

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

An Extension of Darbo's Theorem via Measure of Non-Compactness with its Application in the Solvability of a System of Integral Equations

Behnam Matania, Jamal Rezaei Roshana, Nawab Hussainb

 a Department of Mathematics, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran b Department of Mathematics, King Abdulaziz University, P.O.Box 80203, Jeddah 21589, Saudi Arabia

Abstract. In this work, we present a new extension of Darbo's theorem for two different classes of altering distance functions via measure of non-compactness. Using two-variable contractions we obtain the well-known results in this literature (see [22]). We also use these results to discuss the existence of solutions for a system of integral equations. Finally, we provide an example to confirm the results obtained.

1. Introduction and Preliminaries

The measure of non-compactness is one of the most important and useful concepts in functional analysis. This subject which was initiated by the fundamental article of Kuratowski in [17] and has provided powerful tools for obtaining the solutions of a large variety of integral equations and systems of integral equations. In fixed point theory one of the most important results is due G. Darbo [13]. So far, many scholars have provided generalizations of Darbo's theorem and have been helped in solving the integral equations (for example see [1–18, 20–23]). In this paper, we present a new extension of Darbo's theorem for two different classes of altering distance functions via measure of non-compactness. Using two-variable contractions we obtain the well-known results in this literature. We also use these results to discuss the existence of solutions for a system of nonlinear integral equations and give a concrete example.

From now until the end of this work, let E be a Banach space. Let us denote the set of real numbers with \mathbb{R} . Consider $\mathbb{R}_+ = [0, +\infty)$. We will denote by $\overline{B_r}$ the closed ball centered at θ with radius r. Considering $X \subset E, X \neq \emptyset$, assume that \overline{X} is the closure of the set X and coX denotes the closed convex hull of X. Also we symbolize by M_E the family of all non-empty and bounded sets and by N_E subfamily consisting of all relatively compact sets.

Definition 1.1. ([11]) A function $\mu: \mathcal{M}_E \to \mathbb{R}_+$ is called a measure of non-compactness in E if it satisfies the following hypothesis:

(*BM*1) The family $\ker \mu = \{X \in \mathcal{M}_E : \mu(X) = 0\} \neq \emptyset$ and $\ker \mu \subset \mathcal{N}_E$; (*BM*2) $X \subset \mathcal{Y} \Rightarrow \mu(X) \leq \mu(\mathcal{Y})$;

2010 Mathematics Subject Classification. Primary 47H08; Secondary 45G15, 47H10

Keywords. Measure of non-compactness, Systems of nonlinear integral equations, fixed point theorems

Received: 13 May 2019; Accepted: 03 November 2019 Communicated by Snežana Živković-Zlatanović

Email addresses: savadkouh1352@gmail.com (Behnam Matani), Jmlroshan@gmail.com, Jml.roshan@qaemiau.ac.ir (Jamal Rezaei Roshan), nhusain@kau.edu.sa (Nawab Hussain)

(BM3)
$$\mu(\overline{X}) = \mu(coX) = \mu(X)$$
;

(BM4)
$$\mu(\lambda X + (1 - \lambda) \mathcal{Y}) \le \lambda \mu(X) + (1 - \lambda) \mu(\mathcal{Y})$$
 for $\lambda \in [0, 1]$;

(BM5) If (X_k) is a sequence of closed sets from \mathcal{M}_E such that $X_{k+1} \subset X_k$ for k = 1, 2, ..., and $\lim_{k \to \infty} \mu(X_k) = 0$, then the set $X_\infty = \bigcap_{k=1}^\infty X_k \neq \emptyset$.

The subfamily $\ker \mu$ defined in (*BM*1) represents Kernel of μ and since $\mu(X_{\infty}) = \mu(\bigcap_{k=1}^{\infty} X_k) \le \mu(X_k)$, we see that $\mu(X_{\infty}) = 0$. Therefore $X_{\infty} \in \ker \mu$.

Definition 1.2. We say that $l:[0,+\infty)^3 \to [0,+\infty)$ is a lower semi-continuous function, if for any arbitrary sequences $\{a_k\}$ and $\{b_k\}$ and $\{c_k\}$ of $[0,+\infty)$,

$$l\left(\lim_{k\to\infty}\inf a_k, \lim_{k\to\infty}\inf b_k, \lim_{k\to\infty}\inf c_k\right) \leq \lim_{k\to\infty}\inf l\left(a_k, b_k, c_k\right).$$

For example, $l_1(p,q,r) = \ln(p+q+r+1)$ and $l_2(p,q,r) = \max\{p,q,r\}$ are lower semicontinuous.

Theorem 1.3. ([6]) Assume that $\mu_1, \mu_2, ..., \mu_k$ are measures of non-compactness in Banach spaces $E_1, E_2, ..., E_k$ respectively. Also, suppose that the function $G: [0, +\infty)^k \to [0, +\infty)$ is convex and $G(p_1, p_2, ..., p_k) = 0 \Leftrightarrow p_i = 0, (i = 1, 2, 3, ..., k)$. Then

$$\widetilde{\mu}(X) = G(\mu_1(X_1), \mu_2(X_2), ..., \mu_k(X_k)),$$

defines a measure of non-compactness in $E_1 \times E_2 \times ... \times E_k$ where X_i denotes the natural projections of X into E_i , for i = 1, 2, 3, ..k.

Example 1.4. ([6]) Consider G(p,q,r) = p + q + r for every $(p,q,r) \in [0,+\infty)^3$, then G has all conditions of Theorem 1.3. So, $\widetilde{\mu}(X) = \mu(X_1) + \mu(X_2) + \mu(X_3)$ for each $X \subseteq E \times E \times E$ is the measure of non-compactness in $E \times E \times E$.

Theorem 1.5. (Schauder's fixed point theorem [3]) Assume that C be a convex and closed subset of E. Then every compact, continuous map $T: C \to C$ has at least one fixed point.

Theorem 1.6. (Darbo's fixed point theorem [13]) Assume that Ω be a non-empty, bounded, closed and convex subset of E. Consider the constant $\lambda \in [0,1)$. Also, suppose that $T:\Omega \to \Omega$ is a continuous operator such that $\mu(T(X)) \leq \lambda \mu(X)$ for each $X \subset \Omega$ with $X \neq \emptyset$. Then T has a fixed point in Ω .

Now, we introduce three different classes of functions that we need in the next section.

Definition 1.7. Let Θ be the class of all functions $\theta:[0,+\infty)^3\to [0,+\infty)$ satisfying the following hypothesis:

(A1)
$$\theta(p_1 + p_2, q_1 + q_2, r_1 + r_2) \le \theta(p_1, q_1, r_1) + \theta(p_2, q_2, r_2)$$
 for every $p_1, p_2, q_1, q_2, r_1, r_2 \in \mathbb{R}_+$,

- (A2) $\theta(p,q,r) = 0 \Leftrightarrow p = q = r = 0$, for every $p,q,r \in \mathbb{R}_+$,
- (A3) θ is lower semicontinuous.

For example, $\theta_1(p,q,r) = \ln(p+q+r+1)$ and $\theta_2(p,q,r) = \max\{p,q,r\}$ satisfy the above three properties.

Definition 1.8. Let Φ be the class of all functions $\phi: [0, +\infty)^3 \to [0, +\infty)$ satisfying the following hypothesis:

- (B1) ϕ is continuous and nondecreasing,
- (B2) $\phi(h, h, h) < h$ for every h > 0,

(B3)
$$\frac{1}{3}\left(\phi\left(p_{1},q_{1},r_{1}\right)+\phi\left(p_{2},q_{2},r_{2}\right)+\phi\left(p_{3},q_{3},r_{3}\right)\right)\leq\phi\left(\frac{p_{1}+p_{2}+p_{3}}{3},\frac{q_{1}+q_{2}+q_{3}}{3},\frac{r_{1}+r_{2}+r_{3}}{3}\right)$$
 for every

 $p_1, p_2, p_3, q_1, q_2, q_3, r_1, r_2, r_3 \in \mathbb{R}_+.$

For example, $\phi_1(p,q,r) = \lambda_1 p + \lambda_2 q + \lambda_3 r$, where $\lambda_1, \lambda_2, \lambda_3 \in [0,1)$ with $\lambda_1 + \lambda_2 + \lambda_3 < 1$, and $\phi_2(p,q,r) = \ln\left(1 + \frac{p+q+r}{3}\right)$ satisfy the above three properties.

Definition 1.9. Let Ψ be the class of all functions $\psi:[0,+\infty)^2\to [0,+\infty)$ sayisfying the following hypothesis:

- (C1) ψ is continuous,
- (C2) $\psi(h, h) \ge h$ for every h > 0.

For example, $\psi_1(p,q) = p + q$ and $\psi_2(p,q) = \sqrt{p^2 + q^2}$ and $\psi_3(p,q) = e^{\sqrt{p^2 + q^2}} - 1$, in which $p,q \in \mathbb{R}_+$ satisfy the above two properties.

Let $BC(\mathbb{R}_+)$ be the Banach space consisting of all defined, bounded and continuous functions on \mathbb{R}_+ equipped with the standard supremum norm

$$||x|| = \sup \{|x(\tau)| : \tau \ge 0\}.$$

Fix $X \subset BC(\mathbb{R}_+)$, $X \neq \emptyset$ and L > 0 and $\tau \in \mathbb{R}_+$. For $x \in X$ and $\epsilon \geq 0$

$$\omega^{L}(x,\epsilon) = \sup \{|x(\tau) - x(v)| : \tau, v \in [0,L], |\tau - v| \le \epsilon\},$$

$$\omega^{L}(X,\epsilon) = \sup \{\omega^{L}(x,\epsilon) : x \in X\},$$

$$\omega^{L}_{0}(X) = \lim_{\epsilon \to 0} \omega^{L}(X,\epsilon),$$

$$\omega_{0}(X) = \lim_{L \to \infty} \omega^{L}_{0}(X),$$

$$X(\tau) = \{x(\tau) : x \in X\},$$

and

$$\mu\left(X\right)=\omega_{0}\left(X\right)+\lim_{\tau\rightarrow\infty}\sup diamX\left(\tau\right),$$

where

$$diam X(\tau) = \sup \{ |x(\tau) - y(\tau)| : x, y \in X \}.$$

As mentioned in [11], $\mu(X)$ is the measure of non-compactness in $BC(\mathbb{R}_+)$.

2. Main results

Throughout the main results section, let us assume that Ω is a non-empty, bounded, closed, and convex subset of E. Also, assume μ is an arbitrary measure of non-compactness in E.

Theorem 2.1. Assume that $\widetilde{\mu}$ be a measure of non-compactness as in Example 1.4 and $\psi \in \Psi$, $\theta \in \Theta$. Also, suppose $G: \Omega \times \Omega \times \Omega \longrightarrow \Omega \times \Omega \times \Omega$ is a continuous operator satisfying:

$$\psi\left(\widetilde{\mu}\left(G\left(X\right)\right),\widetilde{\mu}\left(G\left(X\right)\right)\right) \leq \psi\left(\widetilde{\mu}\left(X\right),\widetilde{\mu}\left(X\right)\right) - \theta\left(\widetilde{\mu}\left(X\right),\widetilde{\mu}\left(X\right),\widetilde{\mu}\left(X\right)\right),\tag{1}$$

for each $X \subset \Omega \times \Omega \times \Omega$ with $X \neq \emptyset$. Then G has at least one fixed point in $\Omega \times \Omega \times \Omega$.

Proof. We define a sequence $\{\Omega_k \times \Omega_k \times \Omega_k\}_{k=1}^{\infty}$ inductively such that

$$\Omega_0 \times \Omega_0 \times \Omega_0 = \Omega \times \Omega \times \Omega, \Omega_k \times \Omega_k \times \Omega_k = coG(\Omega_{k-1} \times \Omega_{k-1} \times \Omega_{k-1}),$$

for $k = 1, 2, \cdots$. By given conditions, we get

$$\begin{split} G\left(\Omega_{0}\times\Omega_{0}\times\Omega_{0}\right) &=& G\left(\Omega\times\Omega\times\Omega\right)\subseteq\Omega\times\Omega\times\Omega=\Omega_{0}\times\Omega_{0}\times\Omega_{0},\\ \Omega_{1}\times\Omega_{1}\times\Omega_{1} &=& coG\left(\Omega_{0}\times\Omega_{0}\times\Omega_{0}\right)\subseteq\Omega\times\Omega\times\Omega=\Omega_{0}\times\Omega_{0}\times\Omega_{0},\\ &\cdot\\ &\cdot\\ \dots\Omega_{k+1}\times\Omega_{k+1}\times\Omega_{k+1} &\subseteq& \Omega_{k}\times\Omega_{k}\times\Omega_{k}\subseteq\dots\subseteq\Omega_{1}\times\Omega_{1}\times\Omega_{1}\subseteq\Omega_{0}\times\Omega_{0}\times\Omega_{0}. \end{split}$$

Next, if for an integer $K \ge 0$ we have $\widetilde{\mu}(\Omega_K \times \Omega_K \times \Omega_K) = 0$, then $\Omega_K \times \Omega_K \times \Omega_K$ is relatively compact. Hence, the proof is completed by using Theorem 1.5. Therefore we suppose that $\widetilde{\mu}(\Omega_k \times \Omega_k \times \Omega_k) > 0$ for every $k \ge 0$. Also with given assumptions, we obtain

$$\psi\left(\widetilde{\mu}\left(\Omega_{k-1} \times \Omega_{k-1} \times \Omega_{k-1}\right), \widetilde{\mu}\left(\Omega_{k-1} \times \Omega_{k-1} \times \Omega_{k-1}\right)\right) \\
\leq \psi\left(\widetilde{\mu}\left(\Omega_{k} \times \Omega_{k} \times \Omega_{k}\right), \widetilde{\mu}\left(\Omega_{k} \times \Omega_{k} \times \Omega_{k}\right)\right) \\
-\theta\left(\widetilde{\mu}\left(\Omega_{k} \times \Omega_{k} \times \Omega_{k}\right), \widetilde{\mu}\left(\Omega_{k} \times \Omega_{k} \times \Omega_{k}\right), \widetilde{\mu}\left(\Omega_{k} \times \Omega_{k} \times \Omega_{k}\right)\right).$$
(2)

Since the sequence $\{\widetilde{\mu}(\Omega_k \times \Omega_k \times \Omega_k)\}_{k=1}^{\infty}$ is a nonincreasing and positive sequence, there is an $\alpha \ge 0$ such that $\widetilde{\mu}(\Omega_k \times \Omega_k \times \Omega_k) \to \alpha$, as $k \to \infty$. Moreover, we have

$$\psi(\alpha, \alpha) = \lim_{k \to \infty} \sup \psi(\widetilde{\mu}(\Omega_{k+1} \times \Omega_{k+1} \times \Omega_{k+1}), \widetilde{\mu}(\Omega_{k+1} \times \Omega_{k+1} \times \Omega_{k+1}))$$

$$\leq \lim_{k \to \infty} \sup \psi(\widetilde{\mu}(\Omega_k \times \Omega_k \times \Omega_k), \widetilde{\mu}(\Omega_k \times \Omega_k \times \Omega_k))$$

$$-\lim_{k \to \infty} \inf \theta\left(\widetilde{\mu}(\Omega_k \times \Omega_k \times \Omega_k), \widetilde{\mu}(\Omega_k \times \Omega_k \times \Omega_k), \widetilde{\mu}(\Omega_k \times \Omega_k \times \Omega_k)\right)$$

$$\leq \lim_{k \to \infty} \sup \psi(\widetilde{\mu}(\Omega_k \times \Omega_k \times \Omega_k), \widetilde{\mu}(\Omega_k \times \Omega_k \times \Omega_k))$$

$$-\theta\left(\lim_{k \to \infty} \inf \widetilde{\mu}(\Omega_k \times \Omega_k \times \Omega_k), \lim_{k \to \infty} \inf \widetilde{\mu}(\Omega_k \times \Omega_k \times \Omega_k), \lim_{k \to \infty} \inf \widetilde{\mu}(\Omega_k \times \Omega_k \times \Omega_k), \lim_{k \to \infty} \inf \widetilde{\mu}(\Omega_k \times \Omega_k \times \Omega_k)\right)$$

$$= \psi(\alpha, \alpha) - \theta(\alpha, \alpha, \alpha).$$

So, θ (α , α , α) = 0, and hence α = 0. So, we conclude that $\widetilde{\mu}$ ($\Omega_k \times \Omega_k \times \Omega_k$) \to 0, as $k \to \infty$. Now, since $\Omega_{k+1} \times \Omega_{k+1} \times \Omega_{k+1} \subseteq \Omega_k \times \Omega_k \times \Omega_k$, then from (BM5), we conclude that $\Omega_\infty \times \Omega_\infty \times \Omega_\infty = \bigcap_{k=1}^\infty \Omega_k \times \Omega_k \times \Omega_k$ is a non-empty, convex, closed set, invariant under G and $\Omega_\infty \times \Omega_\infty \times \Omega_\infty \in \ker \widetilde{\mu}$. So from Theorem 1.5 we deduce that G has a fixed point in $\Omega_\infty \times \Omega_\infty \times \Omega_\infty$. Since $\Omega_\infty \times \Omega_\infty \times \Omega_\infty \subset \Omega \times \Omega \times \Omega$, then the proof is completed. \square

Theorem 2.2. Suppose $\psi \in \Psi$ is nondecreasing with ψ $(p_1 + p_2, q_1 + q_2) \le \psi$ $(p_1, q_1) + \psi$ (p_2, q_2) for every $p_1, p_2, q_1, q_2 \in \mathbb{R}_+$ and $\theta \in \Theta$. Also assume that $G_i : \Omega \times \Omega \times \Omega \longrightarrow \Omega$ (i = 1, 2, 3) are continuous operators satisfying:

$$\psi(\mu(G_{1}(X_{1} \times X_{2} \times X_{3})), \mu(G_{1}(X_{1} \times X_{2} \times X_{3}))) \leq \frac{1}{3}\psi\begin{pmatrix} \mu(X_{1}) + \mu(X_{2}) + \mu(X_{3}), \\ \mu(X_{1}) + \mu(X_{2}) + \mu(X_{3}) \end{pmatrix} \\
-\theta(\mu(X_{1}), \mu(X_{2}), \mu(X_{3})), \\
\psi(\mu(G_{2}(X_{1} \times X_{2} \times X_{3})), \mu(G_{2}(X_{1} \times X_{2} \times X_{3}))) \leq \frac{1}{3}\psi\begin{pmatrix} \mu(X_{1}) + \mu(X_{2}) + \mu(X_{3}), \\ \mu(X_{1}) + \mu(X_{2}) + \mu(X_{3}) \end{pmatrix} \\
-\theta(\mu(X_{2}), \mu(X_{3}), \mu(X_{1})), \\
\psi(\mu(G_{3}(X_{1} \times X_{2} \times X_{3})), \mu(G_{3}(X_{1} \times X_{2} \times X_{3}))) \leq \frac{1}{3}\psi\begin{pmatrix} \mu(X_{1}) + \mu(X_{2}) + \mu(X_{3}), \\ \mu(X_{1}) + \mu(X_{2}) + \mu(X_{3}), \\ \mu(X_{1}) + \mu(X_{2}) + \mu(X_{3}) \end{pmatrix} \\
-\theta(\mu(X_{3}), \mu(X_{1}), \mu(X_{2})), \tag{3}$$

for each $X_1, X_2, X_3 \subset \Omega$. Then there exist $\tau^*, v^*, \rho^* \in \Omega$ such that

$$\begin{cases}
G_1(\tau^*, \nu^*, \rho^*) &= \tau^* \\
G_2(\tau^*, \nu^*, \rho^*) &= \nu^* \\
G_3(\tau^*, \nu^*, \rho^*) &= \rho^*
\end{cases}$$
(4)

Proof. Consider $\widetilde{\mu}$ as defined in Example 1.4. We define \widetilde{G} on $\Omega \times \Omega \times \Omega$ as following:gg

$$\widetilde{G}(\tau, v, \rho) = (G_1(\tau, v, \rho), G_2(\tau, v, \rho), G_3(\tau, v, \rho)).$$

Clearly, \widetilde{G} is continuous on $\Omega \times \Omega \times \Omega$ by its definition. We will show that \widetilde{G} satisfies all the hypothesis of Theorem 2.1. For this purpose, let $X \subset \Omega \times \Omega \times \Omega$, $X \neq \emptyset$. Then, by axiom (BM2) of Definition 1.1 and relation (3) we obtain

$$\psi\left(\overline{\mu}(\widetilde{G}(X)), \overline{\mu}(\widetilde{G}(X))\right) \leq \psi \begin{pmatrix} \overline{\mu} \begin{pmatrix} G_{1}(X_{1} \times X_{2} \times X_{3}) \times G_{2}(X_{1} \times X_{2} \times X_{3}) \\ \times G_{3}(X_{1} \times X_{2} \times X_{3}) \end{pmatrix}, \\ \overline{\mu} \begin{pmatrix} G_{1}(X_{1} \times X_{2} \times X_{3}) \times G_{2}(X_{1} \times X_{2} \times X_{3}) \\ \times G_{3}(X_{1} \times X_{2} \times X_{3}) \end{pmatrix}, \\ + \mu\left(G_{1}(X_{1} \times X_{2} \times X_{3}) + \mu\left(G_{2}(X_{1} \times X_{2} \times X_{3})\right) \\ + \mu\left(G_{3}(X_{1} \times X_{2} \times X_{3})\right), \\ \mu\left(G_{1}(X_{1} \times X_{2} \times X_{3})\right) + \mu\left(G_{2}(X_{1} \times X_{2} \times X_{3})\right) \\ + \mu\left(G_{3}(X_{1} \times X_{2} \times X_{3})\right), \\ \mu\left(G_{1}(X_{1} \times X_{2} \times X_{3})\right), \mu\left(G_{1}(X_{1} \times X_{2} \times X_{3})\right) \\ + \psi\left(\mu\left(G_{2}(X_{1} \times X_{2} \times X_{3})\right), \mu\left(G_{2}(X_{1} \times X_{2} \times X_{3})\right)\right) \\ + \psi\left(\mu\left(G_{3}(X_{1} \times X_{2} \times X_{3})\right), \mu\left(G_{3}(X_{1} \times X_{2} \times X_{3})\right)\right) \\ + \psi\left(\mu\left(G_{3}(X_{1} \times X_{2} \times X_{3})\right), \mu\left(G_{3}(X_{1} \times X_{2} \times X_{3})\right)\right) \\ \leq \frac{1}{3}\psi\left(\mu(X_{1}) + \mu(X_{2}) + \mu(X_{3}), \mu\left(X_{1}\right) + \mu\left(X_{2}\right) + \mu\left(X_{3}\right)\right) \\ - \theta\left(\mu(X_{1}), \mu\left(X_{2}\right), \mu\left(X_{3}\right)\right) \\ + \frac{1}{3}\psi\left(\mu(X_{1}) + \mu\left(X_{2}\right) + \mu\left(X_{3}\right), \mu\left(X_{1}\right) + \mu\left(X_{2}\right) + \mu\left(X_{3}\right)\right) \\ - \theta\left(\mu(X_{3}), \mu\left(X_{1}\right), \mu\left(X_{2}\right)\right) \\ = \psi\left(\mu(X_{1}) + \mu\left(X_{2}\right) + \mu\left(X_{3}\right), \mu\left(X_{1}\right) + \mu\left(X_{2}\right) + \mu\left(X_{3}\right)\right) \\ - \left(\theta\left(\mu(X_{1}), \mu\left(X_{2}\right), \mu\left(X_{3}\right), \mu\left(X_{1}\right) + \mu\left(X_{2}\right) + \mu\left(X_{3}\right)\right) \\ - \theta\left(\mu(X_{1}), \mu\left(X_{2}\right), \mu\left(X_{3}\right), \mu\left(X_{1}\right) + \mu\left(X_{2}\right) + \mu\left(X_{3}\right)\right) \\ - \theta\left(\mu(X_{1}), \mu\left(X_{2}\right), \mu\left(X_{3}\right), \mu\left(X_{1}\right) + \mu\left(X_{2}\right) + \mu\left(X_{3}\right)\right) \\ - \theta\left(\mu(X_{1}) + \mu\left(X_{2}\right) + \mu\left(X_{3}\right), \mu\left(X_{1}\right) + \mu\left(X_{2}\right) + \mu\left(X_{3}\right)\right) \\ - \theta\left(\mu(X_{1}) + \mu\left(X_{2}\right) + \mu\left(X_{3}\right), \mu\left(X_{1}\right) + \mu\left(X_{2}\right) + \mu\left(X_{3}\right)\right) \\ - \theta\left(\mu(X_{1}) + \mu\left(X_{2}\right) + \mu\left(X_{3}\right), \mu\left(X_{1}\right) + \mu\left(X_{2}\right) + \mu\left(X_{3}\right)\right) \\ - \theta\left(\mu(X_{1}) + \mu\left(X_{2}\right) + \mu\left(X_{3}\right), \mu\left(X_{1}\right) + \mu\left(X_{2}\right) + \mu\left(X_{3}\right)\right) \\ - \theta\left(\mu(X_{1}) + \mu\left(X_{2}\right) + \mu\left(X_{3}\right), \mu\left(X_{1}\right) + \mu\left(X_{2}\right) + \mu\left(X_{3}\right)\right) \\ - \theta\left(\mu(X_{1}) + \mu\left(X_{2}\right) + \mu\left(X_{3}\right), \mu\left(X_{1}\right) + \mu\left(X_{2}\right) + \mu\left(X_{3}\right)\right) \\ - \theta\left(\mu(X_{1}) + \mu\left(X_{2}\right) + \mu\left(X_{3}\right), \mu\left(X_{1}\right) + \mu\left(X_{2}\right) + \mu\left(X_{3}\right)\right) \\ - \theta\left(\mu(X_{1}) + \mu\left(X_{2}\right) + \mu\left(X_{3}\right), \mu\left(X_{1}\right) + \mu\left(X_{2}\right) + \mu\left(X_{3}\right)\right) \\ - \theta\left(\mu(X_{1}) + \mu\left(X_{2}\right) +$$

So, from Theorem 2.1 we deduce that \widetilde{G} has a fixed point, that is, there exist τ^* , v^* , $\rho^* \in \Omega$ such that

$$(\tau^*, v^*, \rho^*) = \widetilde{G}(\tau^*, v^*, \rho^*) = (G_1(\tau^*, v^*, \rho^*), G_2(\tau^*, v^*, \rho^*), G_3(\tau^*, v^*, \rho^*)),$$

which means (4) is satisfied. \square

Corollary 2.3. Suppose $\lambda_1, \lambda_2, \lambda_3$ are nonnegative constants with $\lambda_1 + \lambda_2 + \lambda_3 < 1$. Also assume that $G_i : \Omega \times \Omega \times \Omega \longrightarrow \Omega$ (i = 1, 2, 3) are continuous operators satisfying:

$$\mu(G_i(X_1 \times X_2 \times X_3)) \le \frac{\lambda_1}{3}\mu(X_1) + \frac{\lambda_2}{3}\mu(X_2) + \frac{\lambda_3}{3}\mu(X_3)$$

for each $X_1, X_2, X_3 \subseteq \Omega$. Then there exist $\tau^*, v^*, \rho^* \in \Omega$ such that

$$\begin{cases} G_1(\tau^*, v^*, \rho^*) &= \tau^* \\ G_2(\tau^*, v^*, \rho^*) &= v^* \\ G_3(\tau^*, v^*, \rho^*) &= \rho^* \end{cases}.$$

Proof. Considering $\psi(p,q) = p + q$ and $\theta(p,q,r) = \frac{2}{3} [(1 - \lambda_1)p + (1 - \lambda_2)q + (1 - \lambda_3)r]$ in Theorem 2.2 the result is desirable. \square

Corollary 2.4. Consider the constant λ with $0 \le \lambda < 1$. Also assume that $G_i : \Omega \times \Omega \times \Omega \longrightarrow \Omega$ (i = 1, 2, 3) are continuous operators satisfying:

$$\mu\left(G_{i}\left(X_{1}\times X_{2}\times X_{3}\right)\right)\leq\lambda\max\left\{\mu\left(X_{1}\right),\mu\left(X_{2}\right),\mu\left(X_{3}\right)\right\},$$

for each $X_1, X_2, X_3 \subseteq \Omega$. Then there exist $\tau^*, v^*, \rho^* \in \Omega$ such that

$$\begin{cases} G_1(\tau^*, v^*, \rho^*) &= \tau^* \\ G_2(\tau^*, v^*, \rho^*) &= v^* \\ G_3(\tau^*, v^*, \rho^*) &= \rho^* \end{cases}.$$

Proof. Considering $\psi(p,q) = p + q$ and $\theta(p,q,r) = 2(1-\lambda)\max\{p,q,r\}$ in Theorem 2.2 the result is desirable. \Box

Corollary 2.5. Suppose $G_i: \Omega \times \Omega \times \Omega \longrightarrow \Omega$ (i = 1, 2, 3) are continuous operators satisfying:

$$\mu\left(G_{i}\left(X_{1}\times X_{2}\times X_{3}\right)\right)\leq\frac{\mu\left(X_{1}\right)+\mu\left(X_{2}\right)+\mu\left(X_{3}\right)}{3}-\ln\left(\mu\left(X_{1}\right)+\mu\left(X_{2}\right)+\mu\left(X_{3}\right)+1\right),$$

for each $X_1, X_2, X_3 \subseteq \Omega$. Then there exist $\tau^*, v^*, \rho^* \in \Omega$ such that

$$\begin{cases} G_1(\tau^*, v^*, \rho^*) &= \tau^* \\ G_2(\tau^*, v^*, \rho^*) &= v^* \\ G_3(\tau^*, v^*, \rho^*) &= \rho^* \end{cases}.$$

Proof. Considering $\psi(p,q) = p+q$ and $\theta(p,q,r) = 2\ln(p+q+r+1)$ in Theorem 2.2 the result is desirable. \square

Corollary 2.6. Consider the constant λ with $0 \le \lambda \le 1$. Also assume that $G_i : \Omega \times \Omega \times \Omega \longrightarrow \Omega$ (i = 1, 2, 3) are continuous operators satisfying:

$$\mu\left(G_{i}\left(X_{1}\times X_{2}\times X_{3}\right)\right)\leq\left(1-\lambda^{2}\right)\left(\frac{\mu\left(X_{1}\right)+\mu\left(X_{2}\right)+\mu\left(X_{3}\right)}{9}\right),$$

for each $X_1, X_2, X_3 \subseteq \Omega$. Then there exist $\tau^*, v^*, \rho^* \in \Omega$ such that

$$\begin{cases} G_1(\tau^*, v^*, \rho^*) &= \tau^* \\ G_2(\tau^*, v^*, \rho^*) &= v^* \\ G_3(\tau^*, v^*, \rho^*) &= \rho^* \end{cases} .$$

Proof. Considering $\psi(p,q) = \sqrt{p+q}$ and $\theta(p,q,r) = \frac{\lambda}{3}\sqrt{p+q+r}$ in Theorem 2.2 the result is desirable. \square

Theorem 2.7. Assume that $\widetilde{\mu}$ is a measure of non-compactness as in Example 1.4 and $\phi \in \Phi$, $\psi \in \Psi$. Also suppose $F: \Omega \times \Omega \times \Omega \longrightarrow \Omega \times \Omega \times \Omega$ be a continuous operator satisfying:

$$\psi\left(\widetilde{\mu}\left(F\left(X\right)\right),\widetilde{\mu}\left(F\left(X\right)\right)\right) \leq \phi\left(\widetilde{\mu}\left(X\right),\widetilde{\mu}\left(X\right),\widetilde{\mu}\left(X\right)\right),\tag{5}$$

for each $X \subset \Omega \times \Omega \times \Omega$ with $X \neq \emptyset$. Then *F* has at least one fixed point in $\Omega \times \Omega \times \Omega$.

Proof. We define a sequence $\{\Omega_k \times \Omega_k \times \Omega_k\}_{k=1}^{\infty}$ inductively such that

$$\Omega_0 \times \Omega_0 \times \Omega_0 = \Omega \times \Omega \times \Omega, \Omega_k \times \Omega_k \times \Omega_k = coF(\Omega_{k-1} \times \Omega_{k-1} \times \Omega_{k-1}),$$

for $k = 1, 2, \dots$. By given conditions, we obtain

$$\begin{split} F\left(\Omega_{0}\times\Omega_{0}\times\Omega_{0}\right) &=& F\left(\Omega\times\Omega\times\Omega\right)\subseteq\Omega\times\Omega\times\Omega=\Omega_{0}\times\Omega_{0}\times\Omega_{0},\\ \Omega_{1}\times\Omega_{1}\times\Omega_{1} &=& coF\left(\Omega_{0}\times\Omega_{0}\times\Omega_{0}\right)\subseteq\Omega\times\Omega\times\Omega=\Omega_{0}\times\Omega_{0}\times\Omega_{0},\\ && \cdot \\ && \cdot \\ \cdots\Omega_{k+1}\times\Omega_{k+1}\times\Omega_{k+1} &\subseteq& \Omega_{k}\times\Omega_{k}\times\Omega_{k}\subseteq\cdots\subseteq\Omega_{1}\times\Omega_{1}\times\Omega_{1}\subseteq\Omega_{0}\times\Omega_{0}\times\Omega_{0}. \end{split}$$

If for an integer $K \ge 0$ we have $\widetilde{\mu}(\Omega_K \times \Omega_K \times \Omega_K) = 0$, then $\Omega_K \times \Omega_K \times \Omega_K$ is relatively compact. Hence, the proof is completed by using Theorem 1.5. Therefore, we suppose that $\widetilde{\mu}(\Omega_k \times \Omega_k \times \Omega_k) > 0$ for each $k \ge 0$. Now, by given conditions, we get

$$\psi\left(\widetilde{\mu}\left(\Omega_{k+1} \times \Omega_{k+1} \times \Omega_{k+1}\right), \widetilde{\mu}\left(\Omega_{k+1} \times \Omega_{k+1} \times \Omega_{k+1}\right)\right)
= \psi\left(\widetilde{\mu}\left(coF\left(\Omega_{k} \times \Omega_{k} \times \Omega_{k}\right)\right), \widetilde{\mu}\left(coF\left(\Omega_{k} \times \Omega_{k} \times \Omega_{k}\right)\right)\right)
= \psi\left(\widetilde{\mu}\left(F\left(\Omega_{k} \times \Omega_{k} \times \Omega_{k}\right)\right), \widetilde{\mu}\left(F\left(\Omega_{k} \times \Omega_{k} \times \Omega_{k}\right)\right)\right)
\leq \phi\left(\widetilde{\mu}\left(\Omega_{k} \times \Omega_{k} \times \Omega_{k}\right), \widetilde{\mu}\left(\Omega_{k} \times \Omega_{k} \times \Omega_{k}\right), \widetilde{\mu}\left(\Omega_{k} \times \Omega_{k} \times \Omega_{k}\right)\right).$$
(6)

Moreover, the sequence $\{\widetilde{\mu}(\Omega_k \times \Omega_k \times \Omega_k)\}_{k=1}^{\infty}$ is a nonincreasing and positive sequence of real numbers, therefore, there is an $\alpha \geq 0$, $\widetilde{\mu}(\Omega_k \times \Omega_k \times \Omega_k) \to \alpha$, as $k \to \infty$. We show that $\alpha = 0$. If we assume that $\alpha > 0$, then from (6), we get

$$\psi(\alpha, \alpha) = \psi\left(\lim_{k \to \infty} \widetilde{\mu}(\Omega_{k+1} \times \Omega_{k+1} \times \Omega_{k+1}), \lim_{k \to \infty} \widetilde{\mu}(\Omega_{k+1} \times \Omega_{k+1} \times \Omega_{k+1})\right) \\
\leq \phi\left(\lim_{k \to \infty} \widetilde{\mu}(\Omega_k \times \Omega_k \times \Omega_k), \lim_{k \to \infty} \widetilde{\mu}(\Omega_k \times \Omega_k \times \Omega_k), \lim_{k \to \infty} \widetilde{\mu}(\Omega_k \times \Omega_k \times \Omega_k)\right) \\
= \phi(\alpha, \alpha, \alpha) < \alpha.$$

Which is contradiction. Therefore, we conclude that $\widetilde{\mu}(\Omega_k \times \Omega_k \times \Omega_k) \to 0$, as $k \to \infty$. Now, since $\Omega_{k+1} \times \Omega_{k+1} \times \Omega_{k+1} \subseteq \Omega_k \times \Omega_k \times \Omega_k$, then from (BM5), we conclude that $\Omega_\infty \times \Omega_\infty \times \Omega_\infty = \bigcap_{k=1}^\infty \Omega_k \times \Omega_k \times \Omega_k$ is a non-empty, covex, closed set, invatiant under F and $\Omega_\infty \times \Omega_\infty \times \Omega_\infty \in \ker \widetilde{\mu}$. So, from Theorem 1.5 we conclude that F has a fixed point in $\Omega_\infty \times \Omega_\infty \times \Omega_\infty$. Since $\Omega_\infty \times \Omega_\infty \times \Omega_\infty \subset \Omega \times \Omega \times \Omega$, then the proof is completed. \square

Theorem 2.8. Suppose $\psi \in \Psi$ is nondecreasing with $\psi(p_1 + p_2, q_1 + q_2) \le \psi(p_1, q_1) + \psi(p_2, q_2)$ for every $p_1, p_2, q_1, q_2 \in \mathbb{R}_+$ and $\phi \in \Phi$. Also assume that $F_i : \Omega \times \Omega \times \Omega \longrightarrow \Omega$ (i = 1, 2, 3) are continuous operators satisfying:

$$\psi (\mu (F_{1} (X_{1} \times X_{2} \times X_{3})), \mu (F_{1} (X_{1} \times X_{2} \times X_{3}))) \leq \phi (\mu (X_{1}), \mu (X_{2}), \mu (X_{3})),
\psi (\mu (F_{2} (X_{1} \times X_{2} \times X_{3})), \mu (F_{2} (X_{1} \times X_{2} \times X_{3}))) \leq \phi (\mu (X_{2}), \mu (X_{3}), \mu (X_{1})),
\psi (\mu (F_{3} (X_{1} \times X_{2} \times X_{3})), \mu (F_{3} (X_{1} \times X_{2} \times X_{3}))) \leq \phi (\mu (X_{3}), \mu (X_{1}), \mu (X_{2})),$$
(7)

for each $X_1, X_2, X_3 \subseteq \Omega$. Then there exist $\tau^*, v^*, \rho^* \in \Omega$ such that

$$\begin{cases}
F_1(\tau^*, v^*, \rho^*) &= \tau^* \\
F_2(\tau^*, v^*, \rho^*) &= v^* \\
F_3(\tau^*, v^*, \rho^*) &= \rho^*
\end{cases}$$
(8)

Proof. Consider $\widetilde{\mu}$ as defined in Example 1.4. We define \widetilde{F} on $\Omega \times \Omega \times \Omega$ as following:

$$\widetilde{F}(\tau, \nu, \rho) = (F_1(\tau, \nu, \rho), F_2(\tau, \nu, \rho), F_3(\tau, \nu, \rho)).$$

Clearly, \widetilde{F} is continuous on $\Omega \times \Omega \times \Omega$ by its definition. We will show that \widetilde{F} satisfies all the hypothesis of Theorem 2.7. For this purpose, let $X \subset \Omega \times \Omega \times \Omega$, $X \neq \emptyset$. Then, by (*BM*2) and (7) we obtain

$$\psi\left(\widetilde{\mu}(\widetilde{F}(X)),\widetilde{\mu}(\widetilde{F}(X))\right) \leq \psi \begin{pmatrix}
\widetilde{\mu}\left(F_{1}(X_{1} \times X_{2} \times X_{3}) \times F_{2}(X_{1} \times X_{2} \times X_{3}) \\
\times F_{3}(X_{1} \times X_{2} \times X_{3})
\end{pmatrix}, \\
\widetilde{\mu}\left(F_{1}(X_{1} \times X_{2} \times X_{3}) \times F_{2}(X_{1} \times X_{2} \times X_{3})\right)
\end{pmatrix}$$

$$= \psi \begin{pmatrix}
\mu(F_{1}(X_{1} \times X_{2} \times X_{3})) + \mu(F_{2}(X_{1} \times X_{2} \times X_{3})) \\
+\mu(F_{3}(X_{1} \times X_{2} \times X_{3})), \\
\mu(F_{1}(X_{1} \times X_{2} \times X_{3})) + \mu(F_{2}(X_{1} \times X_{2} \times X_{3}))
\\
+\mu(F_{3}(X_{1} \times X_{2} \times X_{3})), \\
\mu(F_{1}(X_{1} \times X_{2} \times X_{3})), \\
\mu(F_{1}(X_{1} \times X_{2} \times X_{3})), \\
+\mu(F_{3}(X_{1} \times X_{2} \times X_{3}))
\end{pmatrix}$$

$$\leq \psi\left(\mu(F_{1}(X_{1} \times X_{2} \times X_{3})), \mu(F_{1}(X_{1} \times X_{2} \times X_{3}))\right)$$

$$+\psi\left(\mu(F_{2}(X_{1} \times X_{2} \times X_{3})), \mu(F_{2}(X_{1} \times X_{2} \times X_{3}))\right)$$

$$+\psi\left(\mu(F_{3}(X_{1} \times X_{2} \times X_{3})), \mu(F_{3}(X_{1} \times X_{2} \times X_{3}))\right)$$

$$+\psi\left(\mu(F_{3}(X_{1} \times X_{2} \times X_{3})), \mu(F_{3}(X_{1} \times X_{2} \times X_{3}))\right)$$

$$\leq \phi\left(\mu(X_{1}), \mu(X_{2}), \mu(X_{3})\right) + \phi\left(\mu(X_{2}), \mu(X_{3}), \mu(X_{1})\right)$$

$$+\phi\left(\mu(X_{3}), \mu(X_{1}), \mu(X_{2})\right)$$

$$\leq 3\phi\left(\frac{\mu(X_{1}) + \mu(X_{2}) + \mu(X_{3})}{3}, \frac{\mu(X_{1}) + \mu(X_$$

Now from (9) and taking $\widehat{\mu} = \frac{1}{3}\widetilde{\mu}$, we obtain

$$\psi\left(\widehat{\mu}\left(\widetilde{F}(X)\right),\widehat{\mu}\left(\widetilde{F}(X)\right)\right) \le \phi\left(\widehat{\mu}(X),\widehat{\mu}(X),\widehat{\mu}(X)\right). \tag{10}$$

Hence, by Theorem 2.7 \widetilde{F} has a fixed point, i.e., there exist $\tau^*, v^*, \rho^* \in \Omega$ such that

$$(\tau^*, \nu^*, \rho^*) = \widetilde{F}(\tau^*, \nu^*, \rho^*) = (F_1(\tau^*, \nu^*, \rho^*), F_2(\tau^*, \nu^*, \rho^*), F_3(\tau^*, \nu^*, \rho^*)),$$

which means (8) is satisfied. \square

Corollary 2.9. Assume that $F_i: \Omega \times \Omega \times \Omega \longrightarrow \Omega$ (i = 1, 2, 3) are continuous operators satisfying:

$$\mu(F_{1}(X_{1} \times X_{2} \times X_{3})) \leq \phi(\mu(X_{1}), \mu(X_{2}), \mu(X_{3})),
\mu(F_{2}(X_{1} \times X_{2} \times X_{3})) \leq \phi(\mu(X_{2}), \mu(X_{3}), \mu(X_{1})),
\mu(F_{3}(X_{1} \times X_{2} \times X_{3})) \leq \phi(\mu(X_{3}), \mu(X_{1}), \mu(X_{2})),$$

for each $X_1, X_2, X_3 \subseteq \Omega$, where $\phi \in \Phi$. Then there exist $\tau^*, v^*, \rho^* \in \Omega$ such that

$$\begin{cases} F_1(\tau^*, v^*, \rho^*) &= \tau^* \\ F_2(\tau^*, v^*, \rho^*) &= v^* \\ F_3(\tau^*, v^*, \rho^*) &= \rho^* \end{cases}.$$

Proof. Considering $\psi(p,q) = \frac{p+q}{2}$ in Theorem 2.8 the result is desirable. \square

Corollary 2.10. Suppose $\lambda_1, \lambda_2, \lambda_3$ are nonnegative constants with $\lambda_1 + \lambda_2 + \lambda_3 < 1$. Also assume that $F_i : \Omega \times \Omega \times \Omega \longrightarrow \Omega$ (i = 1, 2, 3) are continuous operators satisfying:

$$\mu(F_{1}(X_{1} \times X_{2} \times X_{3})) \leq \lambda_{1}\mu(X_{1}) + \lambda_{2}\mu(X_{2}) + \lambda_{3}\mu(X_{3}), \mu(F_{2}(X_{1} \times X_{2} \times X_{3})) \leq \lambda_{1}\mu(X_{2}) + \lambda_{2}\mu(X_{3}) + \lambda_{3}\mu(X_{1}), \mu(F_{3}(X_{1} \times X_{2} \times X_{3})) \leq \lambda_{1}\mu(X_{3}) + \lambda_{2}\mu(X_{1}) + \lambda_{3}\mu(X_{2}),$$

for each $X_1, X_2, X_3 \subseteq \Omega$. Then there exist $\tau^*, v^*, \rho^* \in \Omega$ such that

$$\begin{cases} F_{1}(\tau^{*}, \nu^{*}, \rho^{*}) &= \tau^{*} \\ F_{2}(\tau^{*}, \nu^{*}, \rho^{*}) &= \nu^{*} \\ F_{3}(\tau^{*}, \nu^{*}, \rho^{*}) &= \rho^{*} \end{cases}$$

Proof. Considering $\psi(p,q) = p+q$ and $\phi(p,q,r) = 2\lambda_1 p + 2\lambda_2 q + 2\lambda_3 r$ in Theorem 2.8 the result is desirable. \Box

Corollary 2.11. Assume that $F_i: \Omega \times \Omega \times \Omega \longrightarrow \Omega$ (i = 1, 2, 3) are continuous operators satisfying:

$$\mu(F_i(X_1 \times X_2 \times X_3)) \le \frac{1}{\sqrt{2}} \ln \left(1 + \frac{\mu(X_1) + \mu(X_2) + \mu(X_3)}{3}\right),$$

for each $X_1, X_2, X_3 \subseteq \Omega$. Then there exist $\tau^*, v^*, \rho^* \in \Omega$ such that

$$\begin{cases} F_{1}(\tau^{*}, v^{*}, \rho^{*}) &= \tau^{*} \\ F_{2}(\tau^{*}, v^{*}, \rho^{*}) &= v^{*} \\ F_{3}(\tau^{*}, v^{*}, \rho^{*}) &= \rho^{*} \end{cases}.$$

Proof. Considering $\psi(p,q) = \sqrt{p^2 + q^2}$ and $\phi(p,q,r) = \ln\left(1 + \frac{p+q+r}{3}\right)$ in Theorem 2.8 the result is desirable. \Box

Corollary 2.12. Suppose $\lambda_1, \lambda_2, \lambda_3$ are nonegative constants with $\lambda_1 + \lambda_2 + \lambda_3 < 1$. Also assume that $F_i: \Omega \times \Omega \times \Omega \longrightarrow \Omega$ (i = 1, 2, 3) are continuous operators satisfying:

$$\mu (F_1 (X_1 \times X_2 \times X_3)) + \ln (1 + \mu (F_1 (X_1 \times X_2 \times X_3))) \leq \lambda_1 \mu (X_1) + \lambda_2 \mu (X_2) + \lambda_3 \mu (X_3),$$

$$\mu (F_2 (X_1 \times X_2 \times X_3)) + \ln (1 + \mu (F_2 (X_1 \times X_2 \times X_3))) \leq \lambda_1 \mu (X_2) + \lambda_2 \mu (X_3) + \lambda_3 \mu (X_1),$$

$$\mu (F_3 (X_1 \times X_2 \times X_3)) + \ln (1 + \mu (F_3 (X_1 \times X_2 \times X_3))) \leq \lambda_1 \mu (X_3) + \lambda_2 \mu (X_1) + \lambda_3 \mu (X_2),$$

for each $X_1, X_2, X_3 \subseteq \Omega$. Then there exist $\tau^*, v^*, \rho^* \in \Omega$ such that

$$\begin{cases} F_{1}(\tau^{*}, \nu^{*}, \rho^{*}) &= \tau^{*} \\ F_{2}(\tau^{*}, \nu^{*}, \rho^{*}) &= \nu^{*} \\ F_{3}(\tau^{*}, \nu^{*}, \rho^{*}) &= \rho^{*} \end{cases}.$$

Proof. Considering $\psi(p,q) = \frac{p+q}{2} + \ln\left(1 + \frac{p+q}{2}\right)$ and $\phi(p,q,r) = \lambda_1 p + \lambda_2 q + \lambda_3 r$ in Theorem 2.8 the result is desirable. \square

3. Application and Example

Consider the following system of integral equations:

$$\begin{cases} x(\tau) = A_{1}(\tau) + h_{1}(\tau, x(\varepsilon_{1}(\tau)), y(\varepsilon_{1}(\tau)), z(\varepsilon_{1}(\tau))) \\ \tau, x(\varepsilon_{1}(\tau)), y(\varepsilon_{1}(\tau)), z(\varepsilon_{1}(\tau)), \\ \theta_{1}\left(\int_{0}^{\beta_{1}(\tau)} g_{1}(\tau, v, x(\sigma_{1}(v)), y(\sigma_{1}(v)), z(\sigma_{1}(v))) dv\right) \\ y(\tau) = A_{2}(\tau) + h_{2}(\tau, x(\varepsilon_{2}(\tau)), y(\varepsilon_{2}(\tau)), z(\varepsilon_{2}(\tau))) \\ \tau, x(\varepsilon_{2}(\tau), y(\varepsilon_{2}(\tau)), z(\varepsilon_{2}(\tau))), \\ \theta_{2}\left(\int_{0}^{\beta_{2}(\tau)} g_{2}(\tau, v, x(\sigma_{2}(v)), y(\varepsilon_{2}(v)), z(\varepsilon_{2}(v))) dv\right) \\ z(\tau) = A_{3}(\tau) + h_{3}(\tau, x(\varepsilon_{3}(\tau)), y(\varepsilon_{3}(\tau)), z(\varepsilon_{3}(\tau))) \\ \tau, x(\varepsilon_{3}(\tau)), y(\varepsilon_{3}(\tau)), z(\varepsilon_{3}(\tau)), \\ \theta_{3}\left(\int_{0}^{\beta_{3}(\tau)} g_{3}(\tau, v, x(\sigma_{3}(v)), y(\sigma_{3}(v)), z(\sigma_{3}(v))) dv\right) \end{cases}$$

$$(11)$$

Theorem 3.1. Let

(*I*) $A_i : \mathbb{R}_+ \to \mathbb{R}, i = 1, 2, 3$ are continuous and bounded functions with

$$M_i = \sup\{|A_i(\tau)| : \tau \in \mathbb{R}_+\}.$$

- (II) $\varepsilon_i, \sigma_i, \beta_i : \mathbb{R}_+ \to \mathbb{R}_+$ are continuous functions and $\varepsilon_i(\tau) \to \infty$ as $\tau \to \infty$, for i = 1, 2, 3,
- (III) $\theta_i : \mathbb{R}_+ \to \mathbb{R}$ with $\theta_i(0) = 0$ are continuous functions and consider the positive constants α_i, δ_i with

$$|\theta_i(\tau_1) - \theta_i(\tau_2)| \le \delta_i |\tau_1 - \tau_2|^{\alpha_i},\tag{12}$$

for every $\tau_1, \tau_2 \in \mathbb{R}_+, i = 1, 2, 3$,

(IV) $|f_i(\tau, 0, 0, 0, 0)|$ and $|h_i(\tau, 0, 0, 0)|$, (i = 1, 2, 3) are bounded on \mathbb{R}_+ , that is,

$$M'_i = \sup \{ |f_i(\tau, 0, 0, 0, 0)| : \tau \in \mathbb{R}_+ \} < \infty,$$

 $M''_i = \sup \{ |h_i(\tau, 0, 0, 0)| : \tau \in \mathbb{R}_+ \} < \infty.$

(*V*) $f_i: \mathbb{R}_+ \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ and $h_i: \mathbb{R}_+ \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ are continuous functions, $\phi_i \in \Phi$ and $\varphi_i: \mathbb{R}_+ \to \mathbb{R}$ are nondecreasing continuous functions with $\varphi_i(0) = 0$, for i = 1, 2, 3,

$$\left| h_{i}(\tau, x, y, z) - h_{i}(\tau, u, v, w) \right| \leq \frac{1}{2} \phi_{i} \left(|x - u|, |y - v|, |z - w| \right),
\left| f_{i}(\tau, x, y, z, m) - f_{i}(\tau, u, v, w, n) \right| \leq \frac{1}{2} \phi_{i} \left(|x - u|, |y - v|, |z - w| \right) + \varphi_{i}(|m - n|),$$
(13)

for every $\tau \ge 0$, x, y, z, m, n, u, v, $w \in \mathbb{R}$,

(VI) $g_i : \mathbb{R}_+ \times \mathbb{R}_+ \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, (i = 1, 2, 3) are continuous and also we have

$$\lim_{\tau \to \infty} \int_0^{\beta_i(\tau)} \left| \begin{array}{c} g_i(\tau, v, x(\sigma_i(v)), y(\sigma_i(v)), z(\sigma_i(v))) \\ -g_i(\tau, v, u(\sigma_i(v)), v(\sigma_i(v)), w(\sigma_i(v))) \end{array} \right| dv$$

$$= 0, \tag{14}$$

and,

$$M_{i}^{"'} = \sup \left\{ \begin{array}{c} \left| \int_{0}^{\beta_{i}(\tau)} g_{i}(\tau, v, x(\sigma_{i}(v)), y(\sigma_{i}(v)), z(\sigma_{i}(v))) dv \right|^{\alpha_{i}} : \tau \in \mathbb{R}_{+}, \\ x, y, z \in BC(\mathbb{R}_{+}) \end{array} \right\}, \tag{15}$$

(VII) The following inequality for a $\rho > 0$ is valid.

$$M_i + \phi_i(\kappa, \kappa, \kappa) + M_i^{'} + M_i^{''} + \varphi_i(\delta_i M_i^{'''}) < \kappa, (i = 1, 2, 3).$$
 (16)

Then the system (11) has at least one solution in $BC(\mathbb{R}_+) \times BC(\mathbb{R}_+) \times BC(\mathbb{R}_+)$.

Proof. Consider the operators $T_i: BC(\mathbb{R}_+) \times BC(\mathbb{R}_+) \times BC(\mathbb{R}_+) \to BC(\mathbb{R}_+)$, (i = 1, 2, 3) by the formula:

$$T_{i}(x, y, z)(\tau) = A_{i}(\tau) + h_{i}(\tau, x(\varepsilon_{i}(\tau)), y(\varepsilon_{i}(\tau)), z(\varepsilon_{i}(\tau)))$$

$$+ f_{i}\begin{pmatrix} \tau, x(\varepsilon_{i}(\tau)), y(\varepsilon_{i}(\tau)), z(\varepsilon_{i}(\tau)), \\ \theta_{i}(\int_{0}^{\beta_{i}(\tau)} g_{i}(\tau, v, x(\sigma_{i}(v)), y(\sigma_{i}(v)), z(\sigma_{i}(v))) dv \end{pmatrix}$$
(17)

Since A_i , h_i and f_i , (i = 1, 2, 3) are continuous, then T_i , (i = 1, 2, 3) are continuous. Also with given assumptions, we get

$$\begin{split} \left|T_{i}(x,y,z)(\tau)\right| &\leq |A_{i}(\tau)| + \left|h_{i}(\tau,x(\varepsilon_{i}(\tau)),y(\varepsilon_{i}(\tau)),z(\varepsilon_{i}(\tau))) - h_{i}(\tau,0,0,0)\right| \\ &+ |h_{i}(\tau,0,0,0)| \\ &+ \left(\int_{0}^{f_{i}(\tau)} \int_{0}^{\beta_{i}(\tau)} g_{i} \left(\begin{array}{c} \tau,x(\varepsilon_{i}(\tau)),y(\varepsilon_{i}(\tau)),z(\varepsilon_{i}(\tau)), \\ x(\sigma_{i}(v)),y(\sigma_{i}(v)),z(\sigma_{i}(v)) \end{array} \right) dv \right) \\ &+ \left(\int_{0}^{f_{i}(\tau)} \int_{0}^{\beta_{i}(\tau)} g_{i} \left(\begin{array}{c} x(\sigma_{i}(v)),y(\sigma_{i}(v)),z(\sigma_{i}(v)) \end{array} \right) dv \right) \\ &+ \int_{0}^{f_{i}(\tau)} \int_{0}^{\beta_{i}(\tau)} g_{i} \left(\begin{array}{c} x(\sigma_{i}(v)),y(\sigma_{i}(v)),z(\sigma_{i}(v)) \end{array} \right) dv \right) \\ &+ \int_{0}^{f_{i}(\tau)} \left(\left| x(\varepsilon_{i}(\tau)) \right|,\left| y(\varepsilon_{i}(\tau)) \right|,\left| y(\varepsilon_{i}(\tau)) \right| \right) \\ &+ \frac{1}{2} \phi_{i} \left(\left| x(\varepsilon_{i}(\tau)) \right|,\left| y(\varepsilon_{i}(\tau)) \right|,\left| y(\varepsilon_{i}(\tau)) \right| \right) \\ &+ \frac{1}{2} \phi_{i} \left(\left| x(\varepsilon_{i}(\tau)) \right|,\left| y(\varepsilon_{i}(\tau)) \right|,\left| x(\varepsilon_{i}(\tau)) \right| \right) \\ &+ \varphi_{i} \left(\left| \theta_{i} \left(\int_{0}^{\beta_{i}(\tau)} g_{i}(\tau,v,x(\sigma_{i}(v)),y(\sigma_{i}(v)),z(\sigma_{i}(v)) \right) dv \right) \right| \\ &\leq M_{i} + M_{i}' + M_{i}'' + \phi_{i} \left(\left| x(t) \right|,\left| y(t) \right|,\left| x(t) \right| \right) \\ &+ \varphi_{i} \left(\delta_{i} \left| \int_{0}^{\beta_{i}(\tau)} g_{i}(\tau,v,x(\sigma_{i}(v)),y(\sigma_{i}(v)),z(\sigma_{i}(v)) \right) dv \right| \\ &+ \varphi_{i} \left(\delta_{i} \left| \int_{0}^{\beta_{i}(\tau)} g_{i}(\tau,v,x(\sigma_{i}(v)),y(\sigma_{i}(v)),z(\sigma_{i}(v)) \right) dv \right| \\ &\leq M_{i} + M_{i}' + M_{i}'' + \phi_{i} \left(\left| x(t) \right|,\left| y(t) \right|,\left| x(t) \right| \right) + \varphi_{i} \left(\delta_{i} M_{i}''' \right), \end{split}$$

$$(18)$$

that shows T_i , (i = 1, 2, 3), are well defined. Also, condition (*VII*) and relation (18) imply that $T_i(\bar{B}_\rho \times \bar{B}_\rho \times \bar{B}_\rho) \subseteq \bar{B}_\rho$.

Now, we show that T_i , i=1,2,3, are continuous on $\vec{B_\rho} \times \vec{B_\rho} \times \vec{B_\rho}$. Fix arbitrarily $\varepsilon > 0$. Consider

$$(x, y, z)$$
, $(u, v, w) \in \overline{B_{\rho}} \times \overline{B_{\rho}} \times \overline{B_{\rho}}$ with $||(x, y, z) - (u, v, w)|| < \frac{\epsilon}{2}$. we obtain

$$\begin{split} \left|T_{i}(x,y,z)\left(\tau\right)-T_{i}\left(u,v,w\right)\left(\tau\right)\right| &\leq \left|\begin{array}{c} h_{i}\left(\tau,x\left(\varepsilon_{i}\left(\tau\right)\right),y\left(\varepsilon_{i}\left(\tau\right)\right),v\left(\varepsilon_{i}\left(\tau\right)\right)\right)\\ -h_{i}\left(\tau,u\left(\varepsilon_{i}\left(\tau\right)\right),v\left(\varepsilon_{i}\left(\tau\right)\right),w\left(\varepsilon_{i}\left(\tau\right)\right)\right)\right|\\ + \left|\begin{array}{c} \tau,x\left(\varepsilon_{i}\left(\tau\right)\right),y\left(\varepsilon_{i}\left(\tau\right)\right),z\left(\varepsilon_{i}\left(\tau\right)\right),\\ \theta_{i}\left(\int_{0}^{\beta_{i}\left(\tau\right)}g_{i}\left(\tau,v,x\left(\sigma_{i}\left(v\right)\right),y\left(\varepsilon_{i}\left(\tau\right)\right),z\left(\varepsilon_{i}\left(\tau\right)\right)\right)\right)dv\right)\\ -f_{i}\left(\partial_{i}\left(\int_{0}^{\beta_{i}\left(\tau\right)}g_{i}\left(\tau,v,x\left(\sigma_{i}\left(v\right)\right),y\left(\varepsilon_{i}\left(\tau\right)\right),z\left(\varepsilon_{i}\left(\tau\right)\right)\right)dv\right)\right)\\ -f_{i}\left(\partial_{i}\left(\int_{0}^{\beta_{i}\left(\tau\right)}g_{i}\left(\tau,v,u\left(\sigma_{i}\left(v\right)\right),v\left(\sigma_{i}\left(v\right)\right)\right),w\left(\sigma_{i}\left(v\right)\right)\right)dv\right)\\ -f_{i}\left(\int_{0}^{\beta_{i}\left(\tau\right)}g_{i}\left(\tau,v,u\left(\sigma_{i}\left(v\right)\right),v\left(\sigma_{i}\left(v\right)\right),w\left(\sigma_{i}\left(v\right)\right)\right)dv\right)\\ +\frac{1}{2}\phi_{i}\left(\left|x\left(\varepsilon_{i}\left(\tau\right)\right)-w\left(\varepsilon_{i}\left(\tau\right)\right|\right)\right|\\ \left|y\left(\varepsilon_{i}\left(\tau\right)\right)-w\left(\varepsilon_{i}\left(\tau\right)\right)\right|\\ \left|y\left(\varepsilon_{i}\left(\tau\right)\right)-w\left(\varepsilon_{i}\left(\tau\right)\right)\right|\\ -\theta_{i}\left(\int_{0}^{\beta_{i}\left(\tau\right)}g_{i}\left(\tau,v,u\left(\sigma_{i}\left(v\right)\right),y\left(\sigma_{i}\left(v\right)\right),z\left(\sigma_{i}\left(v\right)\right)\right)dv\right)\\ +\varphi_{i}\left(\left|\int_{0}^{\beta_{i}\left(\tau\right)}g_{i}\left(\tau,v,u\left(\sigma_{i}\left(v\right)\right),v\left(\sigma_{i}\left(v\right)\right),w\left(\sigma_{i}\left(v\right)\right)\right)dv\right)\right|\\ +\frac{1}{2}\phi_{i}\left(\left|x-u\right|,\left|y-v\right|,\left|z-w\right|\right)\\ +\frac{1}{2}\phi_{i}\left(\left|x-u\right|,\left|y-v\right|,\left|z-w\right|\right)\\ +\varphi_{i}\left(\delta_{i}\left|\int_{0}^{\beta_{i}\left(\tau\right)}\left(g_{i}\left(\tau,v,x\left(\sigma_{i}\left(v\right)\right),y\left(\sigma_{i}\left(v\right)\right),z\left(\sigma_{i}\left(v\right)\right)\right)\right)dv\right|^{\alpha_{i}}\right)\\ \leq\phi_{i}\left(\left|x-u\right|,\left|y-v\right|,\left|z-w\right|\right)\\ +\varphi_{i}\left(\delta_{i}\left|\int_{0}^{\beta_{i}\left(\tau\right)}\left(g_{i}\left(\tau,v,u\left(\sigma_{i}\left(v\right)\right),y\left(\sigma_{i}\left(v\right)\right),z\left(\sigma_{i}\left(v\right)\right)\right)\right)dv\right|^{\alpha_{i}}\right). \tag{19}$$

Furthermore, from relation (14), we have

$$\varphi_{i}\left(\delta_{i}\left|\int_{0}^{\beta_{i}(\tau)} \left(\begin{array}{c}g_{i}(\tau, v, x(\sigma_{i}(v)), y(\sigma_{i}(v)), z(\sigma_{i}(v)))\\-g_{i}(\tau, v, u(\sigma_{i}(v)), v(\sigma_{i}(v)), w(\sigma_{i}(v)))\end{array}\right)dv\right|^{\alpha_{i}}\right)$$

$$\leq \frac{\epsilon}{2}, \tag{20}$$

for every $x, y, z, u, v, w \in BC(\mathbb{R}_+)$.

If $\tau > L$, then from relations (19) and (20), we obtain

$$\left|T_{i}(x,y,z)(\tau) - T_{i}(u,v,w)(\tau)\right| \leq \phi_{i}\left(\frac{\epsilon}{2}, \frac{\epsilon}{2}, \frac{\epsilon}{2}\right) + \frac{\epsilon}{2}$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon. \tag{21}$$

If $\tau \in [0, L]$, then we get

$$|T_i(x,y,z)(\tau)-T_i(u,v,w)(\tau)|$$

$$\leq \phi_{i}\left(\frac{\epsilon}{2}, \frac{\epsilon}{2}, \frac{\epsilon}{2}\right) + \varphi_{i}\left(\delta_{i} \left| \int_{0}^{\beta_{i}(\tau)} \left(\begin{array}{c} g_{i}\left(\tau, \nu, x\left(\sigma_{i}\left(\nu\right)\right), y\left(\sigma_{i}\left(\nu\right)\right), z\left(\sigma_{i}\left(\nu\right)\right)\right) \\ -g_{i}\left(\tau, \nu, u\left(\sigma_{i}\left(\nu\right)\right), v\left(\sigma_{i}\left(\nu\right)\right), w\left(\sigma_{i}\left(\nu\right)\right)\right) \end{array} \right) d\nu \right|^{\alpha_{i}}\right) \\
< \frac{\epsilon}{2} + \varphi_{i}\left(\delta_{i}\left(\beta_{i}^{L}\omega\left(\epsilon\right)\right)^{\alpha_{i}}\right), \tag{22}$$

where

$$\omega(\epsilon) = \sup \left\{ \begin{array}{l} \left| g_i(\tau, v, x, y, z) - g_i(\tau, v, u, v, w) \right| : \tau \in [0, L], v \in \left[0, \beta_i^L\right], \\ x, y, z, u, v, w \in \left[-\rho, \rho\right], \left\| (x, y, z) - (u, v, w) \right\| < \frac{\epsilon}{2} \end{array} \right\},$$

$$\beta_i^L = \sup \left\{ \beta_i(\tau) : \tau \in [0, L] \right\}.$$

Using the continuity of g_i , i = 1, 2, 3 on $[0, L] \times [0, \beta_i^L] \times [-\rho, \rho] \times [-\rho, \rho] \times [-\rho, \rho]$, we have $\omega(\epsilon) \to 0$, as $\epsilon \to 0$

and by continuity φ_i , i = 1, 2, 3, we obtain

$$\varphi_{i}\left(\delta_{i}\left(\beta_{i}^{L}\omega\left(\epsilon\right)\right)^{\alpha_{i}}\right)\rightarrow0,$$

as $\epsilon \to 0$. Therefore, from relations (21) and (22), we conclude that T_i , i=1,2,3, are continuous functions from $\bar{B}_{\rho} \times \bar{B}_{\rho} \times \bar{B}_{\rho}$ into \bar{B}_{ρ} . Next, we show that T_i , i=1,2,3, satisfies the conditions of Corollary 2.9. For this purpose, suppose L, $\epsilon \in \mathbb{R}_+$, τ_1 , $\tau_2 \in [0,L]$ with $|\tau_1 - \tau_2| \le \epsilon$ and X_1 , X_2 , X_3 are arbitrary non-empty subsets of \bar{B}_{ρ} .

Let $(x, y, z) \in X_1 \times X_2 \times X_3$. We can assume that $\beta_i(\tau_1) < \beta_i(\tau_2)$. Consequently,

$$T_{i}(x,y,z)(\tau_{1}) - T_{i}(x,y,z)(\tau_{2})$$

$$\leq |A_{i}(\tau_{1}) - A_{i}(\tau_{2})| + \begin{vmatrix} h_{i}(\tau_{2},x(\varepsilon_{i}(\tau_{2})),y(\varepsilon_{i}(\tau_{2})),z(\varepsilon_{i}(\tau_{2}))) \\ -h_{i}(\tau_{2},x(\varepsilon_{i}(\tau_{1})),y(\varepsilon_{i}(\tau_{1})),z(\varepsilon_{i}(\tau_{1}))) \end{vmatrix}$$

$$+ \begin{vmatrix} f_{i} \\ \theta_{i} \left(\int_{0}^{\beta_{i}(\tau_{2})} g_{i} \begin{pmatrix} \tau_{2},v,x(\sigma_{i}(v)),y(\sigma_{i}(v)),\\ z(\sigma_{i}(v)) \end{pmatrix}, z(\varepsilon_{i}(\tau_{2})),\\ -f_{i} \\ \theta_{i} \left(\int_{0}^{\beta_{i}(\tau_{2})} g_{i} \begin{pmatrix} \tau_{2},v,x(\sigma_{i}(v)),y(\sigma_{i}(v)),\\ z(\sigma_{i}(v)) \end{pmatrix}, dv \right) \end{vmatrix}$$

$$+ \begin{vmatrix} f_{i} \\ \theta_{i} \left(\int_{0}^{\beta_{i}(\tau_{2})} g_{i} \begin{pmatrix} \tau_{2},v,x(\sigma_{i}(v)),y(\sigma_{i}(v)),\\ z(\sigma_{i}(v)) \end{pmatrix}, dv \right) \end{vmatrix}$$

$$+ \begin{vmatrix} f_{i} \\ \theta_{i} \left(\int_{0}^{\beta_{i}(\tau_{2})} g_{i} \begin{pmatrix} \tau_{2},v,x(\sigma_{i}(v)),y(\sigma_{i}(v)),\\ z(\sigma_{i}(v)) \end{pmatrix}, dv \right) \end{vmatrix}$$

$$+ \begin{vmatrix} f_{i} \\ \theta_{i} \left(\int_{0}^{\beta_{i}(\tau_{2})} g_{i} \begin{pmatrix} \tau_{2},v,x(\sigma_{i}(v)),y(\sigma_{i}(v)),\\ z(\sigma_{i}(v)) \end{pmatrix}, dv \right) \end{vmatrix}$$

$$+ \begin{vmatrix} f_{i} \\ \theta_{i} \left(\int_{0}^{\beta_{i}(\tau_{2})} g_{i} \begin{pmatrix} \tau_{2},v,x(\sigma_{i}(v)),y(\sigma_{i}(v)),\\ z(\sigma_{i}(v)) \end{pmatrix}, dv \right) \end{vmatrix}$$

$$+ \begin{vmatrix} f_{i} \\ \theta_{i} \left(\int_{0}^{\beta_{i}(\tau_{2})} g_{i} \begin{pmatrix} \tau_{2},v,x(\sigma_{i}(v)),y(\sigma_{i}(v)),\\ z(\sigma_{i}(v)) \end{pmatrix}, dv \right) \end{vmatrix}$$

$$+ \begin{vmatrix} f_{i} \\ \theta_{i} \left(\int_{0}^{\beta_{i}(\tau_{2})} g_{i} \begin{pmatrix} \tau_{1},v,x(\sigma_{i}(v)),y(\sigma_{i}(v)),y(\sigma_{i}(v)),\\ z(\sigma_{i}(v)) \end{pmatrix}, dv \right) \end{vmatrix}$$

$$+ \begin{vmatrix} f_{i} \\ \theta_{i} \left(\int_{0}^{\beta_{i}(\tau_{2})} g_{i} (\tau_{1},v,x(\sigma_{i}(v)),y(\sigma_{i}(v)),z(\sigma_{i}(v))),dv \right) \end{vmatrix}$$

$$+ \begin{vmatrix} f_{i} \\ \theta_{i} \left(\int_{0}^{\beta_{i}(\tau_{2})} g_{i} (\tau_{1},v,x(\sigma_{i}(v)),y(\sigma_{i}(v)),z(\sigma_{i}(v))),dv \right) \end{vmatrix}$$

$$-f_{i} \begin{vmatrix} \sigma_{1},x(\varepsilon_{i}(\tau_{1})),y(\varepsilon_{i}(\tau_{1})),z(\varepsilon_{i}(\tau_{1})),\\ \sigma_{1},x(\varepsilon_{i}(\tau_{1})),y(\varepsilon_{i}(\tau_{1})),z(\varepsilon_{i}(\tau_{1})),\\ \sigma_{2}(\sigma_{i}(v)) \end{vmatrix}$$

$$\leq \omega^{L}(A_{i},\epsilon) + \omega^{L}_{\rho,H}(f_{i},\epsilon) + \omega^{L}_{\rho}(h_{i},\epsilon)
+ \frac{1}{2}\phi_{i}\left(\begin{vmatrix} x(\varepsilon_{i}(\tau_{2})) - x(\varepsilon_{i}(\tau_{1}))|, |y(\varepsilon_{i}(\tau_{2})) - y(\varepsilon_{i}(\tau_{1}))|, \\ |z(\varepsilon_{i}(\tau_{2})) - z(\varepsilon_{i}(\tau_{1}))|, \end{vmatrix} \right)
+ \frac{1}{2}\phi_{i}\left(\begin{vmatrix} x(\varepsilon_{i}(\tau_{2})) - x(\varepsilon_{i}(\tau_{1}))|, |y(\varepsilon_{i}(\tau_{2})) - y(\varepsilon_{i}(\tau_{1}))|, \\ |z(\varepsilon_{i}(\tau_{2})) - z(\varepsilon_{i}(\tau_{1}))| \end{vmatrix} \right)
+ \varphi_{i}\left(\begin{vmatrix} \theta_{i}\left(\int_{0}^{\beta_{i}(\tau_{2})} g_{i}(\tau_{2}, v, x(\sigma_{i}(v)), y(\sigma_{i}(v)), z(\sigma_{i}(v))) dv \right) \\ -\theta_{i}\left(\int_{0}^{\beta_{i}(\tau_{2})} g_{i}(\tau_{1}, v, x(\sigma_{i}(v)), y(\sigma_{i}(v)), z(\sigma_{i}(v))) dv \right) \end{vmatrix} \right)
+ \varphi_{i}\left(\begin{vmatrix} \theta_{i}\left(\int_{\beta_{i}(\tau_{1})}^{\beta_{i}(\tau_{2})} g_{i}(\tau_{1}, v, x(\sigma_{i}(v)), y(\sigma_{i}(v)), z(\sigma_{i}(v))) dv \right) \right) \right)
\leq \omega^{L}(A_{i}, \epsilon) + \omega^{L}_{\rho,H}(f_{i}, \epsilon) + \omega^{L}_{\rho}(h_{i}, \epsilon)
+ \phi_{i}\left(\omega^{L}\left(x, \omega^{L}(\varepsilon_{i}, \epsilon)\right), \omega^{L}\left(y, \omega^{L}(\varepsilon_{i}, \epsilon)\right), \omega^{L}\left(z, \omega^{L}(\varepsilon_{i}, \epsilon)\right) \right)
+ \varphi_{i}\left(\delta_{i}\left(\beta_{i}^{L}\omega_{\rho}^{L}(g_{i}, \epsilon)\right)^{\alpha_{i}}\right) + \varphi_{i}\left(\delta_{i}\left(H\omega^{L}(\beta_{i}, \epsilon)\right)^{\alpha_{i}}\right). \tag{23}$$

where

$$\omega^{L}(A_{i},\epsilon) = \sup \left\{ |A_{i}(\tau_{1}) - A_{i}(\tau_{2})| : \tau_{1}, \tau_{2} \in [0,L], |\tau_{1} - \tau_{2}| \le \epsilon \right\},$$

$$\omega^{L}_{\rho}(h_{i},\epsilon) = \sup \left\{ \begin{array}{l} |h_{i}(\tau_{2},x,y,z) - h_{i}(\tau_{1},x,y,z)| : \tau_{1},\tau_{2} \in [0,L], \\ |\tau_{1} - \tau_{2}| \le \epsilon, x, y, z \in [-\rho,\rho] \end{array} \right\},$$

$$\omega^{L}(\varepsilon_{i},\epsilon) = \sup \left\{ |\varepsilon_{i}(\tau_{1}) - \varepsilon_{i}(\tau_{2})| : \tau_{1},\tau_{2} \in [0,L], |\tau_{1} - \tau_{2}| \le \epsilon \right\},$$

$$\omega^{L}(x,\omega^{L}(\varepsilon_{i},\epsilon)) = \sup \left\{ |x(\tau_{1}) - x(\tau_{2})| : \tau_{1},\tau_{2} \in [0,L], |\tau_{1} - \tau_{2}| \le \omega^{L}(\varepsilon_{i},\epsilon) \right\},$$

$$H = \beta_{i}^{L} \sup \left\{ |g_{i}(\tau,v,x,y,z)| : \tau \in [0,L], v \in [0,\beta_{i}^{L}], x, y, z \in [-\rho,\rho] \right\},$$

$$\omega^{L}_{\rho,H}(f_{i},\epsilon) = \sup \left\{ |f_{i}(\tau_{2},x,y,z,p) - f_{i}(\tau_{1},x,y,z,p)| : \tau_{1},\tau_{2} \in [0,L], \\ |\tau_{1} - \tau_{2}| \le \epsilon, x, y, z \in [-\rho,\rho], p \in [-\delta_{i}H^{\alpha_{i}},\delta_{i}H^{\alpha_{i}}] \right\},$$

$$\omega^{L}_{\rho}(g_{i},\epsilon) = \sup \left\{ |g_{i}(\tau_{1},v,x,y,z) - g_{i}(\tau_{2},v,x,y,z)| : \tau_{1},\tau_{2} \in [0,L], \\ |\tau_{1} - \tau_{2}| \le \epsilon, v \in [0,\beta_{i}^{L}], x, y, z \in [-\rho,\rho] \right\},$$

$$\omega^{L}(\beta_{i},\epsilon) = \sup \left\{ |\beta_{i}(\tau_{1}) - \beta_{i}(\tau_{2})| : \tau_{1},\tau_{2} \in [0,L], |\tau_{1} - \tau_{2}| \le \epsilon \right\}.$$

Since (x, y, z) was an arbitrary element of the set $X_1 \times X_2 \times X_3$ in relation (23), so we get

$$\omega^{L}\left(T_{i}\left(X_{1} \times X_{2} \times X_{3}\right), \epsilon\right) \leq \omega^{L}\left(A_{i}, \epsilon\right) + \omega_{\rho}^{L}\left(h_{i}, \epsilon\right) + \omega_{\rho, H}^{L}\left(f_{i}, \epsilon\right) + \phi_{i}\left(\omega^{L}\left(X_{1}, \omega^{L}\left(\varepsilon_{i}, \epsilon\right)\right), \omega^{L}\left(X_{2}, \omega^{L}\left(\varepsilon_{i}, \epsilon\right)\right), \omega^{L}\left(X_{3}, \omega^{L}\left(\varepsilon_{i}, \epsilon\right)\right)\right) + \varphi_{i}\left(\delta_{i}\left(\beta_{i}^{L}\omega_{\rho}^{L}\left(g_{i}, \epsilon\right)\right)^{\alpha_{i}}\right) + \varphi_{i}\left(\delta_{i}H\omega^{L}\left(\beta_{i}, \epsilon\right)^{\alpha_{i}}\right).$$

$$(24)$$

Using continuity of f_i , g_i , h_i on $[0, L] \times [-\rho, \rho] \times [-\rho, \rho] \times [-\rho, \rho] \times [-\delta_i H^{\alpha_i}, \delta_i H^{\alpha_i}]$, $[0, L] \times [0, \beta_i^L] \times [-\rho, \rho] \times [-\rho, \rho] \times [-\rho, \rho] \times [-\rho, \rho] \times [-\rho, \rho]$, we have

$$\omega_{\rho,H}^{L}(f_{i},\epsilon) \rightarrow 0,$$

 $\omega_{\rho}^{L}(g_{i},\epsilon) \rightarrow 0,$
 $\omega_{\rho}^{L}(h_{i},\epsilon) \rightarrow 0.$

Moreover, using continuity of ε_i , β_i and A_i , we conclude that

$$\omega^{L}(\varepsilon_{i},\epsilon) \to 0, \omega^{L}(\beta_{i},\epsilon) \to 0, \omega^{L}(A_{i},\epsilon) \to 0$$

as $\epsilon \to 0$, Therefore we obtain

$$\varphi_{i}\left(\delta_{i}\left(\beta_{i}^{L}\omega_{\rho}^{L}\left(g_{i},\epsilon\right)\right)^{\alpha_{i}}\right)+\varphi_{i}\left(\delta_{i}\left(H\omega^{L}\left(\beta_{i},\epsilon\right)\right)^{\alpha_{i}}\right)\rightarrow0$$

as $\epsilon \to 0$. Now by letting $\epsilon \to 0$ in relation (24), we obtain

$$\omega_0^L(T_i(X_1 \times X_2 \times X_3)) \le \phi_i(\omega_0^L(X_1), \omega_0^L(X_2), \omega_0^L(X_3)). \tag{25}$$

Also, by letting $L \to \infty$ in relation (25), we get

$$\omega_0(T_i(X_1 \times X_2 \times X_3)) \le \phi_i(\omega_0(X_1), \omega_0(X_2), \omega_0(X_3)).$$
 (26)

Furthermore, for every (x, y, z), $(u, v, w) \in X_1 \times X_2 \times X_3$, $t \in \mathbb{R}_+$, we get

$$\left| \begin{array}{c} T_{i}(x,y,z)(\tau) - \\ T_{i}(u,v,w)(\tau) \end{array} \right| \leq \left| \begin{array}{c} h_{i}(\tau,x(\varepsilon_{i}(\tau)),y(\varepsilon_{i}(\tau)),z(\varepsilon_{i}(\tau))) \\ -h_{i}(\tau,u(\varepsilon_{i}(\tau)),y(\varepsilon_{i}(\tau)),z(\varepsilon_{i}(\tau))) \end{array} \right|$$

$$+ \left| \begin{array}{c} \tau_{i}(u,v,w)(\tau) \\ \theta_{i} \left(\int_{0}^{\beta_{i}(\tau)} g_{i}(\tau,v,x(\sigma_{i}(v)),y(\sigma_{i}(v)),z(\sigma_{i}(v))) dv \right) \\ -f_{i} \left(\theta_{i} \left(\int_{0}^{\beta_{i}(\tau)} g_{i}(\tau,v,x(\sigma_{i}(v)),y(\sigma_{i}(v)),z(\sigma_{i}(v))) dv \right) \right) \\ \leq \frac{1}{2} \phi_{i} \left(\left| x(\varepsilon_{i}(\tau)) - u(\varepsilon_{i}(\tau)) \right|, \left| y(\varepsilon_{i}(\tau)) - v(\varepsilon_{i}(\tau)) \right|, \left| z(\varepsilon_{i}(\tau)) - w(\varepsilon_{i}(\tau)) \right| \right) \\ + \frac{1}{2} \phi_{i} \left(\left| x(\varepsilon_{i}(\tau)) - u(\varepsilon_{i}(\tau)) \right|, \left| y(\varepsilon_{i}(\tau)) - v(\varepsilon_{i}(\tau)) \right|, \left| z(\varepsilon_{i}(\tau)) - w(\varepsilon_{i}(\tau)) \right| \right) \\ + \varphi_{i} \left(\left| \frac{\theta_{i}}{\theta_{i}(\tau)} \frac{\beta_{i}(\tau)}{\theta_{i}(\tau)} g_{i}(\tau,v,x(\sigma_{i}(v)),y(\sigma_{i}(v)),z(\sigma_{i}(v))) dv \right) \\ -\theta_{i} \left(\int_{0}^{\beta_{i}(\tau)} g_{i}(\tau,v,x(\sigma_{i}(v)),y(\sigma_{i}(v)),z(\sigma_{i}(v))) dv \right) \\ \leq \frac{1}{2} \phi_{i} \left(diamX_{i}(\varepsilon_{i}(\tau)), diamX_{2}(\varepsilon_{i}(\tau)), diamX_{3}(\varepsilon_{i}(\tau)) \right) \\ + \frac{1}{2} \phi_{i} \left(diamX_{i}(\varepsilon_{i}(\tau)), diamX_{2}(\varepsilon_{i}(\tau)), diamX_{3}(\varepsilon_{i}(\tau)) \right) \\ + \varphi_{i} \left(\delta_{i} \left| \int_{0}^{\beta_{i}(\tau)} \frac{g_{i}(\tau,v,x(\sigma_{i}(v)),y(\sigma_{i}(v)),z(\sigma_{i}(v)))}{-g_{i}(\tau,v,u(\sigma_{i}(v)),v(\sigma_{i}(v)),v(\sigma_{i}(v)),w(\sigma_{i}(v)) \right)} dv \right|^{\alpha_{i}} \right) \\ \leq \phi_{i} \left(diamX_{1}(\varepsilon_{i}(\tau)), diamX_{2}(\varepsilon_{i}(\tau)), diamX_{3}(\varepsilon_{i}(\tau)) \right) \\ + \varphi_{i} \left(\delta_{i} \left| \int_{0}^{\beta_{i}(\tau)} \frac{g_{i}(\tau,v,x(\sigma_{i}(v)),y(\sigma_{i}(v)),z(\sigma_{i}(v)))}{-g_{i}(\tau,v,u(\sigma_{i}(v)),v(\sigma_{i}(v)),z(\sigma_{i}(v)) \right)} dv \right|^{\alpha_{i}} \right) . \tag{27}$$

Because (x, y, z) and (u, v, w) and τ , were chosen arbitrary in (27), we will have

$$diam T_i (X_1 \times X_2 \times X_3) (\tau)$$

 $\leq \phi_i(diamX_1(\varepsilon_i(\tau)), diamX_2(\varepsilon_i(\tau)), diamX_3(\varepsilon_i(\tau)))$

$$+\varphi_{i}\left(\delta_{i}\left|\int_{0}^{\beta_{i}(\tau)} \left(\begin{array}{c}g_{i}\left(\tau, v, x\left(\sigma_{i}\left(v\right)\right), y\left(\sigma_{i}\left(v\right)\right), z\left(\sigma_{i}\left(v\right)\right)\right)\\-g_{i}\left(\tau, v, u\left(\sigma_{i}\left(v\right)\right), v\left(\sigma_{i}\left(v\right)\right), w\left(\sigma_{i}\left(v\right)\right)\right)\end{array}\right)dv\right|^{\alpha}\right). \tag{28}$$

By taking $\tau \to \infty$ in relation (28), then using (14) we obtain

$$\limsup_{\tau \to \infty} diam T_{i} (X_{1} \times X_{2} \times X_{3}) (\tau) \leq \phi_{i} \begin{pmatrix} \limsup_{\tau \to \infty} diam X_{1} (\varepsilon_{i} (\tau)), \\ \limsup_{\tau \to \infty} diam X_{2} (\varepsilon_{i} (\tau)), \\ \limsup_{\tau \to \infty} diam X_{3} (\varepsilon_{i} (\tau)) \end{pmatrix}. \tag{29}$$

From relation (26) together with relation (29), we obtain

$$\omega_{0}\left(T_{i}\left(X_{1}\times X_{2}\times X_{3}\right)\right) + \limsup_{\tau\to\infty} \operatorname{diam}T_{i}\left(X_{1}\times X_{2}\times X_{3}\right)(\tau)$$

$$\leq \phi_{i}\left(\omega_{o}\left(X_{1}\right), \omega_{o}\left(X_{2}\right), \omega_{o}\left(X_{3}\right)\right)$$

$$+ \phi_{i}\left(\limsup_{\tau\to\infty} \operatorname{diam}X_{1}\left(\varepsilon_{i}\left(\tau\right)\right), \\ \limsup_{\tau\to\infty} \operatorname{diam}X_{2}\left(\varepsilon_{i}\left(\tau\right)\right), \\ \limsup_{\tau\to\infty} \operatorname{diam}X_{3}\left(\varepsilon_{i}\left(\tau\right)\right)\right)$$

$$\leq 3\phi_{i}\left(\frac{\omega_{0}\left(X_{1}\right) + \limsup_{\tau\to\infty} \operatorname{diam}X_{1}\left(\varepsilon_{i}\left(\tau\right)\right)}{3}, \\ \frac{\omega_{0}\left(X_{2}\right) + \limsup_{\tau\to\infty} \operatorname{diam}X_{2}\left(\varepsilon_{i}\left(\tau\right)\right)}{3}, \\ \frac{\omega_{0}\left(X_{3}\right) + \limsup_{\tau\to\infty} \operatorname{diam}X_{3}\left(\varepsilon_{i}\left(\tau\right)\right)}{3}\right).$$

$$(30)$$

So, from relation (30), we conclude that

$$\frac{1}{3}\mu(T_{i}(X_{1}\times X_{2}\times X_{3}))\leq \phi_{i}\left(\frac{\mu(X_{1})}{3},\frac{\mu(X_{2})}{3},\frac{\mu(X_{3})}{3}\right),$$

and by taking $\overline{\mu} = \frac{1}{3}\mu$, we get

$$\overline{\mu}\left(T_{i}\left(X_{1}\times X_{2}\times X_{3}\right)\right)\leq\phi_{i}\left(\overline{\mu}\left(X_{1}\right),\overline{\mu}\left(X_{2}\right),\overline{\mu}\left(X_{3}\right)\right),$$

Thus, by applying Corollary 2.9, the proof is complete. \Box

Finally, we present the following example and we investigate the conditions of Theorem 3.1 for existence of a solution.

Example 3.2. Let us consider the following system of integral equations

$$\begin{cases} x(\tau) = \frac{1}{5}e^{-\tau^{2}} + \frac{1}{8(1+\tau^{2})} \left(\cos x \left(\sqrt{\tau} \right) + \ln \left(1 + \left| y \left(\sqrt{\tau} \right) \right| \right) + \sin z \left(\sqrt{\tau} \right) \right) + \frac{1}{7}e^{-\tau^{2}} \\ + \frac{1}{8(1+\tau^{2})} \left(x \left(\sqrt{\tau} \right) + y \left(\sqrt{\tau} \right) + z \left(\sqrt{\tau} \right) \right) \\ + \arctan \left(\int_{0}^{\sqrt{\tau}} \left(\frac{v}{e^{\tau}} \right) \left(\frac{x(v^{2})|\sin y(v^{2})||\cos z(v^{2})|}{(1+x^{2}(v^{2}))(1+\sin^{2}y(v^{2}))(1+\cos^{2}z(v^{2}))} \right) dv \right), \\ y(\tau) = \frac{\tau^{2}}{5(1+\tau^{2})} + \frac{\tau^{2}}{8(1+\tau^{4})} \left(\cos x \left(\tau \right) + \ln \left(1 + \left| y \left(\tau \right) \right| \right) + \sin z \left(\tau \right) \right) + \frac{1}{7}e^{-\tau^{2}} \\ + \frac{\tau^{2}}{8(1+\tau^{4})} \left(x \left(\tau \right) + y \left(\tau \right) + z \left(\tau \right) \right) \\ + \sin \left(\int_{0}^{\tau} \left(\frac{v}{e^{\tau^{2}}} \right) \left(\frac{y^{2}(v)(1+\cos^{2}x(v))(1+\sin^{2}z(v))}{(1+y^{2}(v))(1+\sin^{2}z(v))} \right) dv \right), \\ z(\tau) = \frac{1}{5\sqrt{1+\tau^{2}}} + \frac{\tau^{2}}{8(1+\tau^{3})} \left(\cos x \left(\tau \right) + \ln \left(1 + \left| y \left(\tau \right) \right| \right) + \sin z \left(\tau \right) \right) + \frac{1}{7}e^{-\tau^{2}} \\ + \frac{\tau^{2}}{8(1+\tau^{3})} \left(x \left(\tau \right) + y \left(\tau \right) + z \left(\tau \right) \right) \\ + \ln \left(1 + \int_{0}^{\tau^{2}} \left(\frac{\sqrt{v}}{e^{\tau^{3}}} \right) \left(\frac{x^{2}|\cos y(v)| + y^{2}|\cos z(v)| + z^{2}|\cos x(v)|}{(1+x^{2}(v^{2}))(1+z^{2}(v^{2}))} \right) dv \right) \end{cases}$$

Here

$$h_{1}(\tau, x, y, z) = \frac{1}{8(1+\tau^{2})} \left(\cos x + \ln(1+|y|) + \sin z\right),$$

$$h_{2}(\tau, x, y, z) = \frac{\tau^{2}}{8(1+\tau^{4})} \left(\cos x + \ln(1+|y|) + \sin z\right),$$

$$h_{3}(\tau, x, y, z) = \frac{\tau^{2}}{8(1+\tau^{3})} \left(\cos x + \ln(1+|y|) + \sin z\right),$$

$$f_{1}(\tau, x, y, z, m) = \frac{1}{7}e^{-\tau^{2}} + \frac{1}{8(1+\tau^{2})}(x+y+z) + \frac{m}{2},$$

$$f_{2}(\tau, x, y, z, m) = \frac{1}{7}e^{-\tau^{2}} + \frac{\tau^{2}}{8(1+\tau^{4})}(x+y+z) + \frac{m}{2},$$

$$f_{3}(\tau, x, y, z, m) = \frac{1}{7}e^{-\tau^{2}} + \frac{\tau^{2}}{8(1+\tau^{3})}(x+y+z) + \frac{m}{2},$$

$$g_{1}(\tau, v, x, y, z) = \left(\frac{v}{e^{\tau}}\right) \frac{x|\sin y|\cos z|}{(1+x^{2})(1+\sin^{2} y)(1+\cos^{2} z)},$$

$$g_{2}(\tau, v, x, y, z) = \left(\frac{v}{e^{\tau^{2}}}\right) \frac{y^{2}(1+\cos^{2} x)(1+\sin^{2} z)}{(1+y^{2})(1+\sin^{2} x)(1+\cos^{2} z)},$$

$$g_{3}(\tau, v, x, y, z) = \left(\frac{\sqrt{v}}{e^{\tau^{3}}}\right) \frac{x^{2}|\cos y| + y^{2}|\cos z| + z^{2}|\cos x|}{(1+x^{2})(1+y^{2})(1+z^{2})},$$

and

$$A_{1}(\tau) = \frac{1}{5}e^{-\tau^{2}}, A_{2}(\tau) = \frac{\tau^{2}}{5(1+\tau^{2})}, A_{3}(\tau) = \frac{1}{5\sqrt{1+\tau^{2}}}, \varepsilon_{1}(\tau) = \sqrt{\tau}, \varepsilon_{2}(\tau) = \tau,$$

$$\varepsilon_{3}(\tau) = \tau, \sigma_{1}(\tau) = \tau^{2}, \sigma_{2}(\tau) = \tau, \sigma_{3}(\tau) = \tau, \beta_{1}(\tau) = \sqrt{\tau}, \beta_{2}(\tau) = \tau, \beta_{3}(\tau) = \tau^{2},$$

$$\theta_{1}(\tau) = \arctan \tau, \ \theta_{2}(\tau) = \sin \tau, \theta_{3}(\tau) = \ln(1+\tau),$$

$$\phi_{1}(\tau, v, u) = \frac{1}{4}(\tau + v + u), \phi_{2}(\tau, v, u) = \frac{1}{4}(\tau + v + u), \phi_{3}(\tau, v, u) = \frac{1}{4}(\tau + v + u),$$

$$\varphi_{1}(\tau) = \frac{\tau}{2}, \varphi_{2}(\tau) = \frac{\tau}{2}, \varphi_{3}(\tau) = \frac{\tau}{2}.$$

Clearly conditions (*I*) and (*III*) are valid. Obviously we have, $M_i = \frac{1}{5}$, $\delta_i = 1$ and $\alpha_i = 1$, i = 1, 2, 3. Clearly, $\left| f_i(\tau, 0, 0, 0, 0, 0) \right| = \frac{1}{7}e^{-\tau^2}$, i = 1, 2, 3, are bounded and $M_i' = \frac{1}{7}$. Also $h_i(\tau, 0, 0, 0)$, i = 1, 2, 3, are bounded and $M_i'' = \frac{1}{8}$. Therefore, the condition (*IV*) is valid.

Obviously, f_i and h_i , i = 1, 2, 3, are continuous. Let $\tau \in \mathbb{R}_+$, then we get

$$\left| f_{1}(\tau, x, y, z, m) - f_{1}(\tau, u, v, w, n) \right| = \left| \frac{\frac{1}{8(1+\tau^{2})} (x+y+z) + \frac{m}{2}}{-\left(\frac{1}{8(1+\tau^{2})} (u+v+w) + \frac{n}{2}\right)} \right| \\
\leq \frac{1}{8(1+\tau^{2})} \left(|x-u| + |y-v| + |z-w| \right) + \frac{1}{2} |m-n| \\
\leq \frac{1}{8} \left(|x-u| + |y-v| + |z-w| \right) + \frac{1}{2} |m-n| \\
= \frac{1}{2} \times \frac{1}{4} \left(|x-u| + |y-v| + |z-w| \right) + \frac{1}{2} |m-n| \\
= \frac{1}{2} \phi_{1} \left(|x-u|, |y-v|, |z-w| \right) + \varphi_{1} (|m-n|) . \tag{32}$$

Similarly, we obtain the following two relations:

$$\begin{aligned} \left| f_{2}(\tau, x, y, z, m) - f_{2}(\tau, u, v, w, n) \right| &\leq \frac{1}{2} \phi_{2} \left(|x - u|, |y - v|, |z - w| \right) + \varphi_{2} \left(|m - n| \right), \\ \left| f_{3}(\tau, x, y, z, m) - f_{3}(\tau, u, v, w, n) \right| &\leq \frac{1}{2} \phi_{3} \left(|x - u|, |y - v|, |z - w| \right) + \varphi_{3} \left(|m - n| \right). \end{aligned}$$

If $\tau \in \mathbb{R}_+$ and $x, y, z, u, v, w \in \mathbb{R}$ with $|y| \ge |v|$, then we get

$$\begin{aligned} \left| h_{1}\left(\tau,x,y,z\right) - h_{1}\left(\tau,u,v,w\right) \right| &\leq \frac{1}{8\left(1 + \tau^{2}\right)} \left| \cos x - \cos u \right| \\ &+ \frac{1}{8\left(1 + \tau^{2}\right)} \left| \ln\left(1 + \left|y\right|\right) - \ln\left(1 + \left|v\right|\right) \right| \\ &+ \frac{1}{8\left(1 + \tau^{2}\right)} \left| \sin z - \sin w \right| \\ &\leq \frac{1}{8} \left| x - u \right| + \frac{1}{8} \left| \ln\left(\frac{1 + \left|y\right|}{\left(1 + \left|v\right|\right)} \right| + \frac{1}{8} \left| z - w \right| \\ &\leq \frac{1}{8} \left| x - u \right| + \frac{1}{8} \ln\left(1 + \left|y - v\right|\right) + \frac{1}{8} \left| z - w \right| \\ &\leq \frac{1}{8} \left(\left| x - u \right| + \left| y - v \right|\right) + \left| z - w \right| \right) \\ &= \frac{1}{2} \times \frac{1}{4} \left(\left| x - u \right| + \left| y - v \right| + \left| z - w \right| \right) \\ &= \frac{1}{2} \phi_{1} \left(\left| x - u \right| + \left| y - v \right| + \left| z - w \right| \right). \end{aligned}$$

Similarly, we obtain the following two relations:

$$\begin{aligned} \left| h_{2}\left(\tau, x, y, z\right) - h_{2}\left(\tau, u, v, w\right) \right| & \leq & \frac{1}{2} \phi_{2} \left(\left| x - u \right|, \left| y - v \right|, \left| z - w \right| \right), \\ \left| h_{3}\left(\tau, x, y, z\right) - h_{3}\left(\tau, u, v, w\right) \right| & \leq & \frac{1}{2} \phi_{3} \left(\left| x - u \right|, \left| y - v \right|, \left| z - w \right| \right). \end{aligned}$$

Therefore, the condition (V) is valid.

Clearly, g_i , i = 1, 2, 3, are continuous. For every τ , $v \in \mathbb{R}_+$ and $x, y, z \in \mathbb{R}$, by easy calculations we get

$$|g_{1}(\tau, v, x, y, z) - g_{1}(\tau, v, u, v, w)| \leq \frac{2v}{e^{\tau}},$$

$$|g_{2}(\tau, v, x, y, z) - g_{2}(\tau, v, u, v, w)| \leq \frac{8v}{e^{\tau^{2}}},$$

$$|g_{3}(\tau, v, x, y, z) - g_{3}(\tau, v, u, v, w)| \leq \frac{6\sqrt{v}}{e^{\tau^{3}}},$$

Hence,

$$\lim_{\tau \to \infty} \int_{0}^{\beta_{1}(\tau)} \left| \begin{array}{c} g_{1}(\tau, v, x(\sigma_{1}(v)), y(\sigma_{1}(v)), z(\sigma_{1}(v))) \\ -g_{1}(\tau, v, u(\sigma_{1}(v)), v(\sigma_{1}(v)), w(\sigma_{1}(v))) \end{array} \right| dv \le \lim_{\tau \to \infty} \int_{0}^{\sqrt{\tau}} \frac{2v}{e^{\tau}} dv = \lim_{\tau \to \infty} \frac{\tau}{e^{\tau}} = 0,$$

$$\lim_{\tau \to \infty} \int_{0}^{\beta_{2}(\tau)} \left| \begin{array}{c} g_{2}(\tau, v, x(\sigma_{2}(v)), y(\sigma_{2}(v)), z(\sigma_{2}(v))) \\ -g_{2}(\tau, v, u(\sigma_{2}(v)), v(\sigma_{2}(v)), w(\sigma_{2}(v))) \end{array} \right| dv \le \lim_{\tau \to \infty} \int_{0}^{\tau} \frac{8v}{e^{\tau^{2}}} dv = \lim_{\tau \to \infty} \frac{4\tau^{2}}{e^{\tau^{2}}} = 0,$$

$$\lim_{\tau \to \infty} \int_{0}^{\beta_{3}(\tau)} \left| \begin{array}{c} g_{3}(\tau, v, x(\sigma_{3}(v)), y(\sigma_{3}(v)), z(\sigma_{3}(v))) \\ -g_{3}(\tau, v, u(\sigma_{3}(v)), v(\sigma_{3}(v)), w(\sigma_{3}(v)) \end{array} \right| dv \le \lim_{\tau \to \infty} \int_{0}^{\tau^{2}} \frac{6\sqrt{v}}{e^{\tau^{3}}} dv = \lim_{\tau \to \infty} \frac{4\tau^{3}}{e^{\tau^{3}}} = 0,$$

Also, we get

$$\begin{split} \left| \int_{0}^{\beta_{1}(\tau)} g_{1}\left(\tau, v, x\left(\sigma_{1}\left(v\right)\right), y\left(\sigma_{1}\left(v\right)\right), z\left(\sigma_{1}\left(v\right)\right)\right) dv \right| &\leq \int_{0}^{\sqrt{\tau}} \frac{v}{e^{\tau}} dv = \frac{\tau}{2e^{\tau}}, \\ \left| \int_{0}^{\beta_{2}(\tau)} g_{2}\left(\tau, v, x\left(\sigma_{2}\left(v\right)\right), y\left(\sigma_{2}\left(v\right)\right), z\left(\sigma_{2}\left(v\right)\right)\right) dv \right| &\leq \int_{0}^{\tau} \frac{4v}{e^{\tau^{2}}} dv = \frac{2\tau^{2}}{e^{\tau^{2}}}, \\ \left| \int_{0}^{\beta_{3}(\tau)} g_{3}\left(\tau, v, x\left(\sigma_{3}\left(v\right)\right), y\left(\sigma_{3}\left(v\right)\right), z\left(\sigma_{3}\left(v\right)\right)\right) dv \right| &\leq \int_{0}^{\tau^{2}} \frac{3\sqrt{v}}{e^{\tau^{3}}} dv = \frac{2\tau^{3}}{e^{\tau^{3}}}. \end{split}$$

Hence

$$M_{1}^{""} = \sup \left\{ \frac{\tau}{2e^{\tau}} : \mathbb{R}_{+} \right\} = \frac{1}{2e'},$$

$$M_{2}^{""} = \sup \left\{ \frac{\tau^{2}}{2e^{\tau^{2}}} : \mathbb{R}_{+} \right\} = \frac{2}{e'},$$

$$M_{2}^{""} = \sup \left\{ \frac{2\tau^{3}}{e^{\tau^{3}}} : \mathbb{R}_{+} \right\} = \frac{2}{e'}.$$
(33)

Therefore, the condition (VI) is valid.

Now from (33) along with $M_i = \frac{1}{5}$, $M_i' = \frac{1}{7}$, $M_i'' = \frac{1}{8}$ and $\delta_i = 1$, (i = 1, 2, 3) in (16), we get

$$\frac{1}{5} + \frac{1}{7} + \frac{1}{8} + \frac{1}{4e} < \frac{\kappa}{4},$$

$$\frac{1}{5} + \frac{1}{7} + \frac{1}{8} + \frac{1}{e} < \frac{\kappa}{4}.$$

Hence, the condition (*VII*) is valid for each $\kappa > \frac{131}{70} + \frac{4}{e}$. Thus, all the assumptions from (*I*) – (*VII*) are satisfied. Hence by Theorem 3.1 we conclude that the system (11) has a solution in $BC(\mathbb{R}_+) \times BC(\mathbb{R}_+) \times BC(\mathbb{R}_+)$.

References

- [1] R. P. Agarwal, N. Hussain and M. A. Taoudi, Fixed Point Theorems in Ordered Banach Spaces and Applications to Nonlinear Integral Equations, Abstr. Appl. Anal., Volume 2012, Article ID 245872, 15 pages.
- A. Aghajani, R. Allahyari, M. Mursaleen, A generalization of Darbo's theorem with application to the solvability of systems of integral equations, J. Comput. Appl. Math., 260 (2014) 68-77.
- [3] A. Aghajani, J. Banas, N. Sabzali, Some generalizations of Darbo's fixed point theorem with applications, Bull. Belg. Math. Soc. Simon Stevin., 20 (2) (2013) 345-358.
- [4] A. Aghajani, N. Sabzali, Existence of coupled fixed points via measure of non-compactness and applications, J. Nonlinear Convex Anal., Vol.14, No.5 (2014) 941-952.
- [5] A. Aghajani, A. Shole Haghighi, Existence of solutions for a class of functional integral equations of Volterra type in two variables via measure of non-compactness, IJST, 2014, 38A1: 1-8.
- [6] R. R. Akmerov, M. I. Kamenski, A. S. Potapov, A. E. Rodkina, B. N. Sadovskii, Measure of non-compactness and condensing operators, Birkhauser-Verlag, Basel, 1992.
- [7] R. Allahyari, R. Arab, and A. Shole Haghighi, Existence of solutions for some classes of integro-differential equations via measure of non-compactness, Electron. J. Qual. Theo., No.41 (2015), 1-18.
- R. Arab, Some fixed point theorems in generalized Darbo's fixed point theorem and the existence of solutions for system of integral equations, J. Korean Math. Soc., 52 (1) (2015), 125-139.
- [9] J. Banas, On measures of non-compactness in Banach spaces, Comment. Math. Univ. Carolin., 21 (1980) 131-143.
- J. Banas, Measures of non-compactness in the spaces of continuous tempered functions, Demonstration Math., 14 (1981) 127-133.
- [11] J. Banas, K. Goebel, Measures of non-compactness in Banach space, Lecture Notes in Pure and Applied Mathematics, vol.60, Marcel Dekker, New York, 1980.
- [12] V. Berinde, M. Borcut, Tripled fixed point theorems for contractive type mapping in partially ordered metric spaces, Nonlinear Anal., 65 (2006) 1379-1393.
- [13] G. Darbo, Punti uniti in trasformazioni a codomio non compatto, Rend. Sem. Mat. Uni. Padova, 24 (1955) 84-92.
- [14] J. G. Falset, K. Latrach, On Darbo-Sadovskii's fixed point theorems type for abstract measure of (weak) non-compactness, Bull. Belg. Math. Soc. Stevin 22 (2015) 761-779.

- [15] A. Hajji, A generalization of Darbo's fixed point and common solutions of equations in Banach spaces, Fixed Point Theory Appl., 2013, 2013: 62.
- [16] V. Karakaya, M. Mursaleen, N. E. H. Bouzara, Measure of non-compactness in the study of solutions for a system of integral equations, arXiv : 1507.00185 v1 [math. FA] 1 jul 2015.
- [17] K. Kuratowski, Sur les espaces complets, Fund. Math.,15 (1930) 301-309.
- [18] M. Mursaleen, S. A. Mohiuddine, Applications of measure of non-compactness to the infinite system of differential equations in l_p spaces, Nonlinear Anal., 75 (2012) 2111 – 2115. [19] N. Hussain, V. Parvaneh, J.R. Roshan, Fixed point results for G- α -contractive maps with application to boundary value problems,
- The Scientific World J., Vol. 2014, Article ID 585964.
- [20] N. Hussain, A.R. Khan and Ravi P. Agarwal, Krasnosel'skii and Ky Fan type fixed point theorems in ordered Banach spaces, J. Nonlinear Convex Anal., 11 (3), (2010), 475-489.
- [21] V. Rakocevic, measure of noncompactness and some applications, Filomat (Nis) 12:2 (1998), 87-120.
- [22] J. R. Roshan, Existence of solutions for a class of system of functional integral equation via measure of non-compactness, J. Comput. Appl. Math., 313 (2017) 129-141.
- [23] A. Samadi, M. B. Ghaemi, An extention of Darbo's fixed point theorem and its applications to coupled fixed point and integral equations, Filomat 28: 4 (2014) 879-886.