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A Fixed Point Theorem for Mappings Satisfying
a New Common Range Property
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Abstract. In this paper a general fixed point theorem for two pairs of mappings satisfying a new type of
common range property without limit of sequences in metric spaces are proved.

1. Introduction and Preliminaries

Let X be anon empty setand A, S : X — X two self mapping on X. A point xeX is a coincidence point of
A and S if w = Ax = Sx for some xeX.

The set of all coincidence points of A and Sis denoted by C(4, S), and w is said to be a point of coincidence
of A and S.

Definition 1.1. [7] Let X be a nonempty set and A and S be two self mappings on X. A and S are weakly
compatible if ASu = SAu for all ueC(A, S).

In 2011, Sintunavarat and Kumam [12] introduced the notion of common limit range property in metric
spaces.

Definition 1.2. [12] A pair of self mappings A and S on a metric space (X,d) is said to satisfy common
limit range property with respect to S, denoted CLRs) property if there exists a sequence x,eX such that

lim Ax, = lim Sx, = teS(X).

n—oo n—oo

Recently, Imdad et all. [3] extend this notion of common limit range property for two pairs of mappings.
Definition 1.3. [3]. Two pairs (A, S) and (B, T) of self mappings on a metric space (X,d) satisfy common
limit range property with respect to (ST), denoted CLRs ) property if there exist two sequences x,, and y,eX
such that
lim Ax, = lim Sx, = lim By, = nli_)mm Ty, = ueS(X) N T(X).

n—oo n—oo n—oo

Some fixed point results for two pairs of mappings with theorems with CLRsy and CLRs,r) - properties
are obtained in [4],[5],[6] and other papers. Quite recently, a new type of common limit range property is
introduced in [11].

Definition 1.4. [11] Let A, S and T be self mappings of a metric space (X,d). The pair (A,S) is said to
satisfy a common limit range property with respect to T, denoted by CLRs)r - property if there exist a
sequence x, such that
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nli_r)rlo Ax, = nlLH}x, Sx, = ueS(X) N T(X)
Remark 1.1. In all definitions 1.2 — 1.4 there exists some convergent sequences in X. We introduce a new
type of common range property without limits of sequences.

Definition 1.5. (A, S) and T satisfy CRP4,5)r - coincidence range property with respect to T , if there
exists ueC(A, S), with z = AueT(X).

Example 1.1. Let X = (1, c0) with the usual metric, and Ax = (x? + 1)/2,Sx = (x + 1)/2 and Tx = x, then
T(X) =[1,00) , and Sx = Ax implies x = 1. As a consequence, Al = 51 =z = 1eT(X) = [1, o).

2. Implicit relations

Several classical fixed point theorems and common fixed point theorems have been unified considering
a general condition, by an implicit function in [9] and [10] and other papers. In 2008, Ali and Imdad [2] had
introduced a new class of implicit relations. We will introduce a new class of implicit relations, similarly
with [2].

Definition 2.1. Let F¢ be a family of functions F(ty, , t5) : RS - R satisfying : (F1): F(¢,0,0,t,t,0) > 0, for
all t > 0, (F2): F(t,t,0,0,t,t) > 0, for all t > 0. The purpose of this paper is to prove a general fixed point
theorem for two pairs of mappings satisfying CRP (4 s)r - property and an implicit relation.

Example 2.1. F(t3, ..., ts) = t1 — k.max{ty, ..., ts} , where ke[0, 1) .

Example 2.2. F(t, ..., ts) = k.max{ty, t3, ts, %3¢}, where ke[0, 1).

Example 2.3. F(ty, ..., ts) = t; — k.max{ts, t3;“t4, ts;tf’ }, where ke[0,1) .

Example 2.4. F(t1, ..., ts) = t1 — a.ty — b.max{ts, ts} — c.max{ts, ts}, where a,b,c > 0anda+b+c < 1.

Example 2.5. F(t3, ..., ts) = 11 — a.max{ty, t3,t1} — (1 — a)(a.ts + b.tg), where ae(0,1) ,a,b > 0anda+b < 1.

Example 2.6. F(t3,...,t¢) = 14 —a.ty — fjfﬁ, wherea,b>0anda+2b < 1.

Example 2.7. F(t3, ..., ts) = t% —ti(a.ty + b.t; + c.ty) — d.ts.tg, wherea,b,c,d >0anda+b+c+d < 1.
Example 2.8. F(t3, ..., ts) = t1 — max{c.tp, c.t3,c.ts,a.t5 + b.ts}, where a, b, ¢ > 0 and max{c,a + b} < 1.

The purpose of this paper is to prove a general fixed point theorem for two pair of mappings satisfiying

CRP 4 57 - properties without the use of limits of mappings.

3. Main result:

Lemma 3.1 [1]. Let f,g be two weakly compatible mappings of a non empty set X. If f and g have a
unique point w of coincidence where w = fx = gx , for that xeX, then w is the unique common fixed point
of fand g.

Theorem 3.2 Let A, B, S, T be self mappings of a metric space such that: (3.1)F(d(Ax, By)), d(Sx, Ty),
d(Sx, Ax),d(Ty, By),d(Sx, By), d(Ax, Ty)) < 0 for all x, yeX and some FeFc .

If (A, S) and T satisfy CRP s s)r property then C(B, T) # ®. Moreover, if (A, S) and (B, T) are two pairs of
weakly compatible mappings, then A, B, S, and T have a unique common fixed point.

Proof: Since (A, S) and T satisfy CRP 4 s)r -property, there exist veX such that z = Av = Sv with zeT(X) .
Hence, there exists ueX such that z = T(u).

By 3.1. for x = vand y = u we obtain: F(d(Av, Bu),d(Sv, Tu), d(Sv, Av) ,d(Tu, Bu), d(Sv, Bu), d(Av, Tu)) <0,
F(d(z, Bu),0,0,d(z, Bu),d(z, Bu),0) < 0, A contradiction with (F1) if d(z, Bu) > 0, hence d(z, Bu) = 0. Which
implies that z = Bu = Tu. And Cg 1) # @. Therefore z = Av = Sv = Tu = Bu. Therefore, z is a common point
of coincidence of (A, S) and (B, T).

We prove that z is the unique point of coincidence for A and S. Suppose that t = Aw = Bw for some weX.
By 3.1 we obtain for x = w and y = u that F(d(Av, Bu), d(Sw, Tu), d(Sw, Aw) , d(Tu, Bu), d(Sw, Bu), d(Aw, Tu)) <
0, F(d(t,z),d(t,z),0,0,d(z,t),d(z,t)) < 0. A contradiction of (F2) if d(z,t) > 0. Which implies d(z,t) = 0, i.e.
z = t. And z is the unique point of coincidence of A and S. Similarly z is the unique point of coincidence,
moreover, if (A,S) and (B, T) are weakly compatible, by Lemma 3.1, z is the unique common fixed point of
A,B,S,T.
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Remark 3.3: For the proof of this theorem we have to do the followings steps:

Step 1. Solve the equation Sx = Ax on X and establish C(A,S) = {z|lxeX and Sx = Ax,z = Ax} . If
C(A, S) = @ the theorem is not applicable.

Step 2. If C(A, S) # ® we have to select z from C(A, S) such that exists an xeX such that T(x) = z. Asa
consequence, A, S, T satisfy the CRP4 sy property.

Step 3. Verify if the pairs (4, S) and (B, T) are weakly compatible. L.e: solve the Az = 5z,zeC(A, S) and
similarly, for (B, T) : solve the Bg = Tq , qeC(B, T). If one of those pairs are not weakly compatible, the
theorem can not be applied. Stop.

Step 4. If the relation 3.1 is satisfied then, by Theorem 3.1, A, S, B, T have a unique fixed point: z.

Example 3.4 Let x = [0, 1] be a metric space with d, the usual metricand Ax = 0, Sx = 15, Bx = %, Tx =x.
If Ax = Sx thenx=0and C(A4, S) = {0}. Then, z = 0, zeT(X) = X. Hence,(4, S) and T satisfy CRP 4 syr-property.

Moreover, ASO = SA0 = 0,and BT0 = TB0O = 0, hence (4, S) and (B, T) are weakly compatible. Otherhand,

d(Ax,By) = %, d(Ty, By) 23—y, which implies, d(Ax,By) < k.d(Ty, By), where ke[%, 1). Then d(Ax, By) <
k.max{d(Sx, Ty),d(Sx, Ax)},d(Ty, By), d(Sx, By), d(Ax, Ty), with ke[%, 1]).
By Theorem 3.2, and Example 2.1, A,B,S and T have a unique common fixed point z = 0.

Remark 3.4 By Theorem 3.2 and example 2.2-2.8 we can obtain new particular results.
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