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Some New Sequence Spaces Defined by Bounded Variation
in 2-Normed Spaces

Ekrem Savaşa

aUsak University, Department of Mathematics, Usak, Turkey

Abstract. In this paper, by using Orlicz function and almost lacunary bounded variation we introduce and
examine a new sequence space in 2- normed spaces. We also study some basic topological and algebraic
properties of these spaces. In addition, we shall established inclusion theorems between these sequence
spaces.

1. Introduction

Let w denote the set of all real and complex sequences x = (xk). By l∞ and c, we denote the Banach spaces
of bounded and convergent sequences x = (xk) normed by ||x|| = supk |xk|, respectively. A linear functional
L on l∞ is said to be a Banach limit [1] if it has the following properties:

1. L(x) ≥ 0 if n ≥ 0 (i.e. xn ≥ 0 for all n),
2. L(e) = 1 where e = (1, 1, . . .),
3. L(Dx) = L(x), where D denotes the sift operator on `∞, that is D : `∞ → `∞ defined by D(x) = D(xn) =
{xn+1}.

Let B be the set of all Banach limits on l∞. A sequence x ∈ `∞ is said to be almost convergent if all Banach
limits of x coincide. Let ĉ denote the space of the almost convergent sequences .

It is natural question to expect that almost convergence must be related to some concept B̂V in the same
vein as convergence is related to the concept of BV. BV is denotes the set of all sequences of bounded
variation and a sequence in B̂V will mean a sequence of almost bounded variation. Nanda and Nayak [10]
studied this new concept in some detail.

Also a new sequence space ̂̂BV which is apparently more general than B̂V naturally comes up for
investigation and is considered along with B̂V.

Consider the sequences of bounded linear transformations dmn (x) : l∞ → l∞ defined by

dmn (x) =
1

m + 1

m∑
i=0
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with D0 = 1. It is evident that

d0n (x) = xn = D0xn (1)

Lorentz [4] proved that

ĉ =
{
x : lim

m
dmn (x) exists uniformly in n

}
Now define

d−1n (x) = xn−1 = D−1xn (2)

and then write for m,n ≥ 0,

tmn (x) = dmn (x) − dm−1,n (x) (3)

So that (1.1), (1.2) and (1.3), we write

t0n (x) = D0xn −D−1xn = xn − xn−1. (4)

When m ≥ 1 a straightforward calculation shows that

tmn (x) =
1

m (m + 1)

m∑
v=1

v (xn+v − xn+v−1)

Now we write

B̂V =

x :
∑

m

|tmn(x)| converges uniformly in n


and

̂̂BV =

x : sup
n

∑
m

|tmn(x)| < ∞

 .
A lacunary sequence is an increasing integer sequence θ = {kr}r∈N∪{0} such that k0 = 0 and hr = kr−kr−1 →

∞, as r→∞. Let Ir = (kr−1, kr] and qr = kr
kr−1
.

In another direction, a new type of convergence called almost lacunary convergence was introduced as
follows by Das and Mishra, [2].

Mθ =

x : there exists L such that uniformly in i ≥ 0 lim
r→∞

1
hr

∑
k∈Ir

(xk+i − L) = 0

 .
Again it is quite natural to think that lacunary almost convergence must be related to some concept B̂Vθ

in the same view as almost convergence is related to the concept of B̂V. A sequence in B̂Vθ will mean a
sequence of lacunary almost bounded variation.

Savas and Karakaya [20] studied this new concept in some details.
Put

trn = trn (x) =
1

hr + 1

kr+1∑
j=kr−1+1

x j+n.
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Then write r,n > 0

ϕrn (x) = trn (x) − tr−1,n (x) .

When r > 1, straightforward calculation shows that

ϕrn (x) = ϕrn =
1

hr (hr + 1)

hr∑
u=1

u
(
xkr−1+u+1+n − xkr−1+u+n

)
.

Now we write

B̂Vθ =

x :
∑

m

∣∣∣ϕrn (x)
∣∣∣ converges uniformly in n


and

̂̂BVθ =

x : sup
n

∑
m

∣∣∣ϕrn (x)
∣∣∣ < ∞ .

The following theorem was proved in [20]:

Theorem 1.1. B̂Vθ ⊂
̂̂BVθ for every θ.

But we do not know whether ̂̂BVθ ⊂ B̂Vθ, that is ̂̂BVθ = B̂Vθ. It is still open problem.
It is quite natural to ask whether B̂Vθ can be extended to B̂Vθ

(
p
)
, the set of all sequences of lacunary

almost p−bounded variation just as B̂V, is extended to B̂V
(
p
)
, the set of all sequences of almost p− bounded

variation (see [15]).
In [6], the lacunary almost bounded variation sequence spaces to lacunary almost p− bounded variation

sequence spaces was generalized as follows:.

B̂Vθ
(
p
)

=

x :
∑

r

∣∣∣ϕrn (x)
∣∣∣pr converges uniformly in n


and

̂̂BVθ
(
p
)

=

x : sup
n

∑
r

∣∣∣ϕrn (x)
∣∣∣pr
< ∞

 .

where p = (pr) be a sequence of positive real numbers.

It is clear that B̂Vθ
(
p
)

= B̂Vθ and ̂̂BVθ
(
p
)

=
̂̂BVθ if pr = 1 for all r ∈ N. Here and afterwards summation

without limits sum from 1 to∞.
Let X be a linear space. A function 1 : X −→ R is called paranorm, if
(P1) 1 (x) ≥ 0, for all x ∈ X,
(P2) 1 (−x) = 1 (x) , for all x ∈ X,
(P3) 1

(
x + y

)
≤ 1 (x) + 1

(
y
)
, for all x, y ∈ X,

(P4) if λn is a sequence of scalar with λn −→ λ (n −→ ∞) and (xn) is a sequence of vector with
1 (xn − x) (n −→ ∞) then 1 (λnxn − λx) (n −→ ∞) .
A pair

(
X, 1

)
is called a paranormed space, (see [27] ).

Write M = max (1,H), H = supr pr. For x ∈ B̂Vθ
(
p
)

define
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h (x) = sup
n

∑
r

∣∣∣ϕrn

∣∣∣pr


1
M

;

Also in [6]) the following theorem proved.

Theorem 1.2. Let 1 ≤ pr < ∞. The space B̂Vθ
(
p
)

is a complete linear topological space paranormed by h.

2. Some Topological Results

In this section we study the local boundedness and s-convexity for ̂̂BV
(
p
)
.We first quote some definitions

(see, for example, Maddox and Roles [9] and Simons [26]).
For this we first quote some definitions:
For 0 < s ≤ 1 a nonvoid subset U of linear space is said to be absolutely s−convex if x, y ∈ U and

|λ|s +
∣∣∣µ∣∣∣s ≤ 1 together imply that λx + µy ∈ U. A linear topological space X is said to be s−convex if every

neighbourhodd of 0 ∈ X contains an absolutely s−convex neighbourhood of 0. A subset B of X is said to be
bounded if for each neighbourhood U of 0 ∈ X, there exists an integer N > 1 such that B ⊂ NU. X is called
locally bounded if there is a bounded neighbourhood of 0 ∈ X.

We have

Theorem 2.1. ̂̂BVθ
(
p
)

is locally bounded if inf pr > 0.

Proof. Let inf pr = γ > 0. If a ∈ ̂̂BVθ
(
p
)
, then ∃ a constant C > 0 such that∑

r

∣∣∣ϕrn(x)
∣∣∣pr
≤ C

for all n.
For this C and δ > 0, choose an integer N > 1 such that

Nγ > C/δ.

Since (1/N) < 1 and pr ≥ γ (∀r) , we have

1
Npr
≤

1
Nγ
.

Therefore, we have for all n,∑
r

∣∣∣∣∣ϕmn

( x
N

)∣∣∣∣∣pr

=
∑

r

∣∣∣∣∣ϕrn (x)
N

∣∣∣∣∣pr

≤ (C/Nγ) ≤ δ.

Thus {
x : 1 (x) ≤ C

}
⊂ N

{
x : 1 (x) ≤ δ

}
.

For every δ > 0,∃N > 1 such that the above inclusion holds. Therefore
{
x : 1 (x) ≤ C

}
is bounded and this

completes the proof.

It is known that every locally bounded space is s−convex for some s such that 0 < s ≤ 1.But the following
theorem gives a sufficient condition for s−convexity.
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Theorem 2.2. Let 0 < pr < 1. Then ̂̂BVθ
(
p
)

is s−convex for all s where 0 < s < lim inf pr. Further, if pr = p (∀r) ,

then ̂̂BVθ
(
p
)

is p−convex.

Proof. Let x ∈ ̂̂BVθ
(
p
)

and s ∈
(
0, lim inf pr

)
. Then ∃r0 such that s < pr∀r > r0. Define

1 (x) = sup
n

 r0∑
r=1

∣∣∣ϕrn (x)
∣∣∣s +

∞∑
r=r0+1

∣∣∣ϕrn (x)
∣∣∣pr

 .
Since pr ≤ 1 and s < pr∀r > r0,
1 is sub-additive and further for r > r0

|λ|pr ≤ |λ|r (0 < |λ| ≤ 1)

Therefore, for such λ,

1 (λx) ≤ |λ|s 1 (x) .

Now for 0 < δ < 1,U =
{
x : 1̄ (x) ≤ δ

}
is an absolutely s−convex set, for |λ|s +

∣∣∣µ∣∣∣s ≤ 1 and a, b ∈ U imply that

1
(
λx + µy

)
≤ 1 (λx) + 1

(
µy

)
≤ |λ|s 1 (x) + |λ|s 1

(
y
)

≤

(
|λ|s +

∣∣∣µ∣∣∣s) δ
≤ δ.

Therefore λx + µy ∈ U. if pr = p (∀r) , then V =
{
x : 1 (x) ≤ δ

}
is an absolutely p− convex set. The proof is

similar and omitted.

3. New Sequence Spaces

In this section we introduce a new sequence spaces by using almost lacunary bounded variation and
Orlicz function in 2- normed spaces. Also various algebraic and topological properties and certain inclusion
relations involving this space have been discussed.

Before continuing with this section we present some definitions and preliminaries.
Recall in [7] that an Orlicz function M : [0,∞)→ [0,∞) is continuous, convex, non-decreasing function

such that M(0) = 0 and M(x) > 0 for x > 0, and M(x) → ∞ as x → ∞. If convexity of Orlicz function is
replaced by M(x + y) ≤M(x) + M(y) then this function is called the modulus function and characterized by
Ruckle [13]. An Orlicz function M is said to satisfy ∆2-condition for all values of u, if there exists K > 0 such
that M(2u) ≤ KM(u),u ≥ 0.

W. Orlicz [11] used the idea of Orlicz function to construct the space
(
LM

)
. Lindentrauss and Tzafriri [8]

use the idea of Orlicz function and defined the sequence space `M such as

`M =

x = (xi) :
∞∑

i=1

M
(
|xi|

ρ

)
< ∞, for some ρ > 0


The space `M with the norm ‖x‖ = inf

{
ρ > 0 :

∑
∞

k=1 M
(
|xk |

ρ

)
≤ 1

}
becomes a Banach space which is called

an Orlicz sequence space. The space `M is closely related to the sequence space `p, which is an Orlicz
sequence space with M (x) = xp for 1 ≤ p ≤ ∞.

Note that an Orlicz function satisfies the inequality

M (λx) = λM (x) for all λ with 0 < λ < 1.
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In the later stage different classes of Orlicz sequence spaces were introduced and studied by Parashar
and Choudhary [12], Savas [16, 17, 21–25], and many others.

The following well-known inequality will be used throughout the article. Let p = (pk) be any sequence
of positive real numbers with 0 ≤ pk ≤ supk pk = H,C = max{1, 2H−1

} then

|ak + bk|
pk ≤ C(|ak|

pk + |bk|
pk ) (5)

for all k ∈ N and ak, bk ∈ C. Also

|ak|
pk ≤ max{1, |a|H} (6)

for all a ∈ C.

Definition 3.1. ([3]) Let X be a real vector space of dimension d, where 2 ≤ d < ∞. A 2-norm in on X is a
function ||., .|| : X × X → R which satisfies (i) ||x, y||=0 if and only if x and y are linearly independent; (ii)
||x, y|| = ||y, x||; (iii) ||αx, y|| = |α|||x, y||, α ∈ R; (iv) ||x, y + z|| ≤ ||x, y|| + ||x, z||. The ordered pair (X, ||., .||) is then
called a 2-normed space.

As an example we may take X = R2 being equipped with the 2-norm ||x, y||= the area of the parallelogram
spanned by the vectors x and y, which may be given explicitly by the formula ||x, y|| = |x1y2−x2y1|, x = (x1, x2),
y = (y1, y2). Recall that (X, ||., .||) is a 2-Banach space if every Cauchy sequence in X is convergent to some x
in X. Let (X, ||., .||) be any 2-normed space.
More recent work in this line can be found in [14, 18, 19] where many references can be found.

Let E be a sequence space. Then E is called solid (or normal), if (αnxn) ∈ E, whenever (xn) ∈ E for all
sequences of scalar (αn) with |αn| ≤ 1 for all k ∈N.

Lemma 3.2. ([5]) A sequence space E is solid implies E is monotone.

Let M be an Orlicz function, (X, ||., .||) be a 2-normed space and p = (pr) be any sequence of strictly
positive real numbers. Now we define the following sequence spaces,

B̂Vθ
(
M, p, ‖, ., ‖

)
= {x = (xk) :

∞∑
r=1

[
M

(∥∥∥∥∥φr,n (x)
ρ

, z
∥∥∥∥∥)]pr

< ∞ uniformly in n

and for some ρ > 0, and each z ∈ X}

For M (x) = x, we get (see [6])

B̂Vθ(p, ‖, ., ‖) =

x = (xk) :
∞∑

r=1

(∥∥∥φr,n (x) , z
∥∥∥)pr

< ∞ converges uniformly in n, and each z ∈ X

 .
For pr = 1 for all r, we get

B̂Vθ (M, ‖, ., ‖) = {x = (xk) :
∞∑

r=1

[
M

(∥∥∥∥∥φr,n (x)
ρ

, z
∥∥∥∥∥)] < ∞ uniformly in n

and for some ρ > 0, and each z ∈ X}.

For M (x) = x, and pr = 1 for all r, we get

B̂Vθ(‖, ., ‖) =

x = (xk) :
∞∑

r=1

∥∥∥φr,n (x) , z
∥∥∥ < ∞ uniformly in n, and each z ∈ X

 .
Theorem 3.3. The sequence space B̂Vθ

(
M, p, ‖, ., ‖

)
is a linear space over the field C of complex numbers.
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Proof. Let x, y ∈ B̂Vθ
(
M, p, ‖, ., ‖

)
and α, β ∈ C. Then there exist positive numbers ρ1 and ρ2 such that

∞∑
r=1

[
M

(∥∥∥∥∥φr,n (x)
ρ1

, z
∥∥∥∥∥)]pr

< ∞

and

∞∑
r=1

[
M

(∥∥∥∥∥φr,n (x)
ρ2

, z
∥∥∥∥∥)]pr

< ∞

uniformly in n. Define ρ3 = max
(
2 |α|ρ1, 2

∣∣∣β∣∣∣ρ2

)
. Since M is non-decreasing and convex we have

∞∑
r=1

[
M

(∥∥∥∥∥∥αφr,n (x) + βφr,n
(
y
)

ρ3
, z

∥∥∥∥∥∥
)]pr

≤

∞∑
r=1

[
M

(∥∥∥∥∥αφr,n (x)
ρ3

, z
∥∥∥∥∥ +

∥∥∥∥∥∥βφr,n
(
y
)

ρ3
, z

∥∥∥∥∥∥
)]pr

≤

∞∑
r=1

1
2

[
M

(∥∥∥∥∥αφr,n (x)
ρ1

, z
∥∥∥∥∥)]pr

+

[
M

(∥∥∥∥∥∥βφr,n
(
y
)

ρ2
, z

∥∥∥∥∥∥
)]pr

< ∞

uniformly in n.This proves that B̂Vθ
(
M, p, ‖, ., ‖

)
is linear space over the field C of complex numbers.

Theorem 3.4. For any Orlicz function M and a bounded sequence p = (pr) of strictly positive real numbers,
B̂Vθ

(
M, p, ‖, ., ‖

)
is a paranormed space with

1 (x) = inf
n≥1

ρpn/k :

 ∞∑
r=1

[
M

(∥∥∥∥∥φr,n (x)
ρ

, z
∥∥∥∥∥)]pr


1/K

≤ 1,uniformly in n

 ,
where K = max

(
1, sup pr

)
.

Proof. It is clear that 1 (x) = 1 (−x) . Since M (0) = 0, we get

inf
{
ρpn/K

}
= 0 for x = 0

By using Theorem 3.3, for α = β = 1, we get

1
(
x + y

)
≤ 1 (x) + 1

(
y
)

For continuity of scalar multiplication let λ , 0 be any complex number. Then by definition we have

1 (λx) = inf
n≥1

ρpn/k :

 ∞∑
r=1

[
M

(∥∥∥∥∥φr,n (λx)
ρ

, z
∥∥∥∥∥)]pr


1/K

≤ 1,uniformly in n


1 (λx) = inf

n≥1

(s |λ|)ρ
pn/k

:

 ∞∑
r=1

[
M

(∥∥∥∥∥φr,n (λx)
(s |λ|)

, z
∥∥∥∥∥)]pr


1/K

≤ 1, uniformly in n

 ,
where s =

ρ
|λ| Since |λ|pn ≤ max

(
1, |λ|H

)
, We have
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1 (λx) ≤ max
(
1, |λ|H

)
inf
n≥1

spn/k :

 ∞∑
r=1

[
M

(∥∥∥∥∥φr,n (x)
s

, z
∥∥∥∥∥)]pr


1/K

≤ 1


= max

(
1, |λ|H

)
1 (x)

and therefore 1 (λx) converges to zero when 1 (x) converges to zero in B̂Vθ
(
M, p, ‖, ., ‖

)
. Now let x be fixed

element in B̂Vθ
(
M, p, ‖, ., ‖

)
. Then there exists ρ > 0 such that

1 (x) = inf
n≥1

ρpn/k :

 ∞∑
r=1

[
M

(∥∥∥∥∥φr,n (x)
ρ

, z
∥∥∥∥∥)]pr


1/K

≤ 1,uniformly in n

 .
Now

1 (λx) = inf
n≥1

ρpn/k :

 ∞∑
r=1

[
M

(∥∥∥∥∥φr,n (λx)
ρ

, z
∥∥∥∥∥)]pr


1/K

≤ 1, uniformly in n

→ 0 as λ→ 0.

This completes the proof.

Theorem 3.5. Let M,M1,M2 be Orlicz functions. Then

i) If there is a positive constantβ such that M (t) ≤ βt for all t ≥ 0, then B̂Vθ
(
M1, p, ‖, ., ‖

)
⊆ B̂Vθ

(
M ◦M1, p, ‖, ., ‖

)
,

ii) B̂Vθ
(
M1, p

)
∩ B̂Vθ

(
M2, p, ‖, ., ‖

)
⊆ B̂Vθ

(
M1 + M2, p, ‖, ., ‖

)
,

iii) If lim supt
M1(t)
M2(t) < ∞, then B̂Vθ

(
M2, p, ‖, ., ‖

)
⊆ B̂Vθ

(
M1, p, ‖, ., ‖

)
.

Proof. (i) Let x ∈ B̂Vθ
(
M1, p, ‖, ., ‖

)
so that

∑
∞

r=1

[
M1

(∥∥∥∥φr,n(x)
ρ , z

∥∥∥∥)]pr

< ∞ converges uniformly in n and for some

ρ > 0. Since M (t) ≤ βt for all t ≥ 0, we write

∞∑
r=1

[
M

(
yr

)]pr
≤ max

(
1, βH

) ∞∑
r=1

(
yr

)pr ,

where

yr = M1

(∥∥∥∥∥φr,n (x)
ρ

, z
∥∥∥∥∥)

and hence x ∈ B̂Vθ
(
M ◦M1, p, ‖, ., ‖

)
.

(ii) The proof is obvious and hence is omitted.
(iii) We can find K > 0 such that M1(t)

M2(t) ≤ K for all t ≥ 0, since lim supt−→∞
M1(t)
M2(t) < ∞. For x ∈

B̂Vθ
(
M2, p, ‖, ., ‖

)
, we write

∞∑
r=1

[
M1

(∥∥∥∥∥φr,n (x)
ρ

, z
∥∥∥∥∥)]pr

≤ max
(
1,KH

) ∞∑
r=1

[
M2

(∥∥∥∥∥φr,n (x)
ρ

, z
∥∥∥∥∥)]pr

by (5) whence x ∈ B̂Vθ
(
M1, p, ‖, ., ‖

)
.
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Theorem 3.6. For Orlicz function M, if limu
M(u/ρ)
(u/ρ) > 0 for some ρ > 0 then B̂Vθ

(
M, p, ‖, ., ‖

)
⊆ B̂Vθ(p, ‖, ., ‖).

Proof. If limu
M(u/ρ)
(u/ρ) > 0 then there exists a number α > 0 such that M

(
u/ρ

)
≥ α

(
u/ρ

)
for all u > 0 and some

ρ > 0. Let x ∈ B̂Vθ
(
M, p, ‖, ., ‖

)
so that

∑
∞

r=1

[
M

(∥∥∥∥φr,n(x)
ρ , z

∥∥∥∥)]pr

< ∞ for some ρ > 0. Then

∞∑
r=1

[
M

(∥∥∥∥∥φr,n (x)
ρ

, z
∥∥∥∥∥)]pr

≥ max

1,
(
α
ρ

)H ∞∑
r=1

[(∥∥∥φr,n (x) , z
∥∥∥)]pr

.

Hence x ∈ B̂Vθ(p, ‖, ., ‖).

Theorem 3.7. If p = (pr) and t = (tr) are bounded sequences of positive real numbers with 0 < pr ≤ tr < ∞ for each
r ∈N, then for any Orlicz function M

B̂Vθ
(
M, p, ‖, ., ‖

)
⊆ B̂Vθ (M, t, ‖, ., ‖) .

Proof. Suppose that x ∈ B̂Vθ
(
M, p, ‖, ., ‖

)
. Then there exists some ρ > 0 such that

∑
∞

r=1

[
M

(∥∥∥∥φr,n(x)
ρ , z

∥∥∥∥)]pr

< ∞.

This implies that
[
M

(∥∥∥∥φi,n(x)
ρ , z

∥∥∥∥)]pr

≤ 1 for sufficiently large values of i, say that i ≥ r0 for some fixed r0 ∈N.

Since M is non-decreasing, we have

∞∑
r=r0

[
M

(∥∥∥∥∥φr,n (x)
ρ

, z
∥∥∥∥∥)]tr

≤

∞∑
r=r0

[
M

(∥∥∥∥∥φr,n (x)
ρ

, z
∥∥∥∥∥)]pr

< ∞.

Hence x ∈ B̂Vθ (M, t, ‖, ., ‖) .

Theorem 3.8. The sequence space B̂Vθ
(
M, p, ‖, ., ‖

)
is solid.

Proof. Let x ∈ B̂Vθ
(
M, p, ‖, ., ‖

)
. This implies that

∞∑
r=1

[
M

(∥∥∥∥∥φr,n (x)
ρ

, z
∥∥∥∥∥)]pr

< ∞.

Let α = (αr) be sequence of scalars such that |αr| ≤ 1 for all r ∈N. Then the result follows from the following
inequality

∞∑
r=1

[
M

(∥∥∥∥∥αrφr,n (x)
ρ

z
∥∥∥∥∥)]pr

≤

∞∑
r=1

[
M

(∥∥∥∥∥φr,n (x)
ρ

, z
∥∥∥∥∥)]pr

< ∞.

Hence αx ∈ B̂Vθ
(
M, p, ‖, ., ‖

)
for all sequence of scalar (αr) with |αr| ≤ 1 for all r ∈ N, whenever x ∈

B̂Vθ (M, t, ‖, ., ‖) .

From Theorem 3.8 and Lemma we have:

Corollary 3.9. The sequence space B̂Vθ
(
M, p, ‖, ., ‖

)
is monotone.
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[11] W. Orlicz, Über raume (LM), Bull. Inter. Acad. Polonaise Sci. Lett. Serie 101 (1936) 93–107.
[12] S.D. Parashar, B. Choudhury, Sequence spaces defined by Orlicz functions, Indian J. Pure Appl. Math. 25(14) (1994) 419–428.
[13] W.H. Ruckle, FK-spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math. 25 (1973) 973–978.
[14] A. Sahiner, M. Gurdal, S. Saltan, H. Gunawan, Ideal convergence in 2-normed spaces, Taiwanese J. Math. 11 (2007) 1477–1484.
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