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Abstract. The theory of finite topological spaces can be used to investigate deep well-known problems
in Topology, Algebra, Geometry and Artificial Intelligence. To represent uncertainty knowledge of a finite
topological space, two kinds of measurement of a finite topological space are first introduced. Firstly, a
kind of granularity of a finite topological space is defined, and properties of the granularity are explored.
Secondly, relationships between the belief and plausibility functions in the Dempser-Shafer theory of
evidence and the interior and closure operators in topological theory are established. The probabilities
of interior and closure of sets construct a pair of belief and plausibility functions and its belief structure.
And, for a belief structure with some properties, there exists a probability and a finite topology such that
the belief and plausibility functions defined by the given belief structure are, respectively, the belief and
plausibility functions by the topology. Then a necessary and sufficient condition for a belief structure to be
the belief structure induced by a finite topology is presented.

1. Introduction

The theory of finite topological spaces is interesting, which can be used to investigate deep well-known
problems in Topology, Algebra and Geometry. In 1937, Alexandroff paid attention to the finite topological
spaces, and presented the relationships between finite topological spaces and finite partially ordered sets
(posets) [1]. In 1966, Stong discussed the combinatorics of finite topological spaces and explained their
homotopy types [27]. In the same year, McCord discovered the relationships between finite topological
spaces and compact polyhedra [22]. Then, a few interesting papers on finite topological spaces appeared
[12, 15, 28]. In 2003, May synthesized the most important ideas on finite topological spaces known until
that time, who also noted that Stong’s combinatorial point of view and the bridge constructed by McCord
could be used together to attack problems in Algebraic Topology using finite spaces [19–21]. Afterward,
more researchers explored the theory of finite topological spaces [2–6, 8, 23]. Moreover, the results about
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finite topological spaces can be applied to graph theory [9], and finite topological spaces have relationships
with toric varieties [7].

The definition of granulation was first introduced by Zadeh [31] in 1979. To present characterizations
of the granulation, granular computing was introduced [32, 33]. The granular computing contains all the
results on granulations. The granulation presents a more visual and easily understandable description for
a partition or covering on the universe. The definitions of granulation of partition and covering have been
presented to evaluate uncertainty of a knowledge from an information system [10, 16–18, 26, 29]. Finite
topology is a covering with topological structure, which can be used to characterize the knowledge from
an information system [30]. Then it is necessary to define a granularity of a finite topology to evaluate
uncertainty of the knowledge by the topology.

The concept of lower and upper probabilities was presented by Dempster in 1967 [25]. In 1976, it was
extended by Shafer as a theory, i.e. the Dempster-Shafer theory of evidence or the theory of belief function,
which is a generalization of Bayesian theory of subjective judgment. The Dempster-Shafer theory is one of
the methods used to model and manipulate uncertain information. In Dempster-Shafer theory of evidence,
there exists a dual pair of uncertainty measures, the plausibility and belief functions. In the theory of
general topology, there exists a pair of operators, topological interior and closure operators. It seems that
there are some natural correspondences between the theory of evidence and the theory of general topology,
and it is interesting to construct relationships between the two theories.

The purpose of this paper is to characterize finite topological spaces by granulations and evidence
theory. In Section 2, we introduce a kind of granularity of a finite topological space, and present properties
of the granularity. In Section 3, we establish relationships between the plausibility and belief functions in
the Dempser-Shafer theory of evidence and the interior and closure operators in topological theory. The
probabilities of interior and closure of sets construct a pair of belief and plausibility functions and its belief
structure. Properties of the belief structure are also discussed. Conversely, for a belief structure with some
properties, there exists a probability and a finite topology such that the belief and plausibility functions
defined by the given belief structure are, respectively, the belief and plausibility functions by the finite
topology. Then a necessary and sufficient condition for a belief structure to be the belief structure induced
by a finite topology is presented.

2. On Measurement of a Finite Topological Space Based on Granules

A finite topological space is a topological space having only a finite number of points. A finite topological
space can be considered as a knowledge with topological structure in information field. Then it is meaningful
to discuss granulations of a finite topological space to evaluate the uncertainty of the knowledge by the
topological space. In this section, we discussed a kind of knowledge granulation of a finite topological
space. Firstly, we introduced a proposition about the minimal base in a finite topological space, which is
presented by Stong [27].

Proposition 2.1. ([27]) Let (X, τ) be a finite topological space. Then, there exists a unique minimal baseB = {(x)τ|x ∈
X} for the topology, where (x)τ = ∩{G ∈ τ|x ∈ G}.

Now, we give a definition of granularity of a finite topological space based on the minimal base.

Definition 2.2. Let (X, τ) be a finite topological space. Define a granularity of τ by
Gr(τ) =

∑
x∈X

|(x)τ |2

|X|3 .

According to Definition 2.2, we can obtain

Proposition 2.3. Let (X, τ) be a finite topological space.
(1) If (X, τ) is discrete, then Gr(τ) = 1

|X|2 .
(2) If (X, τ) is trivial, then Gr(τ) = 1.
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Proof. (1) If (X, τ) is discrete, then (x)τ = {x} for all x ∈ X. Thus
Gr(τ) =

∑
x∈X

|{x}|2

|X|3 = 1
|X|2 .

(2) If (X, τ) is trivial, then (x)τ = X for all x ∈ X. Hence
Gr(τ) =

∑
x∈X

|X|2

|X|3 = 1.

As a consequence of Proposition 2.3, we get the next corollary.

Corollary 2.4. Let (X, τ) be a finite topological space. Then 1
|X|2 ≤ Gr(τ) ≤ 1.

Proof. For each x ∈ X, {x} ⊆ (x)τ ⊆ X. It follows from Proposition 2.3 that 1
|X|2 ≤ Gr(τ) ≤ 1.

Proposition 2.5. Let τ1, τ2 be two topologies of X. If τ1 ⊆ τ2, then Gr(τ2) ≤ Gr(τ1).

Proof. Since τ1 ⊆ τ2, we deduce that (x)τ2 ⊆ (x)τ1 for all x ∈ X. It follows that |(x)τ2 | ≤ |(x)τ1 |. Therefore,

Gr(τ2) =
∑

x∈X

|(x)τ2 |
2

|X|3 ≤
∑

x∈X

|(x)τ1 |
2

|X|3 = Gr(τ1).

From Proposition 2.3, one can see that the granularity of τ has close relationships with the separability
of τ. By Proposition 2.5, if a topology is finer, then the granularity of the topology is greater.

Definition 2.6. Let (X, τ) be a finite topological space. Define a distinctive degree of τ by
GE(τ) =

∑
x∈X

|(x)τ |
|X|2 ( |X|

|(x)τ |
−
|(x)τ |
|X| ).

We have properties of GE(τ) as following

Corollary 2.7. Let (X, τ) be a finite topological space. Then
(1) Gr(τ) + GE(τ) = 1.
(2) 0 ≤ GE(τ) ≤ 1 − 1

|X|2 .
(3) If (X, τ) is discrete, then GE(τ) = 1 − 1

|X|2 .
(4) If (X, τ) is trivial, then GE(τ) = 0.

Proof. (1) By Definitions 2.2 and 2.6, we have that
Gr(τ) + GE(τ) =

∑
x∈X

|(x)τ |2

|X|3 +
∑

x∈X

|(x)τ |
|X|2 ( |X|

|(x)τ |
−
|(x)τ |
|X| )

=
∑

x∈X

|(x)τ |
|X|2

|X|
|(x)τ |

= 1.

(2) According to (1) and Corollary 2.4, we get that 0 ≤ GE(τ) ≤ 1 − 1
|X|2 .

(3)-(4) Combining (1) and Proposition 2.1, we have the conclusions.

Corollary 2.8. Let τ1, τ2 be two topologies of X. If τ1 ⊆ τ2, then GE(τ1) ≤ GE(τ2).

Proof. Since τ1 ⊆ τ2, we have that Gr(τ2) ≤ Gr(τ1). Then, by Corollary 2.7(1), we obtain that GE(τ1) =
1 − Gr(τ1) ≤ 1 − Gr(τ2) = GE(τ2).

Example 2.9. Let X = {a, b, c, d, e}. There exist four topologies on X as follows:
τ1 = {∅,X} is a trivial topology,
τ2 = {∅, {a, b, c}, {c}, {c, d, e},X},
τ3 = {∅, {a, b}, {a, b, c}, {c}, {c, d}, {e}, {a, b, c, d}, {a, b, e}, {a, b, c, e}, {c, e}, {c, d, e},X},
τ4 is a discrete topology.

It is easy to have τ1 ⊆ τ2 ⊆ τ3 ⊆ τ4. By Definition 2.2, we obtain
Gr(τ1) = 52

53 + 52

53 + 52

53 + 52

53 + 52

53 = 1,
Gr(τ2) = 32

53 + 32

53 + 12

53 + 32

53 + 32

53 = 37
125 ,
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Gr(τ3) = 22

53 + 22

53 + 12

53 + 22

53 + 12

53 = 14
125 ,

Gr(τ4) = 1
53 + 1

53 + 1
53 + 1

53 + 1
53 = 1

25 .
According to Definition 2.6, we have
GE(τ1) = 0, GE(τ2) = 88

125 , GEτ3 = 111
125 , GE(τ4) = 24

25 .
Then, it is clear that

Gr(τ1) ≥ Gr(τ2) ≥ Gr(τ3) ≥ Gr(τ4),
GE(τ1) ≤ GE(τ2) ≤ GE(τ3) ≤ GE(τ4).

3. On Measurement of a Finite Topology Based on Evidence Theory

In this section, we introduce the basic definitions of evidence theory, and construct relationships between
evidence theory and the theory of finite topological spaces.

3.1. Basic Notions Related to Evidence Theory

In this subsection, some basic definitions about evidence theory will be recalled.

Definition 3.1. ([25]) Let X be a non-empty finite set. A set function m : P(X) → [0, 1] is referred to as a
basic probability assignment or mass distribution if it satisfies

(M1) m(∅) = 0, (M2)
∑

A⊆X
m(A) = 1.

A set A ⊆ X with m(A) > 0 is referred to as a focal element. Denote M = {A ⊆ X|m(A) > 0}. (M,m) is called
a belief structure on X.

A pair of belief and plausibility functions can be derived in terms of the mass distribution.

Definition 3.2. ([11, 25]) A set function Bel : P(X)→ [0, 1] is referred to as a belief function if
Bel(A) =

∑
B⊆A

m(B),∀A ⊆ X.

A set function Pl : P(X)→ [0, 1] is referred to as a plausibility function,
Pl(A) =

∑
B∩A,∅

m(B),∀A ⊆ X.

Belief and plausibility functions based on the same belief structure are connected by the dual property
Pl(A) = 1 − Bel(Ac). Furthermore, Bel(X) ≤ Pl(A) for A ⊆ X.

Definition 3.3. Let Ω be a sample space, F is a σ-algebra on Ω. Then, a real-valued function P : F → [0, 1]
is referred to as a probability on (Ω,F ) if it satisfies

(1) for any X ∈ F , 0 ≤ P(X) ≤ 1,
(2) P(Ω) = 1,
(3) for any Xi ∈ F (i = 1, 2, · · · ), if Xi ∩ X j = ∅(i , j), then P(∪∞i=1Xi) =

∑
∞

i=1 P(Xi).
Moreover, (Ω,F ,P) is a probability space.

3.2. Measure Interior Operator and Closure Operator by Evidence Theory

In this subsection, the interior and closure operators in a finite topological space will be measured by
belief and plausibility functions. We firstly present three lemmas.

Lemma 3.4. Let (X, τ) be a finite topological space. Then, for any A ⊆ X:
i(A) = {x|(x)τ ⊆ A},
c(A) = {x|(x)τ ∩ A , ∅}.
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Proof. For any x0 ∈ i(A), there exists an open set B ∈ τ such that x0 ∈ B ⊆ A. Then (x0)τ ⊆ B ⊆ A. It follows
that x0 ∈ {x|(x)τ ⊆ A}. Hence i(A) ⊆ {x|(x)τ ⊆ A}. Conversely, for any x0 ∈ {x|(x)τ ⊆ A}, we have that (x0)τ ⊆ A.
By Proposition 2.1, (x0)τ is the minimal open set containing x0, which implies that x0 ∈ i(A). Therefore,
{x|(x)τ ⊆ A} ⊆ i(A). Consequently, i(A) = {x|(x)τ ⊆ A}.

For any y ∈ c(A), note that (y)τ is an open set containing y, we have that (y)τ ∩ X , ∅. Then c(A) ⊆
{x|(x)τ ∩A , ∅}. Conversely, for any y ∈ {x|(x)τ ∩A , ∅}, we obtain that (y)τ ∩A , ∅. Hence, for any open set
B containing y, we get that (y)τ ⊆ B. It follows that ∅ , (y)τ ∩A ⊆ B∩A. Therefore, y ∈ c(A), which implies
that {x|(x)τ ∩ A , ∅} ⊆ c(A). We can conclude that c(A) = {x|(x)τ ∩ A , ∅}.

In Lemma 3.4, we give interior and closure of a set by the neighborhoods in the minimal based.

Lemma 3.5. Let (X, τ) be a finite topological space. For any A ⊆ X, define j(A) = {x ∈ X|(x)τ = A}. Then:
(1) j(∅) = ∅,
(2) ∪A∈P(X) j(A) = X,
(3) A , B⇒ j(A) ∩ j(B) = ∅.

Proof. (1) For any x ∈ U, x ∈ (x)τ , ∅. Then x < j(∅), which follows that j(∅) = ∅.
(2) For any x ∈ X, x ∈ j((x)τ) ⊆ ∪A∈P(X) j(A). Hence X ⊆ ∪A∈P(X) j(A). Clearly, ∪A∈P(X) j(A) ⊆ X. Thus

∪A∈P(X) j(A) = X.
(3) For any x ∈ j(A), (x)τ = A , B, then x < j(B). We deduce that j(A) ∩ j(B) = ∅.

From Lemma 3.5, in a finite topological space (X, τ), { j(A) , ∅|A ⊆ X} constructs a partition of X. In the
following, we character interior and closure of a set by the family of set { j(A)|A ⊆ X}.

Lemma 3.6. Let (X, τ) be a finite topological space. Then, for any A ⊆ X,
(1) i(A) = ∪B⊆A j(B),
(2) c(A) = ∪B∩A,∅ j(B).

Proof. (1) For any x ∈ i(A), by Lemma 3.4, we get that (x)τ ⊆ A. Then x ∈ j((x)τ) ⊆ ∪B⊆A j(B). It follows
that i(A) ⊆ ∪B⊆A j(B). Conversely, for any x ∈ ∪B⊆A j(B), there exists a B0 ⊆ A such that x ∈ j(B0). Hence
(x)τ = B0 ⊆ A. According to Lemma 3.4, x ∈ i(A), which implies that ∪B⊆A j(B) ⊆ i(A). Consequently,
i(A) = ∪B⊆A j(B).

(2) For any x ∈ c(A), it follows from Lemma 3.4 that (x)τ ∩ A , ∅. Hence x ∈ j((x)τ) ⊆ ∪B∩A,∅ j(B). Then
c(A) ⊆ ∪B∩A,∅ j(B). Conversely, for any x ∈ ∪B∩A,∅ j(B), there exists a B0 ⊆ X such that B0 ∩ A , ∅ and
x ∈ j(B0). Hence (x)τ = B0. By Lemma 3.4, x ∈ c(A), which implies that ∪B∩A,∅ j(B) ⊆ c(A). We conclude that
∪B∩A,∅ j(B) = c(A).

According to Lemmas 3.5 and 3.6, we can measure interior and closure of a set by belief and plausibility
functions.

Theorem 3.7. Let (X,P(X),P) be a probability space, and τ a topology on X. For any A ⊆ X, define
Belτ(A) = P(i(A)), Plτ(A) = P(c(A)).

Then Belτ and Plτ are the belief and plausibility functions, respectively.

Proof. Define a set function mτ : P(X)→ [0, 1] by
mτ(A) = P( j(A)), A ∈ P(X).

Then mτ(∅) = P( j(∅)) = P(∅) = 0. And, by Lemma 3.5, we have∑
A∈P(X) mτ(A) =

∑
A∈P(X) P( j(A)) = P(∪A∈P(X) j(A)) = P(X) = 1,

Hence mτ is a mass distribution.
By Lemmas 3.5 and 3.6, we get
Belτ(A) = P(i(A)) = P(∪B⊆A j(B)) =

∑
B⊆A P( j(B)) =

∑
B⊆A mτ(B),

Plτ(A) = P(c(A)) = P(∪B∩A,∅ j(B)) =
∑

B∩A,∅ P( j(B)) =
∑

B∩A,∅mτ(B).
Thus Belτ and Plτ are the belief and plausibility functions, respectively.
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In particularly, in Theorem 3.7, if we take P(A) = |A|
|X| , then we can obtain

Corollary 3.8. Let (X, τ) be a finite topological space. For any A ⊆ X, define
Belτ(A) =

|i(A)|
|X| , Plτ(A) =

|c(A)|
|X| .

Then Belτ and Plτ are the belief and plausibility functions, respectively.

Proof. Define a set function P : P(X)→ [0, 1] by: for any A ⊆ X,
P(A) = |A|

|X| .
Then it is clear that P is a probability measurement. By Theorem 3.7, it is easy to get the corollary.

In the following, we employ an example to illustrate Theorem 3.7.

Example 3.9. Let X = {a, b, c, d}. τ = {∅, {a, b, c}, {c}, {c, d},X} is a topology on X. A probability measurement
P : P(X)→ [0, 1] is defined as follows:

P(∅) = 0, P({a}) = 1+
√

2
8 , P({b}) = 3

8 , P({c}) = 2−
√

2
8 , P({d}) = 2

8 ,
P(A) =

∑
{x∈A} P({x}) for all other A ⊆ X.

Then we have (a)τ = (b)τ = {a, b, c}, (c)τ = {c}, (d)τ = {c, d}. We also get i(∅) = ∅, i({a}) = i({b}) = i({d}) = ∅,
i({c}) = {c}, i({a, b}) = i({a, d}) = i({b, d}) = ∅, i({a, c}) = i({b, c}) = {c}, i({c, d}) = {c, d}, i({a, b, c}) = {a, b, c},
i({a, b, d}) = ∅, i({a, c, d}) = i({b, c, d}) = {c, d}. i({a, b, c, d}) = {a, b, c, d}.

Therefore, Belτ(∅) = P(i(∅)) = P(∅) = 0,
Belτ({a}) = P(i({a})) = P(∅) = 0,
Belτ({b}) = P(i({b})) = P(∅) = 0,
Belτ({c}) = P(i({c})) = P({c}) = 2−

√
2

8 ,
Belτ({d}) = P(i({d})) = P(∅) = 0,
Belτ({a, b}) = P(i({a, b})) = P(∅) = 0,
Belτ({a, c}) = P(i({a, c})) = P({c}) = 2−

√
2

8 ,
Belτ({a, d}) = P(i({a, d})) = P(∅) = 0,
Belτ({b, c}) = P(i({c})) = P({c}) = 2−

√
2

8 ,
Belτ({a, b, c}) = P(i({a, b, c})) = P({a, b, c}) = 6

8 ,
Belτ({a, b, d}) = P(i({a, b, d})) = P(∅) = 0,
Belτ({a, c, d}) = P(i({a, c, d})) = P({c, d}) = 4−

√
2

8 ,

Belτ({b, c, d}) = P(i({b, c, d})) = P({c, d}) = 4−
√

2
8 ,

Belτ(X) = P(i(X)) = P(X) = 1.

We present properties of the belief structure of the belief function Belτ and plausibility function Plτ in
the following Proposition 3.10.

Proposition 3.10. Let (X,P(X),P) be a probability space, and τ a topology on X. If P(A) > 0 for all A , ∅, then
the belief structure (M,mτ) of the belief function Belτ(A) = P(i(A)) and plausibility function Plτ(A) = P(c(A)) has
properties as follows:

(1) ∪M = X,
(2) for any A,B ∈ M, any x ∈ A ∩ B, there exists a G ∈ M such that x ∈ G ⊆ A ∩ B,
(3) for any B ∈ M, B could not be represented by the union of some elements inM\{B}.

Proof. M = {(x)τ|x ∈ X} = B. In deed, for any x ∈ X, x ∈ j((x)τ) , ∅. Hence mτ((x)τ) = P( j((x)τ)) > 0.
Then, (x)τ ∈ M. It follows that {(x)τ|x ∈ U} ⊆ M. Conversely, for any A ∈ M, mτ(A) = P( j(A)) > 0. Then
j(A) = {x|(x)τ = A} , ∅. It follows that there exists an x0 ∈ U such that (x0)τ = A. Hence A ∈ {(x)τ|x ∈ X}. We
can conclude thatM ⊆ {(x)τ|x ∈ X}.

SinceM is the minimal base of the topology τ, it is easy to obtain (1) and (2).
(3) If not, there exist x0, x1, x2, · · · , xm ∈ X such that ∪m

i=1(xi)τ = (x0)τ and (xi)τ , (x0)τ(i = 1, 2, · · · ,m). It is
clear that x0 ∈ (x0)τ = ∪n

i=1(xi)τ. Then there exists an i0 ∈ {1, 2, · · · ,m} such that x0 ∈ (xi0 )τ. Hence (x0)τ ∈ (xi0 )τ
and (xi0 )τ ⊆ (x0)τ. Thus (xi0 )τ = (x0)τ, which contradicts the fact (xi0 )τ , (x0)τ.
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3.3. Construct a Probability Space with a Topology from a Belief Structure

From Theorem 3.7, the probabilities of interior and closure of sets construct a pair of belief and plausibility
functions and its belief structure. Conversely, for a belief structure, there exist a probability and a finite
topology such that the belief and plausibility functions defined by the given belief structure are, respectively,
the belief and plausibility functions by the topology.

Theorem 3.11. Let m be a mass distribution on X, its belief structure be (M,m), and belief function and plausibility
function be Bel and Pl. Then the following are equivalent.

(1) M satisfies that (1a) ∪M = X, (1b) for any A,B ∈ M, any x ∈ A ∩ B, there exists a G ∈ M such that
x ∈ G ⊆ A ∩ B, (1c) for any B ∈ M, B could not be represented by the union of some elements inM\{B}.

(2) There exist a topology τ and a probability P : P(X) → [0, 1] with P(A) > 0 for all A , ∅ such that
Belτ(A) = P(i(A)) = Bel(A) and Plτ(A) = P(c(X)) = Pl(X) for all A ⊆ X.

Proof. (2)⇒ (1). According to (2), Belτ = Bel and Plτ = Pl. ThenM is the family of all the focal elements of
Belτ. By Proposition 3.10, we can obtain (1).

(1)⇒ (2). First, letM = {B1,B2, · · · ,Bn}. By (1a) and (1b),M is a base for a topology, which is denoted
by τ.

Second, for any A ⊆ X, define j(A) = {x ∈ X|(x)τ = A}. Then we have
(a1) j(∅) = ∅,
(a2) ∪n

i=1 j(Bi) = X,
(a3) Bi , B j ⇒ j(Bi) ∩ j(B j) = ∅,
(a4) for any B <M, j(B) = ∅,
(a5) for any Bi ∈ M, j(Bi) , ∅.

Now, we present the proof of (a1)-(a5).
(a1) For any x ∈ X, (x)τ , ∅, then x < j(∅). It follows that j(∅) = ∅.
(a2) For any x ∈ X, (x)τ is an open set containing x. Then, there exists a Bi ∈ M such that x ∈ Bi ⊆ (x)τ.

Since Bi is an open set and x ∈ Bi, we have (x)τ ⊆ Bi. It follows that (x)τ = Bi. Then x ∈ j(Bi), which implies
that X ⊆ ∪n

i=1 j(Bi). Consequently, X = ∪n
i=1 j(Bi).

(a3) For any x ∈ X, if x ∈ j(Bi), then (x)τ = Bi , B j. Hence x < j(B j). Similarly, for any x ∈ X, if x ∈ j(B j),
then x < j(Bi). Therefore, j(Bi) ∩ j(B j) = ∅.

(a4) For any B <M, suppose that j(B) , ∅. Then there exists an x ∈ X such that x ∈ j(B). By (a2), there
exists a Bi ∈ M such that x ∈ j(Bi). It follows that Bi = (x)τ = B, which contradicts the fact B <M.

(a5) For any Bi ∈ M, there exists an x ∈ Bi such that (x)τ = Bi. Or else, for any x ∈ Bi, (x)τ ⊆ Bi and
(x)τ , Bi. By (a2), we know that there exists a B j ∈ M such that x ∈ j(B j). It implies that (x)τ = B j ( Bi. Then
Bi is the union of some elements inM\{Bi}, which contradicts the condition (1c). Hence j(Bi) , ∅.

Third, define a real-value function P : P(X)→ [0, 1] by:
P(∅) = 0;
P({x}) =

m(Bi)
| j(Bi)|

, for any x ∈ X, x ∈ j(Bi);
P(A) =

∑
x∈A P({x}), for any A ⊆ X.

Then P is a probability on X. Initially, for any A ⊆ X, P(A) ≥ 0. Next, according to (a2), (a3) and (a5), we
have

P(X) = P(∪n
i=1 j(Bi)) =

∑n
i=1 P( j(Bi))) =

∑n
i=1
∑

x∈ j(Bi) P({x})

=
∑n

i=1
∑

x∈ j(Bi)
m(Bi)
| j(Bi)|

=
∑n

i=1 m(Bi) = 1.
Finally, for any A,B ⊆ X, if A ∩ B = ∅, then

P(A ∪ B) =
∑

x∈A∪B P({x}) =
∑

x∈A P({x}) +
∑

x∈B P({x}) = P(A) + P(B).
4) For any B < M, according to (a4), mτ(B) = P( j(B)) = P(∅) = 0 = m(B). For any B ∈ M, by (a5),

mτ(B) = P( j(B)) =
∑

x∈ j(B) P({x}) =
∑

x∈ j(B)
m(B)
| j(B)| = m(B).

Then we can have that
Belτ(A) = P(i(A)) = P(∪B⊆A j(B)) =

∑
B⊆A P( j(B)) =

∑
B⊆A m(B) = Bel(A),

Plτ(A) = P(c(A)) = P(∪B∩A,∅ j(B)) =
∑

B∩A,∅ P( j(B)) =
∑

B∩A,∅m(B) = Pl(A).
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By Theorem 3.11, we can know that a belief structure with some properties, if and only if there exist a
probability and a finite topology such that the belief and plausibility functions defined by the given belief
structure are, respectively, the belief and plausibility functions by the finite topology.

Example 3.12. Let X = {a, b, c, d, e, f }. A mass function m on X is defined as follows:

m({a, b}) = 1+
√

2
20 , m({b}) = 2−

√
2

10 , m({b, c}) = 2+
√

2
20 , m({b, c, d}) = 2

5 , m({e, f }) = 1
4 ,

m(A) = 0 for all other A ⊆ X.
Then the set of all the focal elements of m is M = {{a, b}, {b}, {b, c}, {b, c, d}, {e, f }}. Clearly, M satisfies the
conditions (1)-(3) in Theorem 3.11. We can have the topology τ with M as a base. We can deduce that
(a)τ = {a, b}, (b)τ = {b}, (c)τ = {b, c}, (d)τ = {b, c, d}, (e)τ = ( f )τ = {e, f }. Hence j({a, b}) = {a}, j({b}) = {b},
j({b, c}) = {c}, j({b, c, d}) = {d}, j({e, f }) = {e, f }, j(A) = ∅ for all other A ⊆ U.

Thus a probability on X is defined as:

P(∅) = ∅, P({a}) =
m({a,b})
| j({a,b})| = 1+

√
2

20 , P({b}) =
m({b})
| j({b})| = 2−

√
2

10 , P({c}) =
m({b,c})
| j({b,c})| = 2+

√
2

20 , P({d}) =
m({b,c,d})
| j({b,c,d})| = 2

5 ,

P({e}) = P({ f }) =
m({e, f })
| j({e, f })| = 1

8 , P(A) =
∑

x∈A P({x}).
Therefore,
mτ({b}) = P( j({b})) = P({b}) = 2−

√
2

10 = m({b}),

mτ({b, c}) = P( j({b, c})) = P({c}) = 2+
√

2
20 = m({b, c},

mτ({b, c, d}) = P( j({b, c, d})) = P({d}) = 2
5 = m({b, c, d}),

mτ({a, b}) = P( j({a, b})) = P({a}) = 1+
√

2
20 = m({a, b}),

mτ({e, f }) = P( j({e, f })) = P({e, f }) = P({e}) + P({ f }) = 1
8 + 1

8 = 1
4 = m({e, f }),

mτ(A) = P( j(A)) = P(∅) = 0 = m(A) for all other A ⊆ U.
Then we get that for any A ⊆ U,
Belτ(A) = P(i(A)) =

∑
B⊆A mτ(B) =

∑
B⊆A m(B) = Bel(A),

Plτ(A) = P(c(A)) =
∑

B∩A,∅mτ(B) =
∑

B∩A,∅m(B) = Pl(A).

4. Conclusion

In this paper, we have explored two kinds of measurement of a finite topological space. We have first
introduced a granularity of a finite topological space, and have presented properties of the granularity of a
finite topological space. We have also presented that the probability of interior and closure of sets construct
a pair of belied and plausibility functions. And for an belief structure with some properties, there exist a
probability and a finite topology such that the belief and plausibility functions defined by the given belief
structure are, respectively, the belief and plausibility functions by the finite topology. Then a necessary
and sufficient condition for a belief structure to be the belief structure induced by a finite topology have
been presented. In our future work, we will use the results in this paper to present a new algorithm for
knowledge discovery in information systems.
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