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Abstract. In this paper, we introduce #-convergent and ¥,-fundamental nets in uniform spaces and study
some their properties.

1. Introduction and Notations

The concept of statistical convergence was introduced by Fast [7] and Schonberg [21], and its topological
properties were discussed by Fridy [8], Salat [18] and Maddox [15]. Fridy [8] also introduced the concept
of statistically fundamental sequence and showed its equivalence to statistical convergence with respect to
numerical sequences. This problem on the uniform space was raised in [16]. The authors [16] showed that
if the sequence {x,},c is statistically convergent in a uniform space, then it is statistically fundamental.
Recently, Bilalov and Nazarova [3] gave the concept of F-fundamental sequences in uniform spaces and
obtain some results related with this concept.

Kostyrko et al. [12] introduced the notion of 7-convergence of sequences in a metric space and dis-
cussed some properties of such convergence. Recall that 7-convergence is a generalization of statistical
convergence. Some problems about the ideals or filters can be found in [4, 5, 13, 14].

We now recall some concepts of ideal and filter [3, 12, 17].

A family of sets 7 c 2N is said to be an ideal if (i) 0 € I; (i) A,B € T imply AUB € I; (i) A€ I,BC A
imply B € 1.

A family of sets ¥ c 2N is said to be a filter if (i) 0 ¢ F; (ii) A,B € F imply ANB € F; (iii) Ac F,ACB
imply Be F.

If filter ¥ satisfy the following axioms:

(iv) if Ay D Ay D ...and A, € F for all n € IN, then there exists {n,;;},,eny € IN; 11 < 112 < ... such that
U1 ((arnr Wme1] N A(m)) €F,

(v) F* (N\F) € ¥ for any finite subset F C IN,
then filter F is said to be a monotone closed filter and a right filter, respectively [2, 3].

An ideal I is said to be non-trivial if I # @ and 7 # IN. I c 2V is a non-trivial ideal if and only if
F=F(I)={IN\A: A € I}isa filter. A non-trivial ideal 7 is said to be admissible if I D {{n} : n € IN}. Filter
convergence was introduced in [1] and described in details in the paper [9]. Convergence with respect to
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set of filters was studied in the paper [11]. More information about filters and convergence with respect to
filters can be found in [1, 12, 17, 19, 20].

Now we recall the definition of uniformity on a set X [6, 10].

A = {(x,x) : x € X} is said to be a diagonal or the identity relation. If U C X x X is a relation, then
the inverse of this relation U™! is defined as the set of all pairs (x,y) such that (y,x) € U, thatis, U™ =
{(x,y) e XxX:(y,x)eU}. Let UV c X x X be some relation. The composition U o V of the relations
U and V is defined as the set of all pairs (x,z), we get (x,y) € V and (y,z) € U for some y € X, that is,
UoV ={(x,z):yeX, (x,y) e Vand (y,z) € U}. Let K ¢ X be some set and U c X x X be a relation.
Assume U [K] = {y € X: dx e K= (x, y) € U}. For K = {x} suppose U [K] = U [x]. Uniformity on the set X
is a non-empty family Q c 2X*X which satisfies the following axioms:

@AcU,vYUeQ;

(b)UeQimply U e O

(c) U e Qimply IV € Qsuch that VoV c U;

@AUVeQimplyUNV e

@UeQandUcCcVcXxXimply Ve Q.

(X, Q) is said to be a uniform space. Subfamily A C Q) of the uniformity Q) is said to be its base if any element
of the family Q contains an element of the family A.

Let (X, Q) be a uniform space. The topology 7, associated with a uniformity €2, is the family of all sets
K c X such that for each x € K there exists a U € Q such that U[x] c K

The uniform space (X, Q) is called Hausdorff if NyeqU = A. Let (X, Q) be a uniform space and {x,},en
be some sequence. {x,},cn is called fundamental if YU € (), there exists a 19 € IN such that (x,, x,,) € U for
all n,m > ny.

Throughout the paper (D, >) will denote a directed set and I a non-trivial proper ideal of D. A net is
a mapping from D to X and will be denoted by {s, : « € D}. Let D, = { € D : g > a} for &« € D. Then the
collection Fp = {A Cc D : A D D, for some a € D} forms a filterin D. Let Iy ={ACD: A° € ¥y}. Then Iisa
non-trivial ideal of D. A nontrivial ideal J of D will be said to be D-admissible if D, € ¥ for all « € D. A net
{sq : @ € D} in a topological space (X, 7) is called F -convergent to s € X if {a# € D : 5, € U} € F for any open
set U containing s.

2. Main Results

In this section, we introduce ¥ -convergent and ¥-fundamental nets in uniform spaces and study some
of their properties.
Now we introduce our main definitions.

Definition 2.1. Let (X, Q) be a uniform space and {s, : @ € D} be a net in X. The net {s, : a € D} is said to
be ¥ -convergent to s (in short, #-lims, = s) if for every U € Q, {a € D : (s4,5) € U} € . In other words, for
YUeQ,{aeD:s,elUls]}eF.

Definition 2.2. Let (X, Q) be a uniform space and {s, : @ € D} be anet in X. The net {s, : @ € D} is said to be
Fet-fundamental in X if for every U € Q, there exista ap € D such that{a € D : s, € U [sy,]} € F.

Lemma 2.3. Let (X, Q) be a Hausdorff uniform space and {s, : a € D} be a net in X. If there exists F-lim s, then it
is unique.

Proof. Let (X, Q) be a Hausdorff uniform space. Accordingly, {s} = NyeqU[s]. Let {s, : @ € D} be a net in
X. We prove that if there exists F-lims,, then it is unique. Supposed to contrary, that is, #-lims, has
two values t; # t,. Then it is obvious that there exists a Uy € Q such that t; ¢ U [f»] and £, ¢ U, [t1]. If
U = U; N Uy, then U € Q. Furthermore, t; ¢ U[f] and £, ¢ U[f]. Since U € Q, there exists a V € Q) such
that VoV c Uand V = V1. Itis clear that t; ¢ V [t,] and t, ¢ V [t1]. Suppose that

Ai={aeD:s, € VI[h])
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and
A2={OC€DZSa€V[f2]}.

If Ai,Ay € F,then A1 N Ay € F. On the other hand, A1 NA, =0 € F. If A1 N Ay # 0, then there exists a
ap € D such thats,, € A1 N Ap. Moreover, (Sq,,t1) € V and (s4,, t2) € V. From the symmetry of V, we have
(t2,54,) € V. Consequently, (t1,t,) € V o V c U. This is a contradiction, that is, ¥ -lim s, is unique. [

Theorem 2.4. Let (X, Q) be a Hausdorff uniform space and {s, : a € D} be a net in X which is F-convergent. Then
{sq : a € D} is Fy-fundamental.

Proof. Let (X,Q)) be a uniform space, {s, : « € D} be a net in X and ¥-lims, = s. Now we prove that
{4 : @ € D} is Fy-fundamental. Let U € Q. Then there existsa V € Qsuchthat VoV c Uand V = VL.
Take ap € {a € D : s, € V[s]}. Itis obvious that

{aeD:s,eVis]} e F.
If s, € V[s], then (sq,S4,) € Vo V C U. As a result,
{eeD:syeV[slicl{aeD:s, € Ul[syl}
and so
{aeD:syeUlsylleF.
Hence, the theorem is proved. [

Theorem 2.5. Let (X, QO) be a Hausdorff, complete uniform space with a countable base and {s, : « € D} be a net in
X. If the net {s, : € D} is Fy-fundamental, then there exists s € X such that F-lims, = s.

Proof. Let (X,Q) be a complete uniform space. We suppose that (X, Q) has a countable base and it is
Hausdorff. Then, there exists U, € Q such that N,cpU, = A and U, C U for all « € D. Without loss of
generality, we suppose that U@V o U@+ ¢ U® and U@ = (U(“))_l. Let {s, : @ € D} be F-fundamental in
X. Hence, by definition there exists @; € D such that A; € ¥, where A; = {a eD:s, e U® [sa‘.]} fori=1,2.1t
is obvious that Ay = A1 N Ay € F. Let By = UW [5,,] N U@ [s,,]. Clearly, s, € By for all @ € A Likewise,
there exists a3 € D such that A; = {a €D:s,eU® [sa3]} € F. Suppose that Ap) = Aq) N Asz. It is obvious

that Ap) € F. Put B, = By N U® [s,,]. As aresult, B, # 0 and so s, € B, for all @ € Ap. Continuing in the
same way, we get the net of open non-empty sets {B,},cp C X such that

Bi>By>.., B,cU“V[s ] forallaeD,

such as A € F such that A = {k € D : s € Bj} foralli € D. Takes, € B, for all « € D. Now we prove that
{sa : @ € D} is a fundamental net. Let U € Q be an arbitrary element. Then, it is clear that there exists ay € D
such that U@ c U for a > ay. Let a > ap be arbitrary. We obtain E;Hp € Bayp C B, forall p € D. Since, we
have B, such that B, ¢ U@ [s ], itis obvious that (5, st,.,) € U@ and 5,4, € U@V [s; ,]. Moreover,
(?[),,E;er) e U@V o U@) ¢ U@ for all p € D. As a result, (?a,?aﬂ,) € U forall @ > ag and p € D. Since U is

arbitrary, the net {s, : a € D} is fundamental in (X, Q) and let lims, = s. Now prove that ¥-lims, = s. Take
U € Q. Then, there exists a ap € D such that U c U for all @ > ag. Since B, c U@+D [sk..,], we have

Aw C {a €D :s, € UY [Skm]} €F

forall @ € D. Let a; € D such that’s; € U@*D [s] for all k > a;. Without loss of generality, we suppose that
a; > ap+1. Asaresult,s,, € B,, c U®+D [Ska1+1] .We put (sk, sknlﬂ) € U@+, Then (s, 3,,) € UM DolI@+D ¢

U@, Since, (E;h,skalﬂ) e U+ ¢ @) then it is obvious that

(Sk/ Ska1+l) e U@ o @) ¢ gD ¢ @) « 1
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This implies that
{aeD:syeBy}claeD:s, eU[s]}.

Therefore,
Apy={a€D:sy €ByleF.

From the previous inclusion it follows that
{aeD:s,elUls]} e F.

Since U was arbitrary, we have ¥-lims, =s. [J

Theorem 2.6. Let (X, Q) be a uniform space with a countable base and let {s, : & € D} be an Fg-fundamental net in
X. Then:

i) if ¥ is monotone closed filter and F-lims, = s, then there exists {ty},ep C X such that limt, = s and
{aeD:s, =t} eF;

ii) if ¥ is a right filter and lim t, = sand {a € D : s, = t,} € F, then F-lims, = s.

Proof. i) Suppose that the net {s, : @ € D} is Fy-fundamental, ¥ is monotone closed filter and the space

(X, Q) has a countable base. Consider the net {A(a)}aeD' constructed in the proof of Theorem 2.5. We get

A(l) D A(z) D..and A(a) € F fora € D.

Then by condition (iv) of filter we get {a,, : a1 < az < ...} such that
U;;;l ((amz Apa1] N A(m)) eETF.
Suppose that

Do = {keD:ke (O, O] NAS  m eD}U[l,al].

C
(m)”
Define

_ S,kEDO
T s, k¢ Dy

where s = £-lims,. Now we prove that lim#; = s. Let U € () be an arbitrary element. If k € Dy, then it is
obvious that t, € U[s]. If k ¢ Dy, then there exists a m € D such that a,, < k < a0 and k ¢ A‘("m). Moreover,

if k € Agp), then si € B,. Let ag € D be a number such that U@-1 < . Letkbe sufficiently large m > ay. We
get s € U [s] and so s, € U@*D [Sk”o_'_l] and sy, 1 € U@+ [s]. Hence, (f,s) € U@) c U, since, in this case

S = tx. Since U is arbitrary, lim f = s. Now we prove that A = {k € D : s = f} € ¥ Itis clear that
U;j:l ((am/ Ame1] N A(m)) C g

Hence, U, ((am, Ama1] N A(m)) € F and we obtain A € F from the condition (iii) of filter. Therefore, if

¥ -lims, = s, then there exists an A € F such that lim ty,=sands, =t, foralla € A.
ii) Suppose that limt, =s, A = {a € D : 5, = t,} € ¥ and ¥ is a right filter. Let U € Q be arbitrary. Then
there exists ap € D such that f, € U[s] for all @ > ap. We get

(laeD:azap)nA)claeD:s, e Uls]).
It is obvious that
({aeD:aZao}ﬂg)ET.

Then we have {a € D : s, € U[s]} € F from the condition (ii) of filter. [
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The following results are immediate consequences of Theorems 2.5 and 2.6.

Corollary 2.7. Let (X, Q) be a uniform space with a countable base, {s, : & € D} be a net in X and F be a monotone
closed and a right filter. Then the followings are equivalent:

i) F-lims, =s,

ii) {sy : a € D} is Fy-fundamental,

iii) limt, =sand{a € D : s, = t,} € F.

Corollary 2.8. Let (X, Q) be a uniform space with a countable base, {s, : @ € D} be an Fgy-fundamental net in X,
and F be a right filter. If F-lims, = s, then there exists a {ay : a1 < ap < ...} € F such that lims,, =s.
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