ITe(I = f)xill = 0.
Conversely, suppose that ||ti(I — f)xkll + [[tx(I — G)xxl| = 0 as k — oo. From (13) we observe that

0 = Te(f (xi) — xi0) + (1 = Te)(Yie — ),
and
Y — X = u(GrGxg — xi) + (1 — u) (VikGxge — xg).
Then from |[|te(f(xx) — x1)ll = 0, @x — 0and 0 < 7, < 1 — g it follows that as k — oo,

ollyk — xll < (1 = wllyk — xill = ll7e(f () = x)ll = 0,

and
1 =DIIVikGxy — x¢ll < (1 = t)(ViGaxy — xi)ll
<y = xill + tll GGy — x|
< My = xill + telld — @k F)Gxx — Gl + wel| G — x|
< lyk = xill + @il [F(Gxp)ll + tellGxg — x|l — 0.
That is,

%im llye —x¢ll=0 and ]}im [|ViGxx — x¢]| = 0. (16)

Furthermore, we deduce that if D is a nonempty and bounded subset of C, then, for ¢ > 0, there exists
mg > i such that for all k > my

sup ||V,l;x - fo,xll <e. (17)
xeD

Set D = {Gxy : k > 1}. From (17) we have

IViGxr — VGxil| < sup|[Vix = V|| < ¢,
xeD

which immediately imply that

I}im ||Vkak - Vka” =0. (18)

Taking into account that ||xx — VGxl| < |lxx — ViGxyll + [|ViGxy — VGxy ||, from (16) and (18) we get

I}im Ixe — VGxyl| = 0. (19)

By virtue of Lemma 2.10, we know that Fix(V o G) = ¥. Let z; be the unique fixed point of T; given by
Tix = tf(x) + (1 = )VGx, t € (0,1). Define X' := lim;_,0- z: and X' € Fix(V o G) = F. We consider two cases.

(i) X is uniformly smooth. By Lemma 2.4, X' solves the VI ((I — f)X', J(X" —p)) <0, ¥p € F. Next, we
show

limsup{f(z) — z, J(xy —2)) <0, (20)

k—o0
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where z = X'.
Applying Lemma 2.2 we derive

llzt — 2l < (1 = D2V Gzy — xil* + 26 f (z1) — xx, [ (2 — x1))
< (1=t (IVGz; = VGxell + IVGxx — x¢ll)* + 2K f (z¢) — 24, J(z¢ — xx)) + 24|24 — x|
< (1= 12lIze — xil® + ax(t) + 26F (z¢) — z¢, J(z¢ — X)) + 2t|ze — xil?,
where
ak(t) = IVGxx — xllllze = xill + IVx — x¢ll) = 0 (due to (19))

The last inequality implies

t 1
(@1 = flan), Jz = x> < Sz - xill? + 27 (0)
It follows that

lim sup(zt - f(Zt), ](Zt - Xk)> < Mé/ (21)

k—o0

where M > 0 is a constant such that M > ||z; — x||* for all k > 1 and small enough ¢ in (0,1). Taking the
limsup as t — 0% in (21) and noticing the fact that the two limits are interchangeable due to the fact that the
duality map | is uniformly norm-to-norm continuous on any bounded subset of X, we obtain (20).

Note that

xp =2z = T(f(x) —2) + (1= 1) (1 = )(ViGxg — 2) + (1 = 1) i (GkGxyc — 2).
Then, applying Lemma 2.2, we get
Il = zI* < 111 = T = ) (ViGaxe — 2) + (1 — 1) ie(GeGxi — 2)|IP + 21 f () — 2, J(xk — 2))
<[(1 = )1 = wlIViGa — zll + (1 = Tkl GGy — zlII* + 27 f (i) — f(2), J(xx — 2))
+ 27 (2) — 2, J(xk — 2))
<[(1 = (1 = w)llxe — 2l + (1 = T)uellxe — zll + @lF@ID + 2Txollxe — 217 + 2T f (2) — 2, J(xk — 2))
< (1= 1) [l — zIP + warlFEIRlIxx — 2l + w@rllF@IN] + 2txollxe — zI* + 21 f(2) — 2, J(xk — 2))
< (1= (1 = @)lIxk — zI* + @kl IF@IIQlIxx — zll + u@F@I) + 216 f(2) — z, J(xk — 2)),

which immediately implies that

e —z|? < "‘Tﬂ E@)NIIxk — 2| + ekl IEE)I) N 2
k

-0 T Q<f(Z) ~ 2z, J(xk = 2)). (22)

Since limy_, o (x@x)/ Tk = 0 and {x} is bounded, we deduce from (20) and (22) that

lim sup [|x; — z|> <0.
k—oo
That is, limy_,« ||xx — z|| = 0.
(i) X has a weakly continuous duality map J, with gauge ¢. By Lemma 2.6, X solves the VI

(= HX (X =p)y <0, VpeF. (23)
Let us show that
lim sup(f(z) — z, J,(xx — 2)) <0, (24)

k—c0
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where z = X'. We take a subsequence {x,} of {x;} such that

lim sup(f(z) — z, Jo(xk — 2)) = limsup(f(z) - z, [, (xx, — 2))- (25)

k—oo i—oo

Since X is reflexive and {x;} is bounded, we may further assume that x;, — % for some X € C. Since ], is
weakly continuous, utilizing Lemma 2.5 (ii), we have

lim sup O(||xx, — xI|) = lim sup O(||xx, — %l|) + D(|lx — |l), VYVxeX.

1—00 1—00

Set I'(x) = limsup,_,, @(|lxx, — x|l), Vx € X. It follows that I'(x) = I'(X) + ®(||lx — xl[), Yx € X. From (19), we
have

I'(VGx) = limsup @(||xi, — VGX|[) = limsup ©(||VGxy, — VGX||)

i—o00 i—oo

. _ _ (26)
< lim sup O(||xx, — x[) = I'(%).
i—o00
Furthermore, observe that
T(VGx) =T'(x) + O(|VGx — x)). (27)

Combining (26) with (27), we obtain O(||VGx - X||) < 0. Hence, VGX = ¥ and ¥ € Fix(V o G) = ¥ (by Lemma
2.11). Thus, from (23) and (25), it is easy to see that

lim sup(f(z) — z, Jo(xx — 2)) = {f(2) — 2, Jo(X — 2)) < 0.

k—o0

Therefore, we deduce that (24) holds.
Applying Lemma 2.5, we obtain

O(llyx — zll) = Olu(GrGxx — Giz) + (1 — w)(ViGxg — z) + u(Grz — 2)l)
< O(|l(GkGxy = Grz) + (1 = u)(ViGxx — 2)|I) + ulGiz — 2, J (Yx — 2))
< Oy (1 = kDl — zll + (1 = wllxx = zll) + wllGrz = zllp(lyx — =)
< O(uklloee =zl + (1 = wllxk — zIl) + wll(I — @kF)z — zllp(lyx — zl)
= O(|lxx — zlI) + warllF@lelyx — =),

and hence

O(llxx — zll) = Pl (f(yx) — f(2) + (1 = 7)Yk — 2) + T(f (i) — f (W) + Tw(f(2) — 2)II)

< O(lt(f(yi) — f(2) + 1 = 1) (yr — 2)I) + Tl f (k) = (i), Jp(xk — 2))
+ 11 f(2) — 2, Jp(xx — 2))

< (1 =1 - 9t)P(lyx — zll) + txollxk — yillplxx — zll) + Tl f(2) — 2, Jo(xx — 2))

< (1 =1 - 9wlP(lxx — zll) + warllF@)lelyx — zID] + Trollxe — yrllpllxk — =11
+ T f(2) = 2, Jp(xk — 2))

< (1 =1 = 9u)P(lxx — zll) + w@rlF@)lelyk — zll) + trollxx — yrllolxe — zIl)
+ 1 f(2) — 2, Jp(xk — 2)),

which immediately yields

F —
s, T2 s i il =) + (@) 2 Tyl = 2,

D(|lxx — zll) <

Since limy_,0 (1x@k)/ Tx = 0 and the sequences {x;} and {y,} are bounded, we conclude from (16) and (24) that
limy e P(||xx — zl|) = 0 which implies that limy_,« [|[xx — z|| = 0. This completes the proof. O
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Theorem 3.2. Let C be a nonempty closed convex subset of a reflexive and strictly convex Banach space X. Assume,
in addition, X either is uniformly smooth or has a weakly continuous duality map [, with gauge ¢. Let Qc be a
sunny nonexpansive retraction from X onto C. Let A, B : C — X be two nonlinear mappings and @, ¢ be two positive
numbers such that the mapping G : C — C is a nonexpansive mapping where G := Qc(I — ®A)Qc(I — ¢B). Let
F : C — X be v-strongly accretive and v-strictly pseudocontractive withv+v > 1. Let T; : C — C be a nonexpansive
mapping for each i = 1,2, ... such that ¥ := (2, Fix(T;) N GSVI(C, A, B) # 0, and f € Q with contractive constant
0 € (0,1). Let {Vii}}? | be defined by (7) and (8). Given sequences {u}?,, {tilye, in [0,1] and {@x}? | in (0,1], the
following conditions are satisfied:

(C1) 0 <t <1—9, Yk = ko for someky > 1, and Y ;> Ty = oo;

(C2) 0 <liminfy_e 4 < limsup, 4 <1;

(C3) Nimysoo (= ~ o) = O

(C4) Y72y @k < o0 or limy_,e @k /i = 0.

For an arbitrary x1 € C, let {xc};?, be generated by

{yk = [xQc( — @kF) + (1 — 1) Vil Gy, 28)
Xer1 = Tef () + (L —t)ye, V=1
Then,
- X' eF o ull(- el +11d - G)xill — 0.
(i) If X is uniformly smooth, then X* € F solves the VI
(I-HXJXE-py =0, feQpeF;
(ii) If X has a weakly continuous duality map ], with gauge ¢, then X* € F solves the VI
(I=HX"Jp(XT=p)) 20, feQpef.

Proof. Without loss of generality, we assume that {t};2, C [4,D] € (0,1). Observe that limy_, @ = 0. Define
Grx == Qc(I — @F)x where 0 < @r < 1. According to Lemma 2.12, Gy is a contraction with contractive

constant 1 — @7, wheret =1 - / 1% € (0,1). Then, (28) can be rewritten as

= 4Gy Gxy + (1 — t) Vi Gy,
{yk wGrGxy + (1 = 1) VieGxy (29)

Xir1 = Tef () + (1= t)ye, Vk 2> 1.
Letp € ¥. Then,p = Gpand p = Vip for all k > 1. Hence,
lyk = pll < wllGeGxi = pll + (1 = ulIViGx = pll
< wllGrkGxx — Gep + Grp — pll + (1 = ) llxx — pll
< u[(X = &k D)llxk — pll + (I = @F)p = pll] + (1 — wo)llxe = pll
IE)II

< maxflixe - pll, ——}

By (28), we get
ke = pll < Tl f () = F@+ 1) = pl) + (1 = ol = pll
< Te(llxi — pll + 1) = pll) + (1 = ) maxdlxe - pll, @ |
< tromax{||x; — pll, ”F(Tp)”} + 7l f(p) — pll + (1 — 7o) max{llxx — pll, @}
== Q)Tkw + (1= (1 - @)r) max{llxe - pll @}

lf(p) —pll IIE@)II
T .
0 T

< max(llxx — pll,



By induction, we have
Ik = pll < max{llx;

This implies that {x};?
Yk = lkaka + (1 -

Suppose that x; —» X' € ¥ as k > oco. Then X'

=pll,
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1f(p) —pll IIF(P)II}

1-9 T

||xx — Gxg|| = 0. From (29), we deduce

Vk>1

is bounded. So, the sequences {F(Gxy)};2,, {ViGxk}
lk)Vkak, are also bounded.

e d

Gkak}]‘j’:l and {]/k}‘>o

k=1’

6277

where

= G(X") and X' = V; X" for all k > 1. It is clear that

lye = Xl < tllGeGxe = XTIl + (1 = ) IViGag = X ||

< ul(1 = @)l — X + 1A — oF)XT

< e = X+ aFXHI > 0 ask — oo,

that is, limy_e [lyx — X1l

T f () = xi)ll = X1 = 2 — (1 = i) (i — x|
< xer = xll + (1 = Ty — il

= 0. Again from (29) we obtain that

t +
< lken = Xl + [l = XFI| + llye = XPHl = 0.

= XM+ (= )l = X

Conversely, suppose that ||t (I = f)xill + [|(I = G)xxl| = O as k — oco. Set vy = (1 — ¢)i, Yk = 1. Then, it follows

from (C1) and (C2) that ¢ > v = (1 — )i = (1 — (1 - 0))ix = o1,

0< hm 1nf1/k <limsupvy < 1.

k—o0

Without loss of generality, we assume that ke, €

Xip1 = Vixx + (1 — vz

Yk > ky, and hence

[c,d] € (0,1). Define z; by

Observe that
vt = X2 = Vi1 Xe+1 X1 — VieXk
k+1 k T— vy -,
T
=T = Vi1 Gtn) + 75~ (f () = fx0)
1- G G - G.Gxy —
11?( £ (Vi Gatas — ViGay) + Ve ( k+1-1_ T//:i Y1) Vi( ;_xik o)
+
It follows that
Thk+1
1Zke1 — zill < |1— - Vi1 Gxpa |l +7 ||f(xk+1) Feoll
1- G G - G Gxy —
N Vi1 Gtpr — ViGoxgl] + Vit l|Grr1 Gt — Xl | VidllGeGox — x|
1 — 1- vk+1 1-—v
T l-v—1
< |1_L - e =l + = e —
d(or1IF(G + I G d(or||F +||(I-G
1-d 1-d
T
< i =0l + 5= Gl

d(@k+1||F(ka+1)” + ||(I G)xk+1“)

L A@IFGx)ll + T = G)xell)

1-d

1-d

(30)

(81)

(32

)
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It follows that

lim sup(llzx+1 — zill = llxesr = x4l) < 0.

k—o0

This together with Lemma 2.15 implies that limy_, ||zx — x¢|| = 0. It follows from (30) and (31) that

Lim [xge1 — xll = m (1 — vi)llze — x4/l = 0.
k—co k—o0

Note that

ollye = xill < (1 = )llyx — x|
= |Ixee1 = X — Te(f (i) = xp)ll
< Ixeer = Xkl + e = fxell.

Since xx41 — X — 0 and ||tx(I — f)xil| = 0, we get

I}l_r)g lyk — xll = 0. (33)
Observe that
Yr — Xk = (GG — x) + (1 = 1) (Vi Gy — x). (34)

So, (1 = D)IViGx — x¢ll < llyk — xill + @kllF(Gx)ll + [I(I — G)xxll — 0. Consequently,
%im [[ViGxr — VGxil|| = 0. (35)

Taking into account that ||xx — VGxll < |lxx — ViGxyll + [|ViGxy — VGxi ||, from (35) we get
I}im [l — VGxyl| = 0. (36)

In the light of Lemma 2.11, we conclude that Fix(V o G) = ¥ Let z; be the unique fixed point of T; given by
Tix = tf(x) + (1 — )VGx, t € (0,1). Set X' := lim;,0+ z; and note that X' € Fix(V o G) = . We consider two
cases.

(i) X is uniformly smooth. By Lemma 2.4, X" solves the VI {((I — f)X*, (X" —p)) <0, ¥p € F. Repeating
the same arguments as those of (20) in the proof of Theorem 3.1, we obtain

limsup(f(z) - z, J(xx —2)) < 0, (37)

k—o0

where z = X*.
From (29), we have
Iy = 2l < wllGkGoxe — 21 + (1 = )l ViGxi — 2l
< ul(1 = @Dl — 2l + 11 = @xF)z = 2P + (1 - o)l — zIP

F(2)|[?
< 011 = )l — 22 + o E ) 4 (1 — e - 22

T
2
2 IE@)II
< Ika - Z|| + (DkT.

By Lemma 2.2, we derive

er = 21 < (1= ) ?llye — 2l + 20 f (%) = 2, (X1 = 2))

IF)I?
< (1= )l — zIP + 20tk — zllllxces s — zl| + 274 f(2) — 2, J(xks1 — 2)) + @k%

F(z)|I?
< (1= e = 2l + rall ~ 2P + ear ~2IP) + 20(f6) ~ 2 St = 2) + D
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It follows that, for all k > kg, we have

-QC-ou+g 21 o IIF@)IP
X1 =2l < T b — I + _—k<f(2) =2, (X1 — 2)) + 1_—;](%
( 0) T @ E@IP
<(1- - — T
<( b= 2l (@) 2 ke =)+
Set ¢; = (i Z)er and v = 7=(f(z) — 2, J(xk+1 — 2)). Then,
e = 2IP < (1= cllee = 2P + crv + ax, Yk > ko, (38)
where oy = 1_‘D—£Tk M Applying Lemma 2.14 to (38), we conclude that x; — z.
(ii) X has a weakly continuous duality map ], with gauge ¢. By Lemma 2.6, X* solves the VI
(U=HX"Jp(X =p)y <0, VpefF. (39)
Repeating the same arguments as those of (24) in the proof of Theorem 3.1, we obtain
lim sup(f(z) - z, Jo(xx —2)) <0, (40)
k—o0

where z = X*.
Note that

O(llyk — zll) = Olu(GrGxx — Grz) + (1 = w)(ViGxg — 2) + u(Grz — 2)l)
< O(|l(GkGxy = Grz) + (1 = u)(ViGxx — 2)|I) + ulGiz — 2, J (Yk — 2))
< O (1 = @x)llek = zll + (1 = w)llxx = zlI) + wll(I = @k F)z = zllp(llyx — =lI)
< O(|lxx = zll) + arllF@)lelyx — zl).

and hence

D(|lxs1 — 2ll) = Pl (f(yi) = f(2) + (1 = )k — 2) + To(f (k) = f(yr)) + T(f(2) = 2I)
< O(llt(f(yx) = f(2) + (1 = i)y — 2)ID) + T F (k) = f (W), Jop(Xrs1 — 2))
+ Tk(f(z) z, ](p Xks1 — 2))
< (1= =9l @(lxx - zll) + warlF@)lle(lyx — zID] + Trollxk — yellp(llxks: — =)
+ 1 f(2) — z, ](p(xk+1 -z))
< (1= = om)P(llxx — zll) + rollxk — yellpUlxee: = zll) + 71l f (@) — 2z, Jp (k1 — 2))
+ arllF@)llplyx — zl).

Set ¢k = (1 - )t and vk = 755 lIxk = Yillp(llest = 211) + 15,(f(2) = 2, Jp(¥ks1 = 2)), Yk > 1. Then,
Ixier — 2P < (1= el — 2l + cpvie + 0x, Yk 21, (41)

where ox = @lIF@)llpllyx — zII)-
Applying Lemma 2.14 to (41), we conclude that limy_,., @(||xx — z|) = 0, which implies that limy_,c |Jxx —
z|| = 0. This completes the proof. [
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