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Abstract. In this work, we present a new extension of Darbo’s theorem for two different classes of altering
distance functions via measure of non-compactness. Using two-variable contractions we obtain the well-
known results in this literature (see [22]). We also use these results to discuss the existence of solutions for
a system of integral equations. Finally, we provide an example to confirm the results obtained.

1. Introduction and Preliminaries

The measure of non-compactness is one of the most important and useful concepts in functional analysis.
This subject which was initiated by the fundamental article of Kuratowski in [17] and has provided powerful
tools for obtaining the solutions of a large variety of integral equations and systems of integral equations.
In fixed point theory one of the most important results is due G. Darbo [13]. So far, many scholars have
provided generalizations of Darbo’s theorem and have been helped in solving the integral equations (for
example see [1-18, 20-23]). In this paper, we present a new extension of Darbo’s theorem for two different
classes of altering distance functions via measure of non-compactness. Using two-variable contractions
we obtain the well-known results in this literature. We also use these results to discuss the existence of
solutions for a system of nonlinear integral equations and give a concrete example.

From now until the end of this work, let E be a Banach space. Let us denote the set of real numbers with
RR. Consider R; = [0, +0). We will denote by B, the closed ball centered at 6 with radius r. Considering

X C E,X # @, assume that X is the closure of the set X and coX denotes the closed convex hull of X. Also
we symbolize by Mg the family of all non-empty and bounded sets and by Ng subfamily consisting of all
relatively compact sets.

Definition 1.1. ([11]) A function u : Mg — R, is called a measure of non-compactness in E if it satisfies the
following hypothesis:

(BM1) The family ker u = {X € Mg : u(X) = 0} # @ and ker u C Ng;
BM2) XcY = uX)<ul);
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(BM3) 1t (X) = p (coX) = p (X);
(BM4) p(AX+1A-M)Y) <AuX)+ (A -A)u(Y) for A €[0,1];

(BMD5) If (X) is a sequence of closed sets from Mg such that Xi1 € Xy fork =1,2,..., and limy_,. pt (Xx) =0,
then the set Xoo = N2 X # @.

The subfamily ker u defined in (BM1) represents Kernel of ;1 and since p (Xo) = u (ﬁ;‘;l)(k) < pu(Xp), we
see that i (X«) = 0. Therefore X, € ker 1.

Definition 1.2. We say that | : [0,+00)> — [0,+0c0) is a lower semi-continuous function, if for any arbitrary
sequences {ax} and {by} and {cx} of [0, +00),

l( lim infa, lim inf by, lim inf ck) < lim inf (@, b, 1)
For example, Iy (p,q,v) =In(p +q+r+ 1) and I, (p,q,r) = max{p, q,r} are lower semicontinuous.

Theorem 1.3. ([6]) Assume that p, U, ..., [ are measures of non-compactness in Banach spaces E1, E,, ..., Ex re-
spectively. Also, suppose that the function G : [0,+c>0)k — [0, +00) is convex and G (p1,p2,...px) =0 & p; =
0,(i=1,2,3,...,k). Then

(X)) =G (u1 (X1), 2 (X2), oo, i (X)),

defines a measure of non-compactness in E; X Ey X ... X Ex where X; denotes the natural projections of X into E;, for
i=1,23,.k

Example 1.4. ([6]) Consider G (p,q,7) = p+q+7 for every (p, q,7) € [0, +00)°, then G has all conditions of Theorem
1.3. So, u(X) = p(Xy) + p (X2) + p (X3) for each X C E x E X E is the measure of non-compactness in E X E X E.

Theorem 1.5. (Schauder’s fixed point theorem [3]) Assume that C be a convex and closed subset of E. Then every
compact, continuous map T : C — C has at least one fixed point.

Theorem 1.6. (Darbo’s fixed point theorem [13]) Assume that Q) be a non-empty, bounded, closed and convex
subset of E. Consider the constant A € [0,1). Also, suppose that T : QO — Q) is a continuous operator such that
p (T (X)) < Au(X) for each X ¢ Q with X # @. Then T has a fixed point in Q.

Now, we introduce three different classes of functions that we need in the next section.
Definition 1.7. Let © be the class of all functions 0 : [0, +c0)’ — [0, +0c0) satisfying the following hypothesis:

(A1) O(p1+p2,q1+ g2, 11 +12) <O (p1,91,11) + O (P2, g2, 12) for every p1,p2, 91,92, 11, 12 € Ry,
(A2) O6(p,q,r) =0 p=g=r=0,foreveryp,qreR,,
(A3) 0O islower semicontinuous.
Forexample, 61 (p,q,7) =In(p+ g +r+1)and 62 (p, q,r) = max{p, g, r} satisfy the above three properties.
Definition 1.8. Let ® be the class of all functions ¢ : [0, +c0)’ — [0, +0c0) satisfying the following hypothesis:
(B1) ¢ is continuous and nondecreasing,

(B2) ¢ (h,h,h) <hforeveryh >0,

(B3) 1 (¢ (pr,q1,m) + 6 (p2, G2, 72) + & (p3, g3, 73)) < p (BB, LA Izt for every
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P1,P2,P3,91,92,93, 71,12, 73 € Ry.
For example, ¢1 (p,q,7) = Mp + A2g + Asr, where A1, A5, A3 € [0,1) with A1 + A, + A3 < 1,and ¢2 (p,q,7) =

In (1 + ’%) satisfy the above three properties.
Definition 1.9. Let W be the class of all functions i : [0, +c0)* — [0, +00) sayisfying the following hypothesis:

(C1) ¢ is continuous,

(C2) ¢ (h,h) > hfor every h > 0.

For example, 1 (p,q) = p+qand ¥, (p,q) = /P + g> and 13 (p,q) = e V"'* —1,in which p, g € R, satisfy
the above two properties.

Let BC (R;) be the Banach space consisting of all defined, bounded and continuous functions on R,
equipped with the standard supremum norm

llx|l = sup {|x ()| : T > 0}.

Fix XcBC(R;),X#@andL>0and7€R,. Forxe Xande >0

ot (v e) = sup{lx(t) —x@)|:t,v €[0,L],|t —v| < €},
ot (X, e) = sup {a)L (x,e):xeX},
a)é X)) = lirr(} ot (X, e),

wo(X) = lim of (X),
X(1) = {x(0):xeX},
and
#(X) = @0 (X) + lim sup diamX (r),
where
diamX (1) = sup {|x (1) - y (0)] : x,y € X}

As mentioned in [11], u (X) is the measure of non-compactness in BC (R,).

2. Main results

Throughout the main results section, let us assume that Q is a non-empty, bounded, closed, and convex
subset of E. Also, assume y is an arbitrary measure of non-compactness in E.

Theorem 2.1. Assume that (1 be a measure of non-compactness as in Example 1.4 and ¢ € W, 6 € ©. Also, suppose
G:QOxQxQ— QxQxQisacontinuous operator satisfying:

P (E(GX), 1 (G (X)) < ¢ (p(X), 1(X) = 6@ (X), 1 (X), 1 (X)), (1)
for each X ¢ QO x QO x Q with X # @. Then G has at least one fixed point in Q2 X () X Q.

Proof. We define a sequence {Q X O X Q};7, inductively such that

Qo XxQuxQy=0QxQXQ, QX Qp X O =coG (Qr_q X Qg X 1),
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fork=1,2,---. By given conditions, we get

G (Q x Qg x Qo) GOXxOAXQ)COXxQAXxOQ=0Q)xQHxQy,
QO xQ x0Q; = COG(Q0XQ0XQ0)QQXQXQZQ()XQ()XQ(),

Qg1 X Qpep1 X Qpy1 € Qe X Qe X Qe € ... €O X Q1 X Qg € QX Qg x Q.

Next, if for an integer K > 0 we have u (Qg x Qg X Q) = 0, then Qg x Qg X Q is relatively compact.
Hence, the proof is completed by using Theorem 1.5. Therefore we suppose that p (Qx x Q X Q) > 0 for
every k > 0. Also with given assumptions, we obtain

Y (0 (Qpemg X Qpq X Q) , 1 Qi1 X Qg X Qpeq))
< P (U (e X Qe X Q) , 1 (Qg X Qe X )
=0 (1 (Qp X Qe X Q) , 1 (e X Qe X ), 1 (Qpe X Qe X ). 2)
Since the sequence {1 (Q X O X )}, is a nonincreasing and positive sequence, therefore, there is an
a > 0 such that 1 (Qg X O X Q) — a, as k — 0. Moreover, we have
Y(a,a) = ,}1_{2 sup ¢ (1 Qi1 X Qg1 X Qesr) , 1 (gt X Qsr X Q)
< %im sup vy (ﬁ(Qk X Qp X () ,ﬁ(Qk X Qp X Q)
— lim inf 0 (

k—oo

1 Q% X Qi X ), 1 (O X Qe X Q)
[,l(Qk X Q. X Qk)

I}l_)lg} sup 110 (;lI(Qk X O X Qk) ,ﬁ(Qk X O X Qk))

IA

limy, o0 il’lfﬁ(Qk X O X Qk) ,
limy_ o0 infﬁ(Qk X Qp X Qk)

= Ylaa)-0(aaua).

[ limkﬁoo infﬁ(Qk X Qk X Qk) ,
-0

So, 6 (a,a,a) = 0, and hence & = 0. So, we conclude that p (Q X O X Q) — 0, as k — co. Now, since
Qa1 X Qa1 X Qpyr © Qg X Qe X O, then from (BM5), we conclude that Qe X Qoo X Qoo = N2 O X O X
is a non-empty, convex,closed set, invariant under G and Qg X Qu X Qo € ker 1. So from Theorem 1.5 we
deduce that G has a fixed point in Qg X Qe X Q. Since Qg X Qoo X Qo € Q X Q X O, then the proof is
completed. [

Theorem 2.2. Suppose p € WV is nondecreasing with i (p1 + p2, g1 + q2) < ¥ (p1, q1)+V (p2, g2) for every p1, p2, 91,92 €
R, and 6 € ©. Also assume that G; : Q X Q x Q — Q (i = 1,2,3) are continuous operators satisfying:

1111) p(X1) + u(X2) + p(X3),
3 p(X1) + p (X2) + 1 (X3)
=0 (u(X1), 1 (Xa), u(X3)),

14’ p(Xy) + u(X2) + p(X3),
37\ w(X1) + p(X2) + u(Xs)

=0 (4 (X2), 1 (X3), 1 (X)),

117[) (X)) + p (X2) + 1 (X3),
37\ p (X)) + p(X) + p(X5)

=6 (1 (X3), 1 (X1), n(X2)), ©)

IN

Y (u(G1 (X1 X X2 X X3)), 1t (G (X1 X X2 X X3)))

P (1 (G2 (X1 X X2 X X3)), 11 (G2 (X1 X X2 X X3)))

IA

P (1 (Gs (X1 X X2 X X3)), 1t (Gs (X1 X Xp X X3)))

IA
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for each X1, X3, X3 € Q. Then there exist t*,v*, p* € Q) such that

Gl (T*, U*, pa(—) = ,_L_ae
Gy (T, 0%, p") =0 . (4)
G3 (T*, v*l p*) —

Proof. Consider 1 as defined in Example 1.4. We define GonQxQxQas following:gg

G (t,v,p) = (Gi (1,0,p), G2 (1,0, p), Gs (T, v, p)) .

Clearly, G is continuous on Q X Q X Q) by its definition. We will show that G satisfies all the hypothesis
of Theorem 2.1. For this purpose, let X € Q X Q X Q, X # @. Then, by axiom (BM2) of Definition 1.1 and
relation (3) we obtain

— Gl(X1 XXQXX3)XG2(X1 XX2XX3)
H XGs (X1 X X X X3) ’

p(E(G ), 2(GW)) ﬁ( G (X1 X Xp X X3) X Ga (X1 X X X X3) )

A
<

XG3 (Xl X Xz X Xs)

1 (G1 (X1 X X2 X X3)) + 1 (G2 (X1 X X2 X X3))
-y +u (G3 (X1 x X2 x X3)),
B p(G1 (X1 X Xo X X3)) + 1 (G2 (X1 X X2 X X3))
+u (G (X1 X Xz X X3))

P (1 (Gr (X1 X X2 X X3)), 1 (G1 (X1 X X2 X X3)))

+1 (1 (G2 (X1 X X2 X X3)), 11 (G2 (X1 X X2 X X3)))

Y (1 (Gs (X1 X X2 X X3)), 1t (G3 (X1 X Xz X X3)))

2 (1 X)X + 1 (X3), 1 (K) + 1 (XK2) + 1 (X))
=0 (1 (X1), 1 (X2), 1 (X3))

#3000 + 1 (X) + 41 (X3), 1 (X0) + 1 (X) + (X))
0 (1 (X2), 11 (X3), 1 (X))

PR (X0 + 1 (X) + 0 (X3), K1)+ 1) + 1 (X)

=0 (1 (X3), 1 (X1), 1 (X2))
= P (X)) + p (X2) + p(X3), pw (X1) + p (X2) + 1 (X3))
_( 0 (p (X1), p (X2), 1 (X3)) + 0 (1 (X2), 1 (X3), 1 (X1)) )

IA

IA

+0 (1 (X3), p (X1), p(X2))
P (u(X1) + p (X2) + 1 (X3), 1 (X7) + i (X2) + 1 (X3))

—6( (X)) + @ (X2) + p(X3), 1 (X1) + p(X2) + 1 (X3), )
1 (X1) + p (X2) + p (X3)

= PEEX), 1 (X)) =0 (X), 1 X)), 1 (X))

IA

So, from Theorem 2.1 we deduce that G has a fixed point, that is, there exist t*, v, p* € Q such that
(t',v',p) = G (', 0", p) = (G1 (7", 0", p"), Ga (T, 0", ), Gs (°, 0", p),

which means (4) is satisfied. O
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Corollary 2.3. Suppose A1, Ay, A3 are nonnegative constants with Ay + Ay + Az < 1. Also assume that G; :
QxQxQ— Q(=1,2,3)are continuous operators satisfying:

A A A
1 (Gi (X1 X Xy X X3)) < glu(XO + ?2}1((\’2) + gu(xa),

for each X1, X5, X3 C Q. Then there exist t*,v*, p* € Q such that

Gl (Tx-, v*l p*) T*

G2 (T*, 'U*, pa(-)

G3 (T*, v*, p*) px-
Proof. Considering ¢ (p,q) = p+qand 0(p,q,7) = 3[(1 = A1) p+ (1 = A2) g+ (1 — A3) 7] in Theorem 2.2 the
result is desirable. [J

Corollary 2.4. Consider the constant A with 0 < A < 1. Also assume that G; : QX QxQ — Q(i=1,2,3) are
continuous operators satisfying:

1 (G (X1 x Xz X X3)) < Amax {u (X1), u(X2), u(X3)},
for each X1, X5, X3 € Q. Then there exist 7*,v", p* € Q such that

Gl (T*, U*, p*) =
G2 (T*, v*[ px—) — v:e
G3 (T*, U*, px-) = pa(r

Proof. Considering ¥ (p,q) = p+qand 6(p,q,7) = 2(1 — A)max{p, q,r} in Theorem 2.2 the result is desir-
able. O

Corollary 2.5. Suppose G; : Qx Qx Q — Q (i = 1,2, 3) are continuous operators satisfying:
1 (X1) + p (X2) + p (X3)
3
for each X1, X3, X3 € Q. Then there exist 7*, v*, p* € Q such that

1 (Gi (X1 X X2 X X3)) < —In(p (X1) + p(X2) + p(X3) + 1),

Gl (T*, v*[ px—) = ,_L_sf
G2 (T*, U*, px-) — vx-
G3 (T*, U*, p*) — pxr
Proof. Considering ¢ (p,q) = p+gand 0 (p,q,7) =2In(p + g + r + 1) in Theorem 2.2 the resultis desirable. [

Corollary 2.6. Consider the constant A with 0 < A < 1. Also assume that G; : QX QxQ — Q(i=1,2,3) are
continuous operators satisfying:

+ 1 (Xo) + p(X3)
9 7
for each X1, X, X3 € Q. Then there exist 7*, v*, p* € Q such that

1 (Gi (X1 x X2 X X3)) < (1 _ Az)(#(xl)

G1 (Tx-, vx-/ p*) — Tx-
Gz (T*, V%, P*) =
G3 (T*, U*, p*) — px-
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Proof. Considering ¢ (p,q) = Vp+gand O (p,q,r) = 4 \/p +q + 7 in Theorem 2.2 the result is desirable. [

Theorem 2.7. Assume that i is a measure of non-compactness as in Example 1.4 and ¢ € @, € V. Also suppose
F: QOxQxQ— QxQxQ bea continuous operator satisfying:

Y (u (F (X)), 1 (F(X))) < ¢ (1(X), 1(X), 1(X)), (5)
for each X ¢ QO x Q) x Q with X # @. Then F has at least one fixed point in {3 x Q) x Q.
Proof. We define a sequence {Q x O X O4};2; inductively such that
Qo X QyxQy=0QxQXQ, Q% X X Qp =coF (Qp1 X Q1 X Qpq),

fork=1,2,---. By given conditions, we obtain

F(QOXQOXQO) = F(QXQXQ)QQXQXQ:Q()XQ()XQ(),
O xOQx = COF(Q()XQ()XQ())QQXQXQZQ()XQ()XQ(),

e et X Q1 X Qi1 © Qe X Qe X Qp C--- C 0y x Q1 X Q1 CQyx Q% Q.

If for an integer K > 0 we have 1 (Qg x Qg x Q) = 0, then Qg x Qg x Q is relatively compact. Hence,
the proof is completed by using Theorem 1.5. Therefore, we suppose that p (Qx x Qi x Q) > 0 for each
k > 0. Now, by given conditions, we get

P (1 ( Qg1 X Quesr X Q1) s 1 ( Q1 X Qg1 X Qpr))

l,l) (ﬁ(COF (Qk X Qk X Qk)) ,ﬁ(COF (Qk X Qk X Qk)))

Y (1 (F Qi X Qi x Q) , 1 (F (e X Qe X D))

(1 (O X Qe X ), 1 (e X Qe X Q) , 11 (e X Qe X ). (6)

IN

Moreover, the sequence {1 (Q X O X ()}, is a nonincreasing and positive sequence of real numbers,
therefore, there is an a > 0, 1 (Q X Q X Q) — a, as k — 0. We show that a = 0. If we assume that a > 0,
then from (6), we get

V(o) = ¢ (I}i_)r?oﬁ(Qku X Qi1 X Q1) ,’}i_)r?oﬁ(ﬂkn X Qe X Qk+1))

IA

o (Jim (e x Qx Q) Jim (X 4 X Q) Jim (€ x Qi x )
= ¢aaa)<a.

Which is contradiction. Therefore, we conclude that p(Q X Qx x Q) — 0, as k — 0. Now, since
Qa1 X Qs X Qpyr € Qp X Oy X O, then from (BM5), we conclude that Qc X Qoo X Qoo = N2 O X O X
is a non-empty, covex, closed set, invatiant under F and Qs X Qo X Qo € ker 1. So, from Theorem 1.5 we
conclude that F has a fixed point in Qe X Qs X Qeo. Since Qoo X Qoo X Qoo € Q X QX Q), then the proof is
completed. [

Theorem 2.8. Supposep € WV is nondecreasing with i (p1 + p2, g1 + 92) < ¥ (p1, q1)+¢ (p2, g2) for every p1, p2, 41,92 €
R, and ¢ € ®. Also assume that F; : Q x Q x Q — Q (i = 1, 2,3) are continuous operators satisfying:

lab(# (F1 (X1 X X2 x X3)), p (F1 (X1 X X2 X X3))) QD(M (Xl)/.U(XZ)/.U(X3))/

<
P (u(F2 (X1 X Xo X X3)), u(F2 (X1 X X2 X X3)) < ¢(u(X2),u(Xs),u(Xy)),
Y (u(F3 (X1 xXa X X3)), u(F3 (X1 XXy xX3))) < ¢ (u(X3),u(X1),u(X2), 7)
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for each X1, X, X3 € Q. Then there exist 7*, v*, p* € Q such that
Fl (T*, va(-/ p*) — Tx-
Fy (1, v, p) =v . 8)
F3 (T*, U*, px—) —
Proof. Consider i as defined in Example 1.4. We define FonQxQxQas following:
F(T,v,p) = (Fl (T/v/p)/FZ (T,v,p),F3 (T,v,p)) .

Clearly, F is continuous on Q X Q X Q) by its definition. We will show that F satisfies all the hypothesis of
Theorem 2.7. For this purpose, let X € Q x Q x Q, X # @. Then, by (BM2) and (7) we obtain

ﬁ Fl(Xl XX2XX3)XF2(X1 XX2XX3)
= = xF3 (X1 X X3 X X3) ’
PEFE)EFE@)) < 0 1 b x) %X x Ko x Fa (X, X X X Xo)
H XF3 (X1 X X5 X X3)
p (F1 (X1 X X2 X X3)) + p (F2 (X1 X X2 X X3))
= +u (F3 (X1 X X2 X X3)),
p (F1 (X1 X X2 X X3)) + p (F2 (X7 X X2 X X3))
+u (F3 (X1 X X2 X X3))
< P (u(Fr (X1 x X2 x X3)), 1 (F1 (X1 X X2 X X3)))
+1 (p (F2 (X1 X X2 X X3)), 1 (F2 (X1 X X2 X X3)))
+1 (1 (F3 (X1 X X2 X X3)), 1 (F3 (X1 X X5 X X3)))
< (X)), 1 (X2), 1n(X3)+ P (u(X2), 1 (X3), 1 (X))
+¢ (1 (X3), 1 (X1), 1 (X2))
(X)) +u(Xo)+u(X3) (X)) +u(X2)+u(X3)
< 3¢( :

3 X)) r(Xs) : ©)
3

Now from (9) and taking 1 = 311, we obtain

¢ (E(F0), 1 (FX0)) < 0 @), 15X, T X)) (10)
Hence, by Theorem 2.7 F has a fixed point, i.e., there exist 7%, v*, p* € Q2 such that

(T, p) = F (v, 0, p") = (F (¢, 0, p°) , Fa (T, 0%, ) F3 (T, 07, ")),
which means (8) is satisfied. O

Corollary 2.9. Assume that F; : Qx Qx Q — Q (i = 1,2, 3) are continuous operators satisfying:

p (F1 (X1 x X2 x X3)) ¢ (u(X1), u(X2), u(X3)),
p (F2 (X1 X X2 x X3)) ¢ (u(X2), 1 (X3), u(Xy)),
p(F3 (X1 x X2 X X3)) O (1 (X3), u(X1), 1 (X2),

for each X1, X5, X3 € Q, where ¢ € ®@. Then there exist t*, v, p* € Q such that

INIA A

Fl (Tx-, vx—l px—) — T*
F(t, v, p") =v
F3(t,v%,p") =
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p+q
2

Proof. Considering ¢ (p,q) = in Theorem 2.8 the result is desirable. [

Corollary 2.10. Suppose A1, A,, A3 are nonnegative constants with Ay + Ay + A3 < 1. Also assume that F; :
QA xQxQ— Q@ =1,2,3) are continuous operators satisfying:

pF1 (X1 xXox X3) < Ap(Xy) + Aap (X2) + Asu (X3),
p(F2 (X1 x X2 xX3)) < Aqu(Xo) + Au (X3) + Az (Xy),
p(F3(X1 X Xox X3)) < Aqu(X3) + Az (Xq) + Az (X2),

for each X1, X5, X3 C Q. Then there exist T*,v*, p* € Q such that
Fl (Tx-, ‘U*, px-) — T:&
F (t, v, p) =v" .
F3 (T*, va(-, p*) — px-
Proof. Considering ¢ (p,q) = p+qand ¢ (p,q, 1) = 2A1p+2129+2A3r in Theorem 2.8 the resultis desirable. [

Corollary 2.11. Assume that F; : Q X QX Q — Q (i = 1,2, 3) are continuous operators satisfying:

14 #(X1)+#(X2)+#(X3)),

1
lu(F,'((\ﬁXXzXXg))S@ln 3

for each X1, X2, X3 C Q. Then there exist T*,v*, p* € Q such that

Fl (T*, U*, px—) — T*
FZ (T*, v:(»l px—) — v*
F3 (Tx-, va(», px-) — pxr

Proof. Considering ¢ (p,q) = \p?> +g?and ¢ (p,q,7) = In (1 + %) in Theorem 2.8 the resultis desirable. [J

Corollary 2.12. Suppose A1, Ay, A3 are nonegative constants with Ay + Ay + A3 < 1. Also assume that F; :
QxQxQ— Q(i=1,2,3)are continuous operators satisfying:

p(F1 (X1 xXoxX3) +In(1+ p(Fr (X1 xXaxX3) < Ap(Xq) + Au (X)) + Asp (X3),
p(F2 (X1 x X2 xX3)) +In(1 + p (Fo (X1 X Xo X X3))) < Ap(Xo) + Au (X3) + Az (Xq),
p(F3 (X1 x XoxX3)) +In(1+ p (F3 (X1 X Xa X X3)) < Aqp(X3) + Au (X1) + Azp (X2),

for each X1,X,, X3 € Q. Then there exist T, v, p* € Q such that
F1 (T*, vx-, px-) — T*
F2 (T*, U*, px—) — v:(-

F3 (T*, v:(»l px-) = ps(r

Proof. Considering ¢ (p,q) = @ +1n (1 + @) and ¢ (p,q,7) = Mp + A9 + Asr in Theorem 2.8 the result is
desirable. [
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3. Application and Example

Consider the following system of integral equations:

x(1) = A1 (1) + I (1, x (61 (1)), y (€1 (7)), 2 (e1 (7))
[ T,X(Sl (T)) /y(el (T))/Z (81 (T))/
+h| g (P

(791 (0201 @),y 01 )2 (01 @D o)

y(0) = A2 (1) + b (1, (e2 (1)), y (€2 (1), 2 (e2 (1))
7,2(e2 (1), y (e2 (1)), 2 (2 (1)), . a1

0 ([ 02 (50,0 0200, y (020, 2 (02 () o

z(1) = A3 (1) + h3 (1, x (3 (1)), y (€3 (7)), z (€3 (7))
7,x(e3 (7)), ¥ (€3 (1)), z (3 (1)), ]

”%e%ﬁm%@mﬂ@w»w@w»ﬂ%wmw)

7

Theorem 3.1. Let
() Ai: Ry - R,i=1,2,3 are continuous and bounded functions with
M; = sup {|A;i (7)] : T € Ry}
(II) &i,04Bi : Ry = R, are continuous functions and ¢; (1) = coas 7 — oo, fori =1,2,3,
(III) 6; : Ry — R with 6;(0) = 0 are continuous functions and consider the positive constants «;, 6; with
10 (1) = 0; (T2)| < 6;lT1 — 2|, (12)
forevery 71,7, € R4,i=1,2,3,

(IV) |ﬂ (7,0,0,0, 0)| and |h; (7,0,0,0)|,(i = 1,2,3) are bounded on R, that is,

M = sup{|ﬁ (7,0,0,0,0)| : T € ]R+} < 0o,
M = sup {|h; (7,0,0,0)| : 7 € Ry} < o0.

V) it Rie xRXRXRXR = Rand #; : Ry X RXRXR — IR are continuous functions, ¢; € ® and
@i : Ry = R are nondecreasing continuous functions with ¢; (0) =0, fori =1,2,3,

wl),

wl) + @i (m = nl), (13)

|hi (t,x,y,2z) —hi(t,u,v, w)| < %(Pi(

|fl~(q_',x,y,z,m)—fi(T,M,U,w,Tl)| < %@(

forevery 1 >0,x,y,z,m,n,u,v,w € R,

(VD) 9i : Ry xRy X RXRXR — R, (i = 1,2,3) are continuous and also we have

Bi(T)
. gi (Tr v,x(0; (v), y (0i (v),z(0; (U)))
fim | %@vu@w»v@w»waﬂm”d
=0, (14)

and,
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hglzsup{ L9 g1 (20,201 0)), y (01 0)), 2 @ )] TR, }, 15)
x,Y,z € BC(Ry)

(VII) The following inequality for a p > 0 is valid.

M + i (1,76, %) + M + M; + i (0:M]) < %, (i = 1,2,3). (16)

Then the system (11) has at least one solution in BC (R;) X BC (R) X BC (R;).

Proof. Consider the operators T; : BC (R,) x BC(R,) X BC(R;) —» BC(R,), (i = 1,2,3) by the formula:

Ti(x,v,2) (1) = Ai (1) + hi (1, x (¢; (1)), y (i (7)), 2 (¢: (7)))
7,x (£ (1)), y (ei (1), z (& (7)), ]

*ﬁ[amw@umw@w»y@w»umm»w) )

Since A;, h; and f;, (i = 1,2, 3) are continuous, then T;, (i = 1,2, 3) are continuous. Also with given assump-
tions, we get

|Ti (x, v,2) (O] < 1A; (O] + |l (7, x (&1 (7)), y (3 (7)), 2 (€ (1)) = hi (1, 0,0,0)|
+ |h; (7,0,0,0))|
7,2 (e (1), y (& (1), 2 (& (7)),

fil o[ p® 7,0,
. [@@ Q(xmw»ymw»um@)yﬁ]

—£i(,0,0,0,0)
+£:(7,0,0,0,0)|
<M+ M, + M+ 201 (1 ) Jy e ()] 2 e ()
+ 200 e O, Jy e ()] e s ()

Bi(T)

e{f wamamw»y@w»umw»w»
0

2 (& (D))

+Q; (

< M+ M+ M; + i (lx (e (1),

y(&i (1)

Bi(7)
6{[ mumw@w»ymwmnm@»w)
0

< M+ M; + M+ i (Il [|y] 1z11)

|
|

i) + i (0:M]), (18)

+(Pi(

y

i(7)
+ @i [51' 'fo i (1, v,x(0: (v)), y (0 (), z (0 (v)) dv

< M+ M; + M + i (|l

y

thatshows T, (i = 1,2, 3), are well defined. Also, condition (VII)and relation (18) imply that T; (Bp X B, x BP) c
B,.

Now, we show that T;,i = 1,2,3, are continuous on Ep X pr X Ep. Fix arbitrarily ¢ > 0. Consider



B. Matani et al. / Filomat 33:19 (2019), 6315-6334 6326

z)—(u,v, w)” . we obtain

[ G:,2) (@) = T 9y) (T)| < }Z((Tr,i((gé(fr% yv(fé((?))) o)
T x (e (D), y (e (), 2 (e (D),
ﬁ(a(ﬁm%@ux@@»ﬂwmmﬁwmmwﬁ
* ©x (e (1), y (e (1), 2 (e (0),
*{e{ﬁm%@uu@w»v@w»wwmmmﬁ)
(&1 (£) = 1 e ()],

< 50| [y (e (@) - o),
lz (€ () — w (& ()]

I (e (1)) — u (& (7)),
+ 5| Jy (e (@) o (D),
|neu» w (e; ()]

ﬁ<%@wﬂmw»y@w»z@wmmﬁ
aau ull, ||y = o||, Ilz - wll)

0
=01 (7 g1 (50,1001 01, 0103 0), 0 (01 ) )
Bi(T)

9 (1,0,% (01 (1)), ¥ (0 (1)), 2 (03 (V)
¢Fx£ (vﬁmw@@%dw@%ﬂmwﬁyv)
< i (Ibe = ull, [ly = ||, Ilz = wll)
Lﬁm(gmwm@w»y@w»nmm»)mf} 19)
0

|

i (Il = ull, |ly = o], Iz = wll)

NIHNM—\

—9i (7, v,u(0i (v)), v (0; (v)), w (0i (v)))

+ Qi [61

Furthermore, from relation (14), we have

@&Kﬁm(%@wmﬂwﬂww»um@»)wm

—9i (7, v,u(0i (), v (0 (), w (07 (v)))
<

(20)

I\JI‘T)

for every x,y,z,u,v,w € BC (R;).
If T > L, then from relations (19) and (20), we obtain
€ € e)

|Ti(x,y,z)(T = Ti(u,0,w) ("[)| < qbl(z 35
+ (21)

Nlﬁ)

5
If T € [0, L], then we get
|T; (x, y,2) (1) = T; (u, 0,w) ()|

cee PO g (r, 0,2 (00 ),y (0 0), 20 @) ), |
—¢4zzz)“ﬂ(aﬁ (—%muu@amemmxwmwm)”‘
<3 +(p,-(6i<ﬁia)(e)) ),

(22)
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where

_ |9i(7,v,x,y12)—9i(T,v,u,v,w)|:TE[O'L]'UG[O’ﬁiL]’
o=l 1 o )

ﬁlL =sup{Bi(r): 7 €[0,L]}.

Using the continuity of g;,i = 1,2,3 on [0, L] X [O, ‘BZL] X [=p, p] x[=p, p] X[-p, p], we have w (€) — 0,ase — 0

and by continuity ¢;,i = 1,2, 3, we obtain
Pi (5i (ﬁiLw (6))ai) -0,

as € — 0. Therefore, from relations (21) and (22), we conclude that T;,i = 1,2, 3, are continuous functions
from B p X B p X B p into Ep. Next, we show that T;,i = 1,2, 3, satisfies the conditions of Corollary 2.9. For this
purpose, suppose L, e € R, 71,72 € [0, L] with |11 — 75| < € and X3, X3, X3 are arbitrary non-empty subsets
of Ep.

Let (x,y,z) € X1 X X2 X X3. We can assume that f; (11) < B; (72). Consequently,

Ti (x,y,2) (11) = Ti (x,y,2) (12)
hi (T2, x (€ (12)) , y (€i (12)) , 2 (€ (12)))
—h; (t2,x (& (1)), y (e (11)) , 2 (i (11)))
T2, X (€ (12)), ¥ (i (12)) , 2 (¢i (12)) , ]

)

fi Bi(12) T2, 0,x(0; (v)), ¥ (0; (),
[ei(fo 1 B

IN

|A; (1) — A (T2)| +

72, % (& (11)), ¥ (e (11)) , 2 (e (11)),
[P

T2, X (& (11)), y (€i (11)) , 2 (¢i (1)),
fi Qi J(')Bi(TZ) gi T2, U, X (Zl((o‘vl)()é)z (Ui (U)) " Ndv
11, % (€i (1)), y (€i (1)) , 2 (€ (T1)),

o)

71, % (€; (1)), y (i (1)), 2 (¢i (T1)),
fi pi) [ 12,0,x(0: (v),y(0i (v),
+ o fo g\ z(0; (v)) dv
[ 11, x (€ (11)), ¥ (e (11)) , 2 (e (11)),
~fi

61’ (Lﬁi(TZ) gi ( 71,0, X (O_i (U)) 'Y (O_i (U)) ’ )dl)) ]

z(0i (v))
71, x (€ (1)), y (€i (11)), 2 (€i (1)),
i [ 6; ( F g1 (21, 0,2 01 ), y (01 (1)), 2 (01 (0)) dv)
" 71, X (€1 (1)), y (€i (11)), z (i (T1)),
) [ 0:( 17" g (21,0,% 01 ), y 01 (), 2 01 ) o) ]
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< wh(Aje) + w;H (fie)+ a)lg (hi, €)
L1 qj( I (1 (12) — x (&5 (T))], |y (1 (72)) = y (1 (1)) )
27" 1z (¢; (12)) — z (& (T1))]
L1 ¢-( I (1 (t2)) — 2 (e (T, |y (e1 (22)) — y (e (1)), )
27 |z (&; (T2)) — z (&; (T1))]
0; ( 1 g1 (r2,0,% (0 W), y (01 ) , 2 (01 () dv)
+Q; o
—0; ( F gy (v, 0,% 0 ), y (01 (), 2 (05 ())) dv)
Bi(T2)
o ( 0 ( fﬁ 0,00, 160, 20 0) dv) )
<

" (Aj€) + a)ﬁfH (fi €) + @} (i €)
+¢; (a)L (x, wh (&, e)) b (y, wt (&, e)) b (z, wh (&5, e)))

a;

+Q; ((5,' (ﬁlLa)’g (gi, 6))%) + Qi ((Sl' (H(x)L (‘Bi, 6)) ) . (23)
where

" (Ai,€) = sup {|Ai (11) = Ai (12)| : 71,12 € [0, L], |71 — 12| < €},

i (12, %,y,2) = hi (11, %, y,2)| : 11,72 € [0, L], }
IT1 -l <€x,y,z€[-p, ] ’

w" (¢;,€) = sup {le; (11) — & (t2)| : 11, 12 € [0, L], |71 — T <€},
" (x, w'(ei,€)) = sup (|l (11) = 2 (1)) : 71,72 € [0, L], 71 — 72l < (e )],
H=gr sup{|g,- (T,v,x,y,z)) :t€[0,L],ve [O,ﬁf],x,y,z €[-p, p]},
Wy (€)= sup{ \fi (v, %, v,2,p) = fi (1, %, y,2,p)| : 11, 12 € [0, L], }

w’L, (hi,€) = sup

|11 — T2l <€,x,y,z € [-p,pl,p € [-0;H", 5;H*]

wh (gi,€) = su |9: (11,0, %,v,2) = 9 (12,0, %,y,2)| : 71, T2 € [0, L],
5 (9i,€) = sup -l <eve0,p],x vz, p] ,

w" (Bi,€) = sup {"Bl (t1) — Bi (T2)| 271,72 € [0,L],|T1 — 12| < e}.
Since (x, y,z) was an arbitrary element of the set X1 X X, X X3 in relation (23), so we get
" (T; (X1 X X2 X X3),€) < wb (A;, €) + a)s (hi, €) + a)E,H (fi,e)
+ O; (a)L (Xl, o* (e, e)) ,wh (Xz, " (&, e)) ot (X3, ot (&, e)))
+0; (01 (Brah (91,€)) ") + @i (0:iHa* (1, €)™). (24)
Using continuity of f;, g;, h; on [0,L] X [-p, p] X [-p, p] X [-p, p] X [-6:H*,6;H*], [0, L] X [0, ﬁlL] X [-p, p] X
[=p,p]x [=p, p], [0, LI X [~p, p] X [~p, p] X [~p, p], we have
wé,H (fie) — 0,
wé (gi,e) — 0O,
a)ﬁ (hi,e) — 0.
Moreover, using continuity of ¢;, f; and A;, we conclude that

W (e;,€) = 0,0" (Bi,€) = 0, 0" (A;,€) = 0
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as € — 0, Therefore we obtain

Qi

i (51 (B (9:,0))") + i (6 (Hao" (Bir€)) ") = 0
as € — 0. Now by letting € — 0 in relation (24), we obtain
wf (Ti (X1 X X2 X X3)) < i (h (X1), 0f (X2) , w§ (X3)). (25)
Also, by letting L — oo in relation (25), we get
wo (T; (X1 X X2 X X3)) < ¢ (wo (X1), wo (X2), wo (X3)). (26)
Furthermore, for every (x,y,z), (i, v,w) € X1 X X2 X X3,t € Ry, we get

Ti(x,y,2) (1) — < hi (7, x (& (1)), y (ei (1)), z (&, (1))
T; (u,v,w) (1) —h; (T/ u(ei(1),y (i (1),z (81'(7)))

P [ 7, x (i (1), y (€ (1)), z (€i (7)),
+

0:( 17 91 (60,x 01 ), y 01 (0), 2 01 ) o)

(e (0)), 0 (e (2), 0 (e (1),
o[ 91 0,0 0100, 0010, w0 ) o
< 3o (x @ v @1 o o @l | 250 )
1 i
+ 2 (|x (64 (0) = (e (L |y e @) — o @], | 250D |)

0, ([ 1 (00,2 000, y 01 ) 2 01 ) o)
~0: (77 gz, 0, (03 ), (03 0) 0 (03 @) )

+(p,[

< %(1)1- (diamX; (¢; (1)), diamX; (&; (1)), diamX5 (&; (1))

+ %(p,- (diamX; (&; (1)), diamX, (&; (1)), diamX5 (¢; (1))
Bi(7) ai
s 9i (1, v,x(0: (v), ¥ (0: (), 2 (0: (v)))
* (51 fo ( ~g: (5,0, (0 (), 001 (), (0 (0)) )d“ ]
< ¢ (diamX (¢ (1)), diamX; (i (7)), diamX5 (g (7))

Bi(7) i
(, :(5,0,% 01 0)), ¥ (01 ), 2 (01 (1))
+(P1(51f0 (—gi(f,v,uw,-(v)),v<o,-<v>),w(o,-<v>>) )d” J 7

Because (x, y,z) and (4, v, w) and 1, were chosen arbitrary in (27), we will have
diamT; (Xl X Xp X X3) (T)
< ¢i(diamXy (&; (7)), diamX7 (g (7)), diamX; (¢; (1))

Bi(7) @
N gi (7, v,%(0; (), y (0: (), 2 (0: (v)))
e [6f0 (—gi (%, 0,101 (0)), 0 (0 (1)), 0 (0 () )d”‘ ] 28)

By taking T — oo in relation (28), then using (14) we obtain

limsup,__,  diamX (&; (1)),
lim sup diamTi (Xl X Xz X X3) (T) < (]51‘ .

T—00

limsup,_, diamXs (¢ (1)),
limsup,__, diamXs (&; (1))

(29)



B. Matani et al. / Filomat 33:19 (2019), 6315-6334

From relation (26) together with relation (29), we obtain

wo (Tl' (Xl X X2 X X3)) +1lim sup diﬂmT,‘ (Xl X Xz X X3) (T)

< ¢ (o (X1), wo (X2), wo (X3))

limsup__, diamXy (¢ (1)),
+¢i| limsup,__,  diamX; (¢; (1)),
limsup,__,  diamXs (&; (1))

wo (X1) +limsup,__,  diamX; (&; (1))

4

3 .
<3¢: wo (X2) +limsup,__,  diamX; (& (T))/

3
wo (X3) +limsup__,  diamXs5 (g; (1))
3

So, from relation (30), we conclude that

X X X
M(T(Xlx)(zxxa))<¢l ( 1),/1(32),}1(33) ,

and by taking 1 = p, we get
H(Ti (X1 X X2 X X3)) < i (1 (X1), 1 (X2), 1(X3)),

Thus, by applying Corollary 2.9, the proof is complete. [

6330

(30)

Finally, we present the following example and we investigate the conditions of Theorem 3.1 for existence

of a solution.

Example 3.2. Let us consider the following system of integral equations

x(1) = %e‘TZ + ﬁ (cosx(\/_) + ln(l + |y ‘) + smz(\ﬁ)) +1eT
o8 (3F) () ££()
+ arctan (fo ( )( x(v?)sin y(v?)||cos z(v?)] )dv),

(1+x2(v2)) (l+sm y vz))(l+cos2 z(v?))
2 2
y(1) = 5(1Hz) + (1+T4) (COSX(’() +In (1 + |y ’c)|) +sinz (T)) + 1o
+5arm (K (D) + (1) +2(7))

+sin ( fo (ET )( y2(v)(1+cos? x(v))(1+sin? z(v)) ) dv),

(1+y2(v))(1+sm x(v))(1+cos2 z(v)) i
z(1) = S TTZ 80”3) (Cosx (1) +In (1 + |y (T)|) +sinz (7)) + %3—7
+at (D) + ¥ (1) +2()

x%|cos y(v)|+12|cos z(v)|+2|cos x(v)|
+1In (1 + fo (ef3 )( 1+x2(02)(1+y2(0?2) ) (1+22(02)) )dv)

(31)
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Here
1 .
hi(t,x,y,z) = m(cosx+lm(1+|y|)+smz),
2
hy(T,x,y,2) = ﬁ(cosx+ln(1+|y|)+sinz),
2
T .
hs(t,x,y,z) = S0 (Cosx+ln(1+|y|)+smz),
1 2 1 m
fAlLxy,zm) = Ee +8(1+T2)(x+y+z)+2,
2
fZ(T/x/]//Z/m) = ;E_Tz+m(x+y+z)+%,
1 2 T2 m
f3(’(,x,y,z,m) = §€ + 8(1—+T3)(X+y+2)+ E,
) X |sin y' |cos z|
gl (T/U/x/yrz) = _’I) . o ’
e/ (1+ x2) (1+s1n y) (1 + cos? z)

y? (1 + cos? x) (1 + sin? z)

x
,qu <
~—

1+y?) (1 + sin? x) (1+cos?z)

(
7Gxz = (
(

NTES |cos y( + y? |cos z| + z* |cos x|
g3 (L v,%y,2) = e ) (1T +22)(1+y2) (1 +22)
and
1 2 T2 1
A = Z¢ " A =— A - ¢ — . -
10 =z, A2 (1) 5A+ 1) 3(7) 5m,61 ()= Vr,e(1) =7,

€3(1) =7,01(1) =7%,02(1) = 1,05 (1) = 7, 1 (1) = VT, B2 (1) = 7,83 (1) = 7%,

01 (1) = arctant, 0, (1) = sint, 05 (1) = In(1 + 1),
01 (50,10 = 7 (041, (Go,0) = § (e 40+ 1), 63 (60,1 = 7 (4 v +1),
P10 = 29200 = 2,930 = 5.

Clearly conditions (I) and (II) and (III) are valid. Obviously we have, M; = %, oi=landa; =1,i=1,2,3.

Clearly, |f; (7,0,0,0, 0)| = %e‘fz,i = 1,2,3, are bounded and Ml = % Also h;(7,0,0,0),i = 1,2,3, are
bounded and M = §. Therefore, the condition (IV) is valid.

Obviously, f; and h;,i = 1,2,3, are continuous. Let 7 € R, then we get

_8(1}—72) (x+y+2)+%

1\T X, Y,z,m) — 1(T,u,v,w,n) =
|f( Y ) f | _(8(1}—”[2_) (M+U+Y/U)+g)

1 1
Sm(|X—ul+)y—v}+lz—w|)+§|m_n|

S1(|x—u|+|y—v|+lz—w|)+%lm—nl

8
:%X}L(|x—u|+|y—v|+lz—w|)+%lm—nl
= 2o (-l

y =],z = wl) + @1 (m - nl). (32)



B. Matani et al. / Filomat 33:19 (2019), 6315-6334 6332

Similarly, we obtain the following two relations:

IN

|f2 (T/x/ Y,z m) - f2 (T/ urvrw/n)l

1
5 %2 (lx = ul, [y = o] 1z = wl) + @2 (hm — ),

1
|fs (v x,y,2,m) - f5 (qu,0,w,m)| < 5¢s (Ix —ul,

y =0,z = wl) + @3 (m = nl)..

If t e Ry and x,y,z,u,v,w € R with )y) > o], then we get

|h1 (t,x,y,z) —hi (t,u,0, w)| < ﬁ |cos x — cos u

1
TS 'ln(l +[y]) - In(1+ |v|)‘
[sinz — sin |

(1+Iyl)‘+1

L1
8(1+12)

IA

|z — wl

1
R

3
|

ul| +

IA

|x—u|+%ln(1+)y—v))+%|z—w|

IA

(Ix = ul + |y = o) + 1z - wl)

NI~ |~ |~ o|F

X}L(lx—u|+|y—v|+lz—w|)

= 2o (i,

Similarly, we obtain the following two relations:

y—v,|z—w|).

|h2 (t,x,y,2) —ha (T, 4,0, w)|

IA

y—0

%@ (Ix —ul,

s (o, 0,2) = s (o 0| < s (-,

,|Z—ZU|),

A

y-v ,|z—w|).

Therefore, the condition (V) is valid.
Clearly, g;,i = 1,2, 3, are continuous. For every 7,v € R, and x, y,z € R, by easy calculations we get

|{]1 (T/ v, X, ylz) - 91 (T/ v, ulvlw)| < i_g/

|92 (T/ v, X, y/Z) -0 (T/ v,u,v, w)l < 6871;/

195 (2,0, %,y,2) - g5 (1,0, 1,0,w)| < %,
Hence,
. ho| g1(t,v,x(01 ),y (01 (v),z(01 () (VT T
b g0 (51 ), 0o ) 0 ey @ 0= BT Ee = limeo 2 =0
. | g2(7,0,x(02(v)),y(02(v)),z (02 () T 4w
b g (e v (02 0)), 0 (02 (0) 0 (o ) |40 S B0y G = e S =0,

93 (1, v,x(03 (), y (03 (), 2 (03 (v)))

. B3 (1)
lim J; —g3 (1, v,u (03 (), v (03 (), w (03 (1))

T—00

. 2 6 . 3
dv < lim fo e%fvdv = lim;e0 i% =0,

T—00
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Also, we get
B 9 (o x @100, 501 0,20 D)o < [V 2o = 5,
|f0ﬁ2(1) 92 (7, 0,x (02 (v), y (02 (v), 2 (02 (v))) dv' <k v = 23%22,

|f0ﬁ3(1) 93 (7, v,x(03 (v)), y (03 (V) , 2 (03 (v))) dv| S foTz %ﬁdv - iTLj

Hence
M1 = sup{zieT :]R+} = 216' (33)
M, =5%{§;:R%=§,
M, = sup{ze%33 :]R+} = %.

Therefore, the condition (V1) is valid.

Now from (33) along with M; = 1, M; = 1, M = } and 6; = 1,(i = 1,2,3) in (16), we get

1

1,11
5 7 8 4e
1.1, 1.1
5 7 8 e
Hence, the condition (V1) is valid for each x > % + % .
Thus, all the assumptions from (I) — (VII) are satisfied. Hence by Theorem 3.1 we conclude that the

system (11) has a solution in BC (R+) X BC (R+) X BC (R,).

=lAa kA

References

[1] R. P. Agarwal, N. Hussain and M. A. Taoudi, Fixed Point Theorems in Ordered Banach Spaces and Applications to Nonlinear
Integral Equations, Abstr. Appl. Anal., Volume 2012, Article ID 245872, 15 pages.
[2] A. Aghajani, R. Allahyari, M. Mursaleen, A generalization of Darbo’s theorem with application to the solvability of systems of
integral equations, J. Comput. Appl. Math., 260 (2014) 68-77.
[3] A. Aghajani, J. Banas, N. Sabzali, Some generalizations of Darbo’s fixed point theorem with applications, Bull. Belg. Math. Soc.
Simon Stevin., 20 (2) (2013) 345-358.
[4] A.Aghajani, N. Sabzali, Existence of coupled fixed points via measure of non-compactness and applications, J. Nonlinear Convex
Anal., Vol.14, No.5 (2014) 941-952.
[5] A.Aghajani, A. Shole Haghighi, Existence of solutions for a class of functional integral equations of Volterra type in two variables
via measure of non-compactness, IJST, 2014, 38A1 : 1-8.
[6] R.R. Akmerov, M. I. Kamenski, A. S. Potapov, A. E. Rodkina, B. N. Sadovskii, Measure of non-compactness and condensing
operators, Birkhauser-Verlag, Basel, 1992.
[7] R. Allahyari, R. Arab, and A. Shole Haghighi, Existence of solutions for some classes of integro-differential equations via measure
of non-compactness, Electron. J. Qual. Theo., No.41 (2015), 1-18.
[8] R. Arab, Some fixed point theorems in generalized Darbo’s fixed point theorem and the existence of solutions for system of
integral equations, J. Korean Math. Soc., 52 (1) (2015), 125-139.
[9] J. Banas, On measures of non-compactness in Banach spaces, Comment. Math. Univ. Carolin., 21 (1980) 131-143.
[10] J. Banas, Measures of non-compactness in the spaces of continuous tempered functions, Demonstration Math., 14 (1981) 127-133.
[11] J. Banas, K. Goebel, Measures of non-compactness in Banach space, Lecture Notes in Pure and Applied Mathematics, vol.60,
Marcel Dekker, New York, 1980.
[12] V. Berinde, M. Borcut, Tripled fixed point theorems for contractive type mapping in partially ordered metric spaces, Nonlinear
Anal., 65 (2006) 1379-1393.
[13] G. Darbo, Punti uniti in trasformazioni a codomio non compatto, Rend. Sem. Mat. Uni. Padova, 24 (1955) 84-92.
[14] J. G. Falset, K. Latrach, On Darbo-Sadovskii’s fixed point theorems type for abstract measure of (weak) non-compactness, Bull.
Belg. Math. Soc. Stevin 22 (2015) 761-779.



[15]
[16]

[17]
[18]

[19]
[20]

[21]
[22]

[23]

B. Matani et al. / Filomat 33:19 (2019), 6315-6334 6334

A. Haijji, A generalization of Darbo’s fixed point and common solutions of equations in Banach spaces, Fixed Point Theory
Appl.,2013,2013 : 62.

V. Karakaya, M. Mursaleen, N. E. H. Bouzara, Measure of non-compactness in the study of solutions for a system of integral
equations, arXiv : 1507.00185 v1 [math. FA] 1 jul 2015.

K. Kuratowski, Sur les espaces complets, Fund. Math.,15 (1930) 301 — 309.

M. Mursaleen, S. A. Mohiuddine, Applications of measure of non-compactness to the infinite system of differential equations in
I, spaces, Nonlinear Anal., 75 (2012) 2111 - 2115.

N. Hussain, V. Parvaneh, J.R. Roshan, Fixed point results for G-a-contractive maps with application to boundary value problems,
The Scientific World J., Vol. 2014, Article ID 585964.

N. Hussain, A.R. Khan and Ravi P. Agarwal, Krasnosel’skii and Ky Fan type fixed point theorems in ordered

Banach spaces, J. Nonlinear Convex Anal., 11 (3), (2010), 475-489.

V. Rakocevic, measure of noncompactness and some applications, Filomat (Nis) 12:2 (1998) , 87-120.

J. R. Roshan, Existence of solutions for a class of system of functional integral equation via measure of non-compactness, J.
Comput. Appl. Math., 313 (2017) 129-141.

A. Samadi, M. B. Ghaemi, An extention of Darbo's fixed point theorem and its applications to coupled fixed point and integral
equations, Filomat 28 : 4 (2014) 879-886.



