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Quadratic Quadrature Formula for Curves
with Third Degree of Exactness
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Abstract. In this article, a quadrature formula of degree 2 is given that has degree of exactness 3 and order
5. The formula is valid for any planar curve given in parametric form unlike existing Gaussian quadrature
formulas that are valid only for functions.

1. Introduction

Quadrature formulas are derived to calculate the area enclosed by a function. The quality of a given
quadrature formula is usually measured by its degree of exactness (accuracy). Historically, quadrature is
concerned with calculating the area. A square of the same area is constructed (squaring process); this gives
the process the name of squaring or quadrature. The interpolation based quadrature formulas inherit their
degree of exactness from the order of approximation of the interpolating polynomials. For example, the
trapezoidal rule has degree of exactness of 1 and the Simpson rule has degree of exactness of 3. In general,
approximating using the Lagrange interpolating polynomial of degree n and using it to form a quadrature
formula gives the well-known (n + 1)-point Newton-Cotes formula with degree of exactness of n, see [13].

The Gaussian quadrature formula uses the strong property of orthogonal polynomials to have degree
of exactness of 2n − 1, see [5, 13].

In this paper, a different approach is given. The parametric curve is approximated using a polynomial
parametric curve of order 4. Thereafter, this approximating parametric curve is used to get a quadrature
formula which has the same degree of exactness like the Gaussian quadrature formula, but it is, moreover,
valid for a wider class of curves, namely, the parametric curves.

This paper is organized as follows. In Section 2, some preliminaries are introduced. The quadratic
approximation is given in Section 3. The quadrature formula that is valid for parametric curves is given
in Section 4. In Section 5, the order of approximation of the proposed quadrature formula is shown. This
paper ends with comparisons and conclusions in Section 6.

2. Preliminaries

For a real-valued function f (x) of a real variable, defined on the finite interval [a, b], we seek to compute

the value of the integral,
∫ b

a f (x)dx. Let Pm be the space of all polynomials of degree ≤ m.
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Given a linear functional L( f ) =
∫ b

a f (x) dx, then a quadrature formula Qn( f ) is a discrete linear functional
that approximates the linear functional L, i. e. Qn( f ) ≈ L( f ). If Qn( f ) = L( f ), ∀ f ∈ Pm, then Qn has the
degree of exactness m.

The error term for the (n+1)-point Newton-Cotes formula is as follows. For every function f ∈ C(n+1)[a, b],
there exists ξ, a < ξ < b, that satisfies the equality∫ b

a
f (x) dx −

n∑
i=0

wi f (xi) =
hn+2 f (n+1)(ξ)

(n + 1)!

∫ n

0

n∏
i=0

(x − i) dx, h =
b − a

n
.

It is clear that the degree of exactness is n.
Since the Gaussian quadrature formula is constructed to be exact for polynomials of degree 2n− 1, thus

it is proper for functions that have polynomial behavior. The error estimate of the Gaussian quadrature
method is given by the following formula. For every function f ∈ C(2n)[a, b], there exists ξ, a < ξ < b, such
that ∫ b

a
f (x) dx −

n∑
i=1

wi f (xi) =
(b − a)2n+1(n!)4

(2n + 1)((2n!)3)
f (2n)(ξ).

Approximation methods for planar curves are stated in [7–9] that sufficiently improve the standard
approximation rates via Taylor’s method. These methods are based on the fact that the parametrization of
a curve is not unique and can be suitably modified to improve the approximation order.

Given a regular smooth planar curve

C : t→
(

f (t)
1(t)

)
, t ∈ <. (1)

The curve C is approximated by the polynomial curve

P : t→
(

Xm(t)
Ym(t)

)
, t ∈ <, (2)

where Xm(t) and Ym(t) are the Taylor (or Lagrange) polynomials of degree m. The polynomial curve P
approximates the curve C with order m + 1. An improvement over the standard order m + 1 is possible
because the parametrization of a curve is not unique. Without loss of generalization, we assume that
( f (0), 1(0)) = (0, 0), ( f ′(0), 1′(0)) = (1, 0). In this case, for small t, the curve C can be parametrized in the form

C : t→
(

Xm(t)
φ(Xm(t))

)
(3)

for a suitable φ(Xm(t)). In this case, P approximates C with some order, say α, if and only if

φ(Xm(t)) − Ym(t) = O(tα). (4)

Considering the approximation at both end points, then this is equivalent to

d j

dt j {φ(Xm(t)) − Ym(t)}|t=0 = 0, j = 0, 1, . . . , α1 − 1,

d j

dt j {φ(Xm(t)) − Ym(t)}|t=1 = 0, j = 0, 1, . . . , α2 − 1, (5)

Xm(0) = 0, Xm(1) = 1, α1 + α2 = α.

Normalizing P by choosing X′m(0) = 1, then the polynomial approximation is determined by 2m free
parameters. Comparing the number of parameters and the number of equations then we get the order of
approximation of 2m, see the details in [7].
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3. Quadratic Case

We consider the quadratic piecewise approximation for planar curves, α1 = α2 = 2, which raises the
standard approximation rate to 4 rather than 3. Take

X2(t) = a0 + a1 (t − t0) + a2 (t − t0)2, Y2(t) = b0 + b1 (t − t0) + b2 (t − t0)2.

In this case, the above system becomes as follows:

X2(t0) = t0, X2(t1) = t1, Y2(t0) = φ(t0), Y2(t1) = φ(t1),
φ′(t0)X′2(t0) − Y′2(t0) = 0, φ′(t1)X′2(t1) − Y′2(t1) = 0.

Substituting for X2(t), Y2(t), X′2(t), Y′2(t) at t = t0 and t = t1, then the above system is simplified to:

a0 = t0, b0 = φ(t0), a1 + a2 h = 1, b1 + b2 h =
vh

h
,

b1 = φ′(t0)a1, b1 + 2b2h = φ′(t1)(a1 + 2a2h),

where h = t1 − t0, vh = φ(t1) − φ(t0).
The solution to this system is

a0 = t0, b0 = φ(t0), b1 = φ′(t0)a1, a2 =
1 − a1

h
, b2 =

1
h

(vh

h
− φ′(t0)a1

)
, a1 = 2

φ′(t1) − vh
h

φ′(t1) − φ′(t0)
.

And in explicit forms:

a0 = t0, a1 = 2
φ′(t1) − vh

h

φ′(t1) − φ′(t0)
, a2 =

1
h
− 2

φ′(t1) − vh
h

h(φ′(t1) − φ′(t0))
, (6)

b0 = φ(t0), b1 = 2φ′(t0)
φ′(t1) − vh

h

φ′(t1) − φ′(t0)
, b2 =

vh

h2 − 2φ′(t0)
φ′(t1) − vh

h

h(φ′(t1) − φ′(t0))
. (7)

Substituting these values in X2(t) and Y2(t) gives

X2(t) = t0 + 2
φ′(t1) − vh

h

φ′(t1) − φ′(t0)
(t − t0) +

(
1
h
− 2

φ′(t1) − vh
h

h(φ′(t1) − φ′(t0))

)
(t − t0)2, (8)

Y2(t) = φ(t0) + 2φ′(t0)
φ′(t1) − vh

h

φ′(t1) − φ′(t0)
(t − t0) +

(
vh

h2 − 2φ′(t0)
φ′(t1) − vh

h

h(φ′(t1) − φ′(t0))

)
(t − t0)2. (9)

As h→ 0 then t1 → t0, t − t0 → h and vh/h→ φ′(t0). Let t − t0 = βh, where 0 ≤ β ≤ 1, then we have

X2(t) = t0 + 2 β h −
1
h
β2h2

= t0 + (2 β − β2)h, (10)

Y2(t) = φ(t0) + 2φ′(t0) β h +
1
h

(φ′(t0) − 2φ′(t0)) β2h2

= φ(t0) + φ′(t0)(2 β − β2)h. (11)

Let h∗ = (2 β − β2)h. Since 0 ≤ β ≤ 1, then 0 ≤ 2 β − β2
≤ 1, and thus 0 ≤ h∗ ≤ h and (X2(t),Y2(t)) ≈

(t0 + h∗, φ(t0) + h∗φ′(t0)). If t = t1 then h∗ = h and (X2(t1),Y2(t1)) ≈ (t0 + h, φ(t0) + hφ′(t0)). And if t = t0 then
h∗ = 0 and (X2(t0),Y2(t0)) ≈ (t0, φ(t0)).
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Example 3.1. We find the quadratic piecewise approximation of the circle when the number of arcs is 4,
i.e. for the angle π/4. We consider the arc of the circle joining the points ( −1

√
2
, 1
√

2
), ( 1
√

2
, 1
√

2
). Applying the

process by substituting in equations (8) and (9), we get the approximating polynomial given by:

X2(t) =
√

2(t −
1
2

), Y2(t) = −
√

2((t −
1
2

)2
−

3
4

).

The curve and the quadratic approximation are plotted in Fig. 1.
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Figure 1: Arc of the circle and the quadratic approximation

4. Quadrature Formula

To find the area under the parametric curve C given by (1) for a ≤ t ≤ b, we proceed as follows: Since
the area under y = F(x), a1 ≤ x ≤ b1 is given by:

AC =

∫ b1

a1

F(x)dx,

then we substitute x = f (t) and substitute a1 = f (a) and b1 = f (b) and since dx
dt = f ′(t), thus

AC =

∫ b1

a1

F(x)dx =

∫ b

a
F( f (t)) f ′(t)dt.

Since y = F(x) = F( f (t)) = 1(t), then we get

AC =

∫ b

a
1(t) f ′(t)dt. (12)

Since P approximates C, thus, the area under the curve C is approximated by the area under P. Following
a similar approach for the curve P, we get the area under the curve P by the formula

AP =

∫ 1

0
Y2(t)X′2(t)dt. (13)

Applying the formulas for X2(t) and Y2(t) in (8) and (9) we get the area under the curve P, 0 ≤ t ≤ 1 by the
formula:

AP =

∫ 1

0
Y2(t)X′2(t)dt

=

2∑
i=1

2∑
j=0

i
i + j

ai b j

= a1b0 + a2b0 +
a1b1

2
+

2a2b1

3
+

a1b2

3
+

a2b2

2
, (14)
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where ai, bi, i = 0, 1, 2 are given by (6) and (7). Since P approximates C with order 4, C(t)−P(t) = O(h4), thus

the value of the integral of P approximates the value of the integral of C with order 5,
∫ b

a C(t) dt−
∫ 1

0 P(t) dt =

AC−AP = O(h5). To verify this property numerically, the following approach in the next section is presented
for the case of approximating the area enclosed by the circle.

5. Order of Approximation
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Figure 2: Area under the circle

We approximate consecutive arcs of the circle and find the area under these approximated arcs using
the formula (14). To compute the order of approximation of the quadrature formula (14), we assume that
the resulting error associated with calculating the area by dividing the circle into n parts has the form

en ≈ c nα, for some c, α ∈ <.

Then for two consecutive errors en ≈ c nα and em ≈ c mα, we get

en

em
≈

c nα

c mα
≈ (

n
m

)α.

Take the natural logarithm (ln) for both sides to get:

ln(
en

em
) ≈ α ln(

n
m

).

This leads to the following formula for the order of approximation:

α ≈
ln(en) − ln(em)
ln(n) − ln(m)

.
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No. of points Exact Area Approximated Area Error Order
4 1.2853982 1.3333333 4.79 × 10−2

8 0.74625247 0.74754689 1.29 × 10−3
−5.20

16 0.387691257 0.387730533 3.93 × 10−5
−5.06

32 0.1957199314 0.1957211502 1.22 × 10−6
−5.02

64 0.0980959553771 0.0980959933994 3.81 × 10−8
−4.98

128 0.04907752976988 0.04907753095756 1.24 × 10−9
−4.98

Table 1: The order of approximation

Table 1 presents the area under that portion of the upper semi-circle for the values of − cos( 1
2 −

1
2n )π ≤

x ≤ cos( 1
2 −

1
2n )π, n = 2, 3, . . . , 7. The second column shows the exact values of the integral, while the

third column shows the approximation using the method in formula (14). The fourth column shows the
associated error. The fifth column shows that, as expected, the order of approximation is 5.

6. Comparison and Conclusions

Computing the quadratic Taylor and Lagrange methods shows that these methods can not compete
with our method. So, we compare our method with the Gaussian quadrature method. Advantages of the
method:

1. High degree of exactness as the Gaussian quadrature formula.
2. Gives area under any parametric curve, which can not be achieved by the Gaussian quadrature

method.
3. The proposed quadrature formula is given in explicit form in terms of the values of the curve and its

first derivatives at the end points.

As further research, we propose to follow the following proposals:

1. Finding a cubic quadrature formula that has degree of exactness of five, see [11].
2. Building a spline oriented method that divides a complex curve into subcurves and applying the

method on each part with different kinds of smoothness conditions, see [1].
3. Constructing composite quadrature methods for the quadratic and cubic cases and compare their

numerical performances with the composite Newton-Cotes methods, see [12].
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[3] K. Höllig, J. Hörner, Approximation and Modeling with B-Splines, SIAM, Titles in Applied Mathematics 132, 2013.
[4] J. Hoschek, D. Lasser, Fundamentals of Computer Aided Geometric Design, A K Peters, Wellesley, 1993.
[5] D. Laurie, Computation of Gauss-type quadrature formulas, J. Comput. Appl. Math. 127 (2001) 201–217.
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