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Abstract. In this paper, we introduce some new notions such as interval valued neutrosophic soft points,
interval valued neutrosophic soft mappings, interval valued neutrosophic soft Hausdorff topological spaces,
and interval valued neutrosophic soft compact topological spaces. Cantor’s intersection theorem is proved
for interval valued neutrosophic soft sets. The aim of this paper is to establish the existence of fixed points
of interval valued neutrosophic soft mappings on interval valued neutrosophic soft compact topological
spaces. Some examples are provided to support the concepts and the results presented herein.

1. Introduction

A fuzzy set A defined on a universe of discourse U is characterized by the mapping µA : U→ [0, 1] ( see,
[21]). Due to certain ambiguities and uncertainties in the given data, assigning a single value µA(x) to x in U
is a difficult task. To overcome this problem, the concept of interval valued fuzzy sets was proposed ( [18]).
An interval valued fuzzy set A is characterized by the mapping which assigns an interval [µL

A(x), µU
A (x)] to

x in U, where 0 ≤ µL
A(x) ≤ µU

A (x) ≤ 1. This interval represent the grade of membership of x in the set A.
However, interval valued fuzzy set theory does not provide a suitable framework to model several real

life situations; specially those which require nonmembership grades along with the membership grades
for each element in a domain set. For example, antibiotics are useful to treat some infectious diseases
but they have side effects as well. In such cases, decision making processes cannot be modeled using
the tools of interval valued fuzzy set theory. Atanassov [2] introduced the notion of intuitionistic fuzzy
sets which provide a general framework to handle such real life problems. Later on, intuitionistic fuzzy
sets were extended to the interval valued intuitionistic fuzzy sets [3]. In case of intuitionistic fuzzy sets
truth-membership and falsity-membership depend on each other as the sum of truth-membership and
falsity-membership is less than or equal to one. Thus hesitancy is the difference of truth-membership and
falsity-membership.

In the cases when expert is consulted for his/her opinion on a certain statement and he/she is not sure
about the range of the values of truth and falsity membership mappings, the notion of a neutrosophic set
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[17] is more appropriate than intuitionistic fuzzy set. In case of neutrosophic fuzzy sets, truth-membership,
indeterminacy-membership and falsity-membership are independent of each other. Thus, neutrosophic
set theory constitute a suitable setup to model the problems which involve imprecise, indeterminacy and
inconsistent data ( see [16]). A very handy generalization of neutrosophic sets has been introduced by Wang
et al. [19]. They gave the notion of interval valued neutrosophic sets.

On the other hand, Molodtsov [15] initiated a soft set theory to provide enough tools to deal with
uncertainty in a data and to represent it in a useful way. The significant attribute of soft set theory is that
unlike probability and fuzzy set theory, it does not uphold a precise quantity. This theory has become
full-fledged research area with applications in decision making, demand analysis, forecasting, information
science, mathematics and other disciplines. Çağman et. al. [7] introduced soft toplogical spaces while
soft lattice was introduced by Karaaslan et al. [11]. Maji [12] combined neutrosophic sets and soft sets.
Karaaslan [9] used neutrosophic soft sets in dicicion making and also introduced possibility neutrosophic
soft sets ([10]). Deli [8] introduced the concept of interval valued neutrosophic soft sets (see also [5]).

Wardowski ([20]) introduced a notion of soft mappings and obtained a fixed point result for a fixed
point of a soft mapping in soft compact Hausdorff topological spaces. He also studied the properties of soft
compact topological spaces. His main result is based on the fact that a decreasing sequence of nonempty
soft closed subsets in soft compact topological spaces has a nonempty intersection.

Abbas et al. [1] introduced the concept of a fuzzy soft mappings on a fuzzy soft set and initiated the
study of fixed points of such mappings. They studied some fundamental properties of fuzzy soft elements
and fuzzy soft topological spaces.

The aim of this paper is to introduce the notions of interval valued neutrosophic soft Hausdorff topologi-
cal spaces and interval valued neutrosophic soft compact topological spaces. The concept of interval valued
neutrosophic soft mappings which facilitates the study fixed point results in such spaces is given. Some
properties of interval valued neutrosophic soft points are discussed. Employing these concepts, interval
valued neutrosophic soft Cantor’s intersection theorem is proved. Finally, some necessary conditions for
the existence of interval valued neutrosophic soft element which serves as a fixed point of interval valued
neutrosophic soft mappings defined on interval valued neutrosophic soft Hausdorff topological spaces are
studied. Our results extend, unify and generalize the comparable results in ([20]) and ([1]).

2. Preliminaries

We recall some basic definitions and results related to interval valued neutrosophic sets, interval valued
neutrosophic soft sets and interval valued neutrosophic soft topological spaces.

Throughout this section, the letters U,E and P(U) will denote an initial universe, a set of parameters,
and the collection of all subsets of U, respectively.

Definition 2.1. ([17]) A neutrosophic set A in the universe of discourse U is identified by the set

A = {(x, µA(x), γA(x), δA(x)) : x ∈ U},

where µA, γA, δA : U →]−0, 1+[ are such that −0 ≤ µA(x) + γA(x) + δA(x) ≤ 3+ holds for all x ∈ U. Thus
neutrosophic set A in U is characterized by the triplet (µA, γA, δA) of functions, here, µA, γA, and δA denote
the truth membership, indeterminacy-membership and false-membership functions, respectively. The
values of mappings µA, γA, and δA at a point x in U give the grade of truth-membership, indeterminacy-
membership and false-membership of x, respectively.

An interval ]−0, 1+[ is a nonstandard unit interval whose left and right borders are nonstandard sets
which are given by

(−0) = {0 − ε : ε > 0 is an infinitely small number }
(1+) = {1 + ε : ε > 0 is an infinitely small number }.

Thus these borders are vague and imprecise. Obviously, −0 < 0 and 1+ > 1.
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For practical purposes, it is difficult to use neutrosophic set with values from non-standard subsets of
]−0, 1+[.

Thus in the sequel, we consider the standard unit interval [0, 1] instead of a nonstandard unit interval
]−0, 1+[.

Definition 2.2. ([19]) An interval valued neutrosophic set A on the universe of discourse U is characterized
by {(x, µA(x), γA(x), δA(x)) : x ∈ U}, where µA, γA, δA : U→ Int[0, 1] are such that 0 ≤ supµA(x) + supγA(x) +
sup δA(x) ≤ 3 holds and Int[0, 1] denotes the set of all closed sub intervals of [0, 1]. Thus for each x in U,
µA(x), γA(x) and δA(x) are closed sub intervals of [0, 1].

The set of all interval valued neutrosophic sets on U is denoted by IVNS(U).
Let 0̄ =< [0, 0], [1, 1], [1, 1] > and 1̄ =< [1, 1], [0, 0], [0, 0] >.

Definition 2.3. ([6]) Let X be a subset of the set of parameters E. Then the soft set FX over U is of the form

FX = {(e, fX(e)) : e ∈ E},

where fX : E → P(U) such that fX(e) = ∅ if e < X . For each e in E, fX(e) is called a set of e−elements of the
soft set FX and fX is called an approximate function of the soft set FX.

Hence, a soft set FX is characterized by a set valued function taking values in P(U). We denote the
collection of all soft sets over a common universe U by S(U,E).

If in the above definition, we replace P(U) with IVNS(U), then FX is called an interval valued neutrosophic
soft set (IVNSS in short) over U. In this case, the approximate function fX of interval valued neutrosophic
soft set FX is a set valued function which assigns to each parameter in X ( descriptions of elements of U), an
interval valued neutrosophic set.

Thus if u is a generic element of U and e is a generic element in the set of parameters in X which describes
u, then each e− element of interval valued neutrosophic soft set is of the form {(u, µ fX(e)(u), γ fX(e)(u), δ fX(e)(u)) :
u ∈ U} which contains an information about the truth membership, indeterminacy-membership and false-
membership of u in fX(e) keeping in view every description e. If e ∈ E−X, then fX(e) = 0̄. Thus, we identify
interval valued neutrosophic soft set FX by the set

{(e, < (u, µ fX(e)(u), γ fX(e)(u), δ fX(e)(u)) : u ∈ U >) : e ∈ E}.

The collection of all interval valued neutrosophic soft sets over (U,E) is denoted by IVNSS(U,E). We
will use ∼ as superscript in the operations of interval valued neutrosophic soft sets and N as subscript in
the operations of interval valued neutrosophic sets.

Definition 2.4. ([8]) Let A and B be two subsets of a set of parameters E and FA,GB ∈ IVNSS(U,E), that is,
FA = {(e, fA(e)) : e ∈ E}where

fA(e) = {(u, µ fA(e)(u), γ fA(e)(u), δ fA(e)(u)) : u ∈ U}

and GB = {(e, 1B(e)) : e ∈ E}where

1B(e) = {(u, µ1B(e)(u), γ1B(e)(u), δ1B(e)(u)) : u ∈ U}.

Then, FA⊆̃GB if A ⊆ B and fA(e) ⊆N 1B(e) for all e ∈ A, that is, for each u in U and for all e ∈ E

infµ fA(e)(u) ≤ infµ1B(e)(u), supµ fA(e)(u) ≤ supµ1B(e)(u)
infγ fA(e)(u) ≥ infγ1B(e)(u), supγ fA(e)(u) ≥ supγ1B(e)(u)
inf δ fA(e)(u) ≥ inf δ1B(e)(u), sup δ fA(e)(u) ≥ sup δ1B(e)(u).

Clearly, if FA⊆̃GB, then µ fA(e)(u)⊆µ1B(e)(u), γ1B(e)(u)⊆γ fA(e)(u), and δ1B(e)(u)⊆δ fA(e)(u) for all u in U and for all
e ∈ E.
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Definition 2.5. ([8]) Let FA,GB ∈ IVNSS(U,E), then
(i) FA∪̃GB = HC is an interval valued neutrosophic soft set over U with C = A ∪ B and

HC = {(e, < (u, µhC(e)(u), γhC(e)(u), δhC(e)(u)) : u ∈ U >: e ∈ E},

where,

µhC(e)(u) =


µ fA(e)(u) if e ∈ A − B
µ1B(e)(u) if e ∈ B − A

[max(infµ fA(e)(u), infµ1B(e)(u)),max(supµ fA(e)(u), supµ1B(e)(u))]
if e ∈ A ∩ B

γhC(e)(u) =


γ fA(e)(u) if e ∈ A − B
γ1B(e)(u) if e ∈ B − A

[min(infγ fA(e)(u), infγ1B(e)(u)),min(supγ fA(e)(u), supγ1B(e)(u))]
if e ∈ A ∩ B

δhC(e)(u) =


δ fA(e)(u) if e ∈ A − B
δ1B(e)(u) if e ∈ B − A

[min(inf δ fA(e)(u), inf δ1B(e)(u)),min(sup δ fA(e)(u), sup δ1B(e)(u))]
if e ∈ A ∩ B

(ii) FA∩̃GB = HC is an interval valued neutrosophic soft set over U with C = A ∩ B and

HC = {(e, < (u, µhC(e)(u), γhC(e)(u), δhC(e)(u)) : u ∈ U >: e ∈ E},

where

µhC(e)(u) = [min(infµ fA(e)(u), infµ1B(e)(u)),min(supµ fA(e)(u), supµ1B(e)(u))],
γhC(e)(u) = [max(infγ fA(e)(u), infγ1B(e)(u)),max(supγ fA(e)(u), supγ1B(e)(u))],
δhC (u) = [max(inf δ fA(e)(u), inf δ1B(e)(u)),max(sup δ fA(e)(u), sup δ1B(e)(u))].

(iii) FA\̃GB = HA is an interval valued neutrosophic soft set over U with

HA = {(e, < (u, µhC(e)(u), γhC(e)(u), δhC(e)(u)) : u ∈ U >: e ∈ E},

where

µhC(e)(u) =


µ fA(e)(u) if e ∈ A − B

[min(infµ fA(e)(u), inf δ1B(e)(u)),
min(supµ fA(e)(u), sup δ1B(e)(u))] if e ∈ A ∩ B

γhC(e)(u) =


γ fA(e)(u) if e ∈ A − B

[max(infγ fA(e)(u), 1 − supγ1B(e)(u)),
max(supγ fA(e)(u), 1 − infγ1B(e)(u))] if e ∈ A ∩ B

δhC(e)(u) =


δ fA(e)(u) if e ∈ A − B

[max(inf δ fA(e)(u), infµ1B(e)(u)),
max(sup δ fA(e)(u), supµ1B(e)(u))] if e ∈ A ∩ B.

(iv) Fc
A (The complement of FA) is an interval valued neutrosophic soft set over U which is characterized

by the following set.

{(e, < (u, δ fA(e)(u), [1 − supγ fA(e)(u), 1 − infγ fA(e)(u)], µ fA(e)(u)) : u ∈ U >) : e ∈ E}.

Definition 2.6. ([8]) FA ∈ IVNSS(U,E) is said to be (i) universal interval valued neutrosophic soft set if

fA(e) = 1̄ for each e ∈ E, and

(ii) null interval valued neutrosophic soft set if

fA(e) = 0̄ for each e ∈ E.

The symbols Ĩ and Φ denote universal and null interval valued neutrosophic soft sets, respectively.
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Definition 2.7. ([14]) An interval valued neutrosophic soft topology τ on
FA ∈ IVNSS(U,E) is a collection of interval valued neutrosophic subsets of FA satisfying:
(NT1) ΦA,FA ∈ τ (where φA(e) = 0̄ for each e ∈ A),
(NT2) FA∩̃GA ∈ τ for any FA,GA ∈ τ,
(NT3) ∪̃i∈JGi

A ∈ τ ∀{G
i
A : i ∈ J} ⊆ τ.

The pair (FA, τ) is called an interval valued neutrosophic soft topological space and any set in τ is known
as interval valued neutrosophic soft open set.

Definition 2.8. ([14]) Let (FA, τ) be an interval valued neutrosophic soft topological space and GA ∈

IVNSS(U,E) with GA ⊆̃FA. Then GA is known as interval valued neutrosophic soft closed set if Gc
A ∈ τ.

Definition 2.9. ([14]) Let (FA, τ) be an interval valued neutrosophic soft topological space and GA ∈

IVNSS(U,E) with GA ⊆̃FA. Then τG = {GA∩̃HA : HA ∈ τ} is called relative interval valued neutrosophic soft
topology on GA. A pair (GA, τG) is called relative interval valued neutrosophic soft topological space.

3. Interval Valued Neutrosophic Soft Elements

In this section, we define interval valued neutrosophic soft elements and then study some basic proper-
ties of such elements.

Definition 3.1. Let A be a subset of a set of parameters E and e ∈ A. An interval valued neutrosophic
soft set FA over the universe U is called an interval valued neutrosophic soft element corresponding to the
parameter e if fA(e′) = 0̄ for each e′ ∈ A − {e}. We denote it by Fe

A or simply by Fe.

An interval valued neutrosophic soft element Fe
A is said to be an element of interval valued neutrosophic

soft set GB if Fe
A⊆̃GB. We write it as Fe

A∈̃GB.
It is straightforward to check that there are uncountably many IVN-soft elements corresponding to each

parameter in A. It is therefore possible to find some IVN-soft elements corresponding to each parameter
e ∈ A whose union results in the original FA ∈ IVNSS(U,E).

That is, if FA ∈ IVNSS(U,E), then for each parameter e in A, we may find some corresponding IVN-soft
elements Fe

A such that FA = ∪̃Fe∈̃FFe.
We illustrate this observation with help of following example.

Example 3.2. Suppose that U = {u1,u2,u3}, E = {e1, e2, e3, e4}, A = {e1, e2, e3}. The tabular representation of
FA is given as follows (table 1).

Table 1: IVNSS FA

U e1 e2 e3

u1 ([.5, .8], [.3, .5], [.2, .7]) ([.4, .7], [.2, .3], [.1, .3]) ([.3, .9], [0, .1], [0, .2])
u2 ([.4, .7], [.3, .4], [.1, .2]) ([.6, .9], [.1, .2], [.1, .2]) ([.4, .8], [.1, .2], [0, .5])
u3 ([.5, 1], [0, .1], [.3, .6]) ([.6, .8], [.2, .4], [.1, .3]) ([.4, .9], [.1, .3], [.2, .4])

Then some of the IVN-soft elements are given below:
Fe1 = {(e1, {

<[.2,.8],[.3,.6],[.3,.8]>
u1

, <[.4,.7],[.3,.5],[.2,.9]>
u2

, <[.2,.7],[.2,.6],[.4,.9]>
u3

})};

Ge1 = {(e1, {
<[.5,.6],[.4,.5],[.2,.7]>

u1
, <[.4,.7],[.4,.5],[.6,.7]>

u2
, <[.2,.7],[.2,.6],[.4,.9]>

u3
})};

He2 = {(e2, {
<[.4,.7],[.2,.3],[.1,.3]>

u1
, <[.6,.9],[.1,.2],[.1,.2]>

u2
, <[.6,.8],[.2,.4],[.1,.3]>

u3
})};

Ie3 = {(e3, {
<[.3,.9],[0,.1],[0,.2]>

u1
, <[.4,.8],[.1,.2],[0,.5]>

u2
, <[.4,.9],[.1,.3],[.2,.4]>

u3
})}.

Note that Fe1 ,Ge1 ,He2 , Ie3 ∈̃FA and Fe1∪̃Ge1∪̃He2∪̃Ie3 = FA.
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Definition 3.3. Two IVN-soft elements Fe,Ge′ over U are said to be distinct if either e , e′ or f e(e)∩N1
e′ (e′) = 0̄.

Proposition 3.4. If FA, GB ∈ IVNSS(U,E) and e ∈ E, then the following holds:

1. A null interval valued neutrosophic soft set Φ is an empty IVN-soft element.
2. If FA ∈ IVNSS(U,E) such that FA , Φ, then FA contains at least one nonempty IVN-soft element.
3. If FA,GB ∈ IVNSS(U,E) then FA⊆̃GB if and only if Fe

∈̃FA implies that Fe
∈̃GB.

4. If FA,GB ∈ IVNSS(U,E) then Fe
∈̃FA∪̃GB if and only if Fe is a IVN-soft element of FA or GB.

5. If FA,GB ∈ IVNSS(U,E) then Fe
∈̃FA∩̃GB if and only if Fe is a IVN-soft element of FA and GB.

6. If FA,GB ∈ IVNSS(U,E) and Fe
∈̃FA\̃GB then Fe is an IVN-soft element of FA but not necessarily an IVN-soft

element of GB.

Proof. 1. It is trivial by the definition.
2. Suppose that FA ∈ IVNSS(U,E) such that FA , Φ. Then there will be at least one e ∈ E for which

fA(e) , 0̄. Thus, we can define an IVN-soft element Fe such that it can be characterized by {(e, fA(e))}. Hence,
Fe
∈̃FA.

3. Suppose that FA⊆̃GB and Fe
∈̃FA. That is, for e ∈ A we have f e(e) ⊆N fA(e) ⊆N 1B(e). Therefore Fe

∈̃GB.
Conversely, suppose that every IVN-soft element Fe

∈ FA is also an IVN-soft element of GB. That is, for
every e ∈ A, {e, fA(e)} is a soft element of GB which implies that for every e ∈ A, fA(e) ⊆N 1B(e) and hence
FA⊆̃GB.

4. Suppose that Fe
∈̃FA∪̃GB. This implies that f e(e) ⊆N fA(e) or f e(e) ⊆N 1B(e)⇔ Fe

∈̃FA or Fe
∈̃GB.

5. Suppose that Fe
∈̃FA∩̃GB.This implies that f e(e) ⊆N fA(e) and f e(e) ⊆N 1B(e)⇔ Fe

∈̃FA and Fe
∈̃GB.

6. Suppose that Fe
∈̃FA\̃GB. Then either f e(e) ⊆N fA(e) − fB(e) or f e(e) ⊆N fA(e). In both cases, we have

f e(e) ⊆N fA(e) and therefore Fe
∈̃FA. On the other hand, we know that the difference fA(e) − 1B(e) may have

an IVN-soft subset which is not contained in 1B(e).

4. Interval Valued Neutrosophic Soft Compact Topological Spaces

In this section, we first introduce IVN-soft Hausdorff spaces and IVN-soft compact spaces, and then we
study some basic properties of IVN-soft compact spaces.

Definition 4.1. An IVN-soft topological space (FA, τ) is said to be an IVN-soft Hausdorff space if for any
two distinct Fe,Fe′

∈̃FA, there exists disjoint IVN-soft open sets F1 and F2 (i.e. F1∩̃F2 = Φ) such that Fe
∈̃F1

and Fe′
∈̃F2.

Proposition 4.2. Let (FA, τ) be an interval valued neutrosophic soft topological space and VA ∈ IVNSS(U,E) with
VA ⊆̃FA. Then VA is open if and only if for every Fe

∈̃VA, there exists an IVN-soft open set GA such that Fe
∈̃GA⊆̃VA.

Proof. Let GA ∈ τ. Then for every Fe
∈̃GA, we have Fe

∈̃GA⊆̃GA. Conversely, let VA⊆̃FA be such that for each
Fe
∈̃VA, there exists WA ∈ τ and Fe

∈̃WA⊆̃VA. Therefore VA = ∪̃Fe
⊆̃∪̃WA⊆̃VA implies that VA ∈ τ.

Definition 4.3. Let (FA, τ) be an IVN-soft topological space and KA⊆̃ FA. An IVN-soft open cover for KA is
a collection of IVN-soft open sets {Vi}i∈I ⊆ τ whose union contains KA.

Definition 4.4. An IVN-soft topological space (KA, τ) is IVN-soft compact if for each IVN-soft open cover
{Vi}i∈I ⊆ τ of KA there exists i1, i2, ..., ik ∈ I, k ∈N such that KA⊆̃∪̃

k
n=1Vin .

Definition 4.5. Let (FA, τ) be an IVN-soft topological space and KA⊆̃ FA. We say that KA is IVN-soft compact
in (FA, τ) if the IVN-soft topological space (KA, τK) is IVN-soft compact.

In the following example, we show that an interval valued neutrosophic soft compact space may not be
an IVN-soft Hausdorff topological space.
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Example 4.6. Suppose that U = {u1,u2,u3}, A = {e1, e2}.

The tabular representation of FA is given as:

U e1 e2

u1 ([.5, .8], [.3, .5], [.2, .7]) ([.4, .7], [.2, .3], [.1, .3])
u2 ([.4, .7], [.3, .4], [.1, .2]) ([.6, .9], [.1, .2], [.1, .2])
u3 ([.5, 1], [0, .1], [.3, .6]) ([.6, .8], [.2, .4], [.1, .3])

Table 2: The tabular representation of ΦA

U e1 e2

u1 ([0, 0], [1, 1], [1, 1]) ([0, 0], [1, 1], [1, 1])
u2 ([0, 0], [1, 1], [1, 1]) ([0, 0], [1, 1], [1, 1])
u3 ([0, 0], [1, 1], [1, 1]) ([0, 0], [1, 1], [1, 1])

Table 3: The tabular representation of F1

U e1 e2

u1 ([.5, .8], [.3, .5], [.2, .7]) ([0, 0], [1, 1], [1, 1])
u2 ([.4, .7], [.3, .4], [.1, .2]) ([0, 0], [1, 1], [1, 1])
u3 ([.5, 1], [0, .1], [.3, .6]) ([0, 0], [1, 1], [1, 1])

Table 4: The tabular representation of F2

U e1 e2

u1 ([0, 0], [1, 1], [1, 1]) ([.4, .7], [.2, .3], [.1, .3])
u2 ([0, 0], [1, 1], [1, 1]) ([.6, .9], [.1, .2], [.1, .2])
u3 ([0, 0], [1, 1], [1, 1]) ([.6, .8], [.2, .4], [.1, .3])

Note that τ = {ΦA,FA,F1,F2} is an interval valued neutrosophic soft compact space, where tabular
representations of ΦA,F1,F2 are as follows(tables 2, 3 and 4 respectively). But it is not an IVN-soft Hausdorff
topological space. Indeed, for distinct IVN-soft elements Fe1 and F′e1 as given in the tables 5 and 6
respectively, we cannot find disjoint IVN-soft open sets.
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Table 5: The tabular representation of Fe1

U e1 e2

u1 ([.5, .8], [.3, .5], [.2, .7]) ([0, 0], [1, 1], [1, 1])
u2 ([0, 0], [1, 1], [1, 1]) ([0, 0], [1, 1], [1, 1])
u3 ([.5, 1], [0, .1], [.3, .6]) ([0, 0], [1, 1], [1, 1])

Table 6: The tabular representation of F′e1

U e1 e2

u1 ([0, 0], [1, 1], [1, 1]) ([0, 0], [1, 1], [1, 1])
u2 ([.4, .7], [.3, .4], [.1, .2]) ([0, 0], [1, 1], [1, 1])
u3 ([0, 0], [1, 1], [1, 1]) ([0, 0], [1, 1], [1, 1])

Example 4.7. Let FA ∈ IVNSS(U,E) be as given in the previous example and τ a collection of all IVN-soft
subsets of FA. Then (FA, τ) is an IVN-soft compact Hausdorff topological space.

Proposition 4.8. Let (FA, τ) be an IVN-soft Hausdorff topological space. Then every IVN-soft compact set in FA is
IVN-soft closed in FA.

Proof. Let KA be an IVN-soft compact set in (FA, τ) and Fe
∈̃Kc

A. For every Ge′
∈̃KA, we have UA,VA ∈ τ

such that UA∩̃VA = Φ and Fe
∈̃UA,Ge′

∈̃VA. As KA is IVN-soft compact, there exists Ge1 ,Ge2 · · · ,Gek ∈̃KA and
{Vi}

k
i=1 ⊆ τ such that Gei ∈̃Vi for all i and KA⊆̃∪̃

k
i=1Vi. Similarly, we may find a family {Ui}

k
i=1 ⊆ τ containing Fe

such that Ui∩̃Vi = Φ for all i = 1, · · · , k. Denote U = ∪̃
k
i=1Ui and V = ∪̃

k
i=1Vi, then Fe

∈̃U ∈ τ and U∩̃V = Φ.
Therefore U∩̃KA = Φ and Fe

∈̃U⊆̃Kc
A. Hence KA is closed by the proposition 4.2.

5. Interval Valued Neutrosophic Soft Mapping

We start this section by introducing IVN-soft mapping. We also give some relevant definitions and
study some properties of IVN-soft mappings.

Definition 5.1. ([4]) Suppose that FA,GB ∈ IVNSS(U,E). Then the Cartesian product of FA and GB is denoted
by (H,A × B), where hA×B(a, b) = fA(a) ∩N 1B(b).

Definition 5.2. ([4]) Let FA,GB ∈ IVNSS(U,E). Then the IVN-soft relation from FA to GB is an IVN-soft
subset of (H,A × B).

Definition 5.3. Let FA,GB ∈ IVNSS(U,E). An IVN-soft relation T from FA to GB is called an IVN-soft
mapping, denoted by T : FA → GB if the following conditions are satisfied:

N1. For each IVN-soft element Fe
∈̃FA, there exists only one IVN-soft element Ge′

∈̃GB such that (Fe,Ge′ )∈̃T,
that is, for each e ∈ A there exists e′ ∈ B such that tA×B(e, e′) = fA(e) ∩N 1B(e′).

N2. For each IVN-soft empty element Fe
∈̃FA, we must have (Fe,Φ)∈̃T.

In this case, we write T(Fe) = Ge′ .

Definition 5.4. Let FA,GB ∈ IVNSS(U,E), T : FA → GB an IVN-soft mapping and XC⊆̃FA. The image T(XC)
of XC under T is an interval valued neutrosophic soft set defined by

T(XC) = {∪̃Fe∈̃XC T(Fe) : e ∈ C}.

Definition 5.5. Let FA,GB ∈ IVNSS(U,E), T : FA → GB an IVN-soft mapping and YD⊆̃GB. The inverse image
T−1(YD) of YD under T is an interval valued neutrosophic soft set defined by

T−1(YD) = {{∪̃Fe∈̃FA Fe
} : T(Fe)∈̃YD for each e ∈ D}.
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Example 5.6. Suppose that U = {u1,u2}, A = {e1, e2}. Let FA and GA be two IVNSS:
The tabular representation of FA

U e1 e2

u1 ([.5, .8], [.3, .5], [.2, .7]) ([.2, .3], [.5, .7], [.2, .5])
u2 ([.4, .7], [.3, .4], [.1, .2]) ([.1, .5], [.6, .8], [.2, .4])

The tabular representation of GA

U e1 e2

u1 ([.5, .7], [.1, .3], [.2, .3]) ([.4, .7], [.2, .3], [.1, .3])
u2 ([.4, .5], [.1, .2], [.3, .4]) ([.6, .9], [.1, .2], [.1, .2])

Let e ∈ A and Ĝe = ∪̃{Ge : Ge
∈̃GA}which is the largest IVN-soft element in GA corresponding to parameter

e. Define T : FA → GA by

T(Fe) =

{
Ĝe if Fe is not an IVN-soft empty element,
Φ if Fe is an IVN-soft empty element.

Therefore T(Fe1 ) = {(e1, {
<[.5,.7],[.1,.3],[.2,.3]>

u1
, <[.4,.5],[.1,.2],[.3,.4]>

u2
)} and

T(Fe2 ) = {(e2, {
<[.4,.7],[.2,.3],[.1,.3]>

u1
, <[.6,.9],[.1,.2],[.1,.2]>

u2
)}. Note that T(FA) = GA.

Proposition 5.7. Let FA,GB ∈ IVNSS(U,E) and T : FA → GB an IVN-soft mapping. Let X,X1,X2⊆̃FA and
Y,Y1,Y2⊆̃GB. Then the following hold:

1. X1⊆̃X2 ⇒ T(X1)⊆̃T(X2),
2. Y1⊆̃Y2 ⇒ T−1(Y1)⊆̃T−1(Y2),
3. X⊆̃T−1(T(X)),
4. T(T−1(Y))⊆̃Y,
5. T(X1∪̃X2) = T(X1)∪̃T(X2),
6. T(X1∩̃X2) = T(X1)∩̃T(X2),
7. T−1(Y1∪̃Y2) = T−1(Y1)∪̃T−1(Y2),
8. T−1(Y1∩̃Y2) = T−1(Y1)∩̃T−1(Y2).

Proof. We will prove only (1), (5) and (8) here. Proofs of rest of the properties follow on the similar lines.
1. Let Ge′

∈̃T(X1). Then there exists an IVN-soft element Fe
∈̃X1 such that T(Fe) = Ge′ . Now X1⊆̃X2, Fe

∈̃X2
imply that Ge′

∈̃T(X2).
5. Suppose that Ge′

∈̃T(X1∪̃X2). Then there exists an IVN-soft element Fe
∈̃X1∪̃X2 such that T(Fe) = Ge′ .

If Fe
∈̃X1 then Ge′

∈̃T(X1)⊆̃T(X1∪̃X2). If Fe
∈̃X2, then Ge′

∈̃T(X2)⊆̃T(X1∪̃X2). Therefore T(X1∪̃X2)⊆̃T(X1)∪̃T(X2).
Now let Ge′

∈̃T(X1)∪̃T(X2). This implies that Ge′
∈̃T(X1) or Ge′

∈̃T(X2). Hence there exists an IVN-soft element
Fe
∈̃X1∪̃X2 such that T(Fe) = Ge′and this completes the proof of (5).

8. Note that Fe
∈̃T−1(Y1∩̃Y2) if and only if T(Fe)∈̃Y1∩̃Y2 if and only if Fe

∈̃T−1(Y1) and Fe
∈̃T−1(Y2) if and

only if Fe
∈̃T−1(Y1)∩̃T−1(Y2).

Definition 5.8. Let (FA, τ) and (GB, ν) be IVN-soft topological spaces and T : FA → GB an IVN-soft mapping.
Then T is an IVN-soft continuous mapping if for each VB ∈ ν, T−1(VB) ∈ τ, that is the inverse image of an
IVN-soft open set is an IVN-soft open set.

Example 5.9. Let FA ∈ IVNSS(U,E) and τ a collection of all IVN-soft subsets of FA. Then (FA, τ) is an
IVN-soft topological space. Let e ∈ A and F̂e = ∪̃{Fe : Fe

∈̃FA} which is the largest IVN-soft element in FA
corresponding to parameter e. Define T : FA → FA as

T(Fe) =

{
F̂e if Fe is not an IVN-soft empty element,
Φ if Fe is an IVN-soft empty element.

Then for every V ∈ τ, T−1(V) is open. Therefore T is an IVN-soft continuous mapping.

Proposition 5.10. Let (KA, τ) be an IVN-soft compact topological space and T : KA → KA an IVN-soft continuous
mapping. Then T(KA) is an IVN-soft compact in (KA, τ).
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Proof. Suppose that T(KA)⊆̃∪̃iVi, where Vi ∈ τ. Then KA⊆̃T−1(∪̃iVi) = ∪̃iT−1(Vi). Since T−1(Vi) is IVN-soft
open, there exists an IVN-soft open set such that Gi⊆̃T(KA) and T−1(Vi) = Gi∩̃KA. So KA⊆̃∪̃iGi∩̃KA⊆̃∪̃iGi.
Thus, there exists i1, i2, ..., ik, k ∈N such that KA⊆̃∪̃

k
n=1Gin . Hence we have KA = ∪̃

k
n=1(Gin ∩KA) = ∪̃

k
n=1T−1(Vin )

which gives that T(KA)⊆̃∪̃k
n=1Vin . Hence T(KA) is IVN-soft compact.

6. Interval Valued Neutrosophic Soft Fixed Points of Interval Valued Neutrosophic Soft Mapping

In this section study of interval valued neutrosophic soft fixed points is initiated.

Definition 6.1. Let FA ∈ IVNSS(U,E) and T : FA → FA an IVN-soft mapping. An IVN-soft element Fe
∈̃FA is

called IVN-soft fixed point of T if T(Fe) = Fe.

The following examples show the existence of IVN-soft fixed points.

Example 6.2. If FA ∈ IVNSS(U,E) and T : FA → FA is defined as identity map, then each IVN-soft element
of FA is an IVN-soft fixed point.

Example 6.3. If T is an IVN-soft mapping as in the example 5.9, then every F̂e and Φ are IVN-soft fixed
points of T.

Proposition 6.4. Let (KA, τ) be an IVN-soft compact topological space and {Fi, i ∈ N} a family of IVN-soft subsets
of KA which satisfies:

1. Fi , Φ for each i ∈N;
2. Fi is an IVN-soft closed for each i;
3. Fi+1⊆̃Fi for each i.

Then ∩̃i∈NFi , Φ.

Proof. On the contrary suppose that ∩̃i∈NFi = Φ. By Proposition 3.25 ([8]), we have (∩̃i∈NFi)c = ∪̃i∈NFc
i .

Therefore KA⊆̃Ĩ = Φc = ∪̃i∈NFc
i . As KA is an IVN-soft compact, there exists i1, i2, ..., ik ∈ N, i1 < i2 < ... <

ik, k ∈ N such that KA⊆̃∪̃
k
n=1Fc

in
. Hence by (3) we have Fik ⊆̃KA⊆̃(∩̃k

n=1Fin )c = Fc
ik
, which is impossible due to

(1).

Example 6.5. Let U = {u1,u2}, A = {e1, e2}. Let FA be defined as: (table 7)

Table 7: The tabular representation of FA

U e1 e2

u1 ([.5, .8], [.3, .5], [.2, .7]) ([.2, .3], [.5, .7], [.2, .5])
u2 ([.4, .7], [.3, .4], [.1, .2]) ([.1, .5], [.6, .8], [.2, .4])

Let (FA, τ) be an IVN-soft topological space, where τ is a collection of all IVN-soft subsets of FA.
Let us consider the following IVN-soft subsets of FA: (tables 8 and 9)

Table 8: The tabular representation of F1

U e1 e2

u1 ([.3, .5], [.4, .6], [.3, .8]) ([.1, .2], [.5, .8], [.3, .5])
u2 ([.1, .4], [.3, .5], [.2, .3]) ([.1, .4], [.6, .9], [.3, .5])

Note that all the conditions of the Proposition 6.4 are satisfied and F1 ∩ F2 = F2.
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Table 9: The tabular representation of F2

U e1 e2

u1 ([.3, .4], [.5, .6], [.4, .8]) ([0, .1], [.5, .8], [.3, .6])
u2 ([.1, .2], [.4, .5], [.3, .5]) ([.1, .2], [.6, .9], [.3, .6])

Proposition 6.6. Let (FA, τ) be an IVN-soft topological spaces and T : FA → FA an IVN-soft mapping such that for
each nonempty IVN-soft element Fe

∈̃FA, T(Fe) is a nonempty IVN-soft element of FA. If ∩̃n∈NTn(FA) contains only
one nonempty IVN-soft element Fe

∈̃FA, then Fe is a unique IVN-soft fixed point of T.

Proof. It can be seen that Tn(FA)⊆̃Tn−1(FA) for each n ∈N. Suppose that Fe
∈̃∩̃n∈NTn(FA), that is, Fe

⊆̃∩̃n∈NTn(FA).
Therefore T(Fe)⊆̃T(∩̃n∈NTn(FA))⊆̃∩̃n∈NTn+1(FA)⊆̃∩̃n∈NTn(FA) = Fe. Since T(Fe) is a nonempty IVN-soft ele-
ment of FA therefore T(Fe) = Fe.

Example 6.7. Let (FA, τ) be an IVN-soft topological spaces, where A = {e1, e2, e3}. Let e ∈ A and F̂e = ∪̃{Fe :
Fe
∈̃FA}which is the largest IVN-soft element in FA corresponding to parameter e. Define T : FA → FA by

T(Fe) =

{
F̂e1 if Fe is a nonempty IVN-soft element,
Φ if Fe is an IVN-soft empty element.

Then ∩̃i∈NTn(FA) contains only one nonempty IVN-soft element F̂e1 which will be the unique IVN-soft
fixed point of T.

Theorem 6.8. Let (KA, τ) be an IVN-soft compact Hausdorff topological space and T : KA → KA an IVN-soft
continuous mapping such that

a. for each nonempty IVN-soft element Fe
∈̃KA, T(Fe) is a nonempty IVN-soft element of KA.,

b. for each IVN-soft closed X⊆̃KA if T(X) = X then X contains only one nonempty IVN-soft element.

Then there exists a unique nonempty IVN-soft element Fe
∈̃KA such that T(Fe) = Fe.

Proof. Let us consider a family of IVN-soft subsets of KA as follows:

C1 = T(KA),C2 = T(C1) = T2(KA), ...,Cn = T(Cn−1) = Tn(KA)

for each n ∈N. Note that Cn⊆̃Cn−1 for each n ∈N. By Proposition 4.8, Cn is an IVN-soft closed subset of
KA, for each n ∈N. Now by Proposition 6.4, ∩n∈NCn is nonempty. Let us denote ∩n∈NCn = G. Observe that

T(G) = T(∩n∈NTn(KA))⊆̃ ∩n∈N Tn+1(KA)⊆̃ ∩n∈N Tn(KA) = G.

Now we show that G⊆̃T(G). Suppose that there exist Fe
∈̃G such that Fe is not an IVN-soft element of

T(G). Put En = T−1(Fe)∩̃Cn. Observe that En , Φ and En⊆̃En−1 for each n ∈ N. By Proposition 6.4, there
exists a nonempty IVN-soft element Fe′

∈̃T−1(Fe)∩̃G which implies that Fe = T(Fe′ )∈̃T(G), a contradiction.
Hence we have T(G) = G and the proof follows by using (b) and Proposition 6.6.

Example 6.9. Let (FA, τ) be an IVN-soft topological spaces as given in the example 4.6. It is IVN-soft
compact but it is not an IVN-soft Hausdorff. Let F̂e1 = ∪̃{Fe1 : Fe1 ∈̃FA} and F̂e2 = ∪̃{Fe2 : Fe2 ∈̃FA}which are the
largest IVN-soft elements in FA corresponding to parameters e1 and e2, respectively. Define T : FA → FA by

T(Fe) =

{
F̂e if Fe is a nonempty IVN-soft element,
Φ if Fe is an IVN-soft empty element.

It is easy to see that T is an IVN-soft continuous mapping and for an IVN-soft closed subset X of FA,

T(X) , X. Moreover T has not a unique IVN-soft fixed point. Indeed, T has two IVN-soft fixed points F̂e1

and F̂e2 .
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