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Abstract. In 1933, Adams [1] developed Hausdorff transformations for double sequences. H. Sevli and
R. Savas [18] proved some result for the double Endl- Jakimovski (E-J) generalization. In this study, we
consider some further results for E-] Hausdorff transformations for double sequences.

1. Introduction and Background

A generalization of Hausdorff matrices has been made independently by Endl [7] and Jakimovski [9]
and this generalization is called the E-] generalization in the literature. Hausdorff transformations for
double sequences were described by Adams [1]. Later than some researchers studied double Hausdorff
matrices, see e.g. Ramanujan [12], Ustina [21], Rhoades [13] and further studied in [19, 20] to deal with
some double summability problems.

Let {uij} be a real or complex double sequence, and let AT and A7 be the forward difference operators
defined by Al[.l,']' = ‘u,‘j - yi+1,]', ATH[J,']' = Al (AT‘u,‘j) and AzHi/ = [.l,']' - [.l,'"]'+1, Ag“l«li]’ = AQ (A'zl‘ul']'). A
double Hausdorff matrix has entries

m m—i
hmnij = ( i )(])A Az Hl]r

where

m—i n—

i
A" lAz yl = Z (- 1)’+]( )(nt ])[Ji+s.j+t-

=0 t=0

For double Hausdorff matrices, the necessary and sufficient condition for H to be conservative is the
existence of a function x(s, f) € BV[0, 1] x [0, 1] such that

1 1
[ s i<
0 0
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1 pl
Hmn = f f s"t"dx (s, t).
0o Jo

Recently, the authors [18] considered the double E-J generalization. Let a and f be real numbers. The

matrix 5(@) = (61(1312)) , whose elements are defined by

and

o) _ [CDTGCE, i<m, j<n,
mnij 0, otherwise.

is called doubly difference matrix. The matrix 5(h) = (6( nﬁ)) is its own inverse.

Let {imn} be a given sequence and u = (ymmj) be a diagonal matrix whose only non-zero entries are
Umn = Umnmn- The transformation matrix

H@B) =5(@h) y5(2F)

is called a double E-] generalized Hausdorff matrix corresponding to the sequence {ty,}. A matrix H (@h) =
(h}(ﬂmﬁ])) is a double E-J generalized Hausdorff matrix corresponding to the sequence {,,} if and only if its
elements have the form

ap m+a\(n+p\, .
tgmlj) ( )( )A AZ #l]’

m—ij\n—j
where
mlﬂ]
r+s —1n-
Am lAz (uz =ZZ( 1)+ ( )( ])Hz+r]+s

For double E-] Hausdorff matrices, the necessary and sufficient condition for H (@6) to be conservative is the
existence of a function, x(s,t) € BV[0,1] x [0, 1] such that

1 1
[ [ o<,
0 0
”;(nanﬁ) f f m+atn+ﬁd2X(S t)

The function y is called mass function associated with the moment generating sequence {y

and

(a ﬂ)}

a function x(s,t) € BV[0,1] x [0,1], bounded variation in the unit square, the corresponding double E-J
Hausdorff transformation {t,.,}, of a sequence {s,.,}, may be defined by

iZ(mM)(mﬁ) ff ST =) (L= 0" dx(s 8,

i=0 j=0

Given

see e.g. [18] and the references contained there in.
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Let ). Y, au, be an infinite double series with real or complex numbers, with partial sums
m=0n=0

Denote by A7 the sequence space defined by,

(o] (o]
- k
‘ﬂi = {(Sm”)znzo : Z Z (mn)k ! |ayn|” < 00 Ayn = Allsml,nl}

=1 n=1
for k > 1, where
A115111—1,71—1 = Sm—l,n—l - Sm,n—l - Sm—l,n + Smn-
A four-dimensional matrix T = (tn,nij cm,n,i, j=0,1, ) is said to be absolutely k-th power conservative for

k>1,if T € B(A2); e, if

_ K
(mn) " |Aqspo1 | < 0,

gk
gk

3
I
—_
=
I
—

then

_ k
(mn) <! )Alltm—l,n—l < oo,

gk
gk

m=1 n=1
where
(o] (o)
b= Y Y by mn=0,1,.),
i=0 j=0

see e.g. [16], [17] and the references contained there in.

Let H be a conservative double Hausdorff matrix. E. Savas and B.E. Rhoades [14] proved that H € B (ff’{]%)
Quite recently, the authors [18] proved the corresponding result of [15] for double E-J generalized Hausdorff
matrices, i.e., they proved that H (@h) ¢ B (ﬂi) ,a,p >0, where H (@6) is a conservative double E-] Hausdorff

matrix.
In this study, we consider some further results for E-] Hausdorff transformations for double sequences.

2. Monotonicity-Preserving Matrices

For a given sequence {xi} let us define the difference operator of order r or r-th difference operator,
r € INp, as

A =x, Alxe=xr—x1, Axe=A'(Ax)x,

For an arbitrary r € Ny and k € N it hold

Ax; = Z (-1) (r.)xuk.
= J
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A sequence {xi} is r-convex if its r-th differences, A’xy, are all non-negative. Thus 0-convex sequences have
positive entries, 1-convex sequences are decreasing, 2-convex sequences are convex.

Let X and Y be any two sequence spaces. If x € X implies Ax € Y, then we say that the matrix
A = (a4 :n,i=0,1,..) maps X into Y. We denote the class of all matrices A which map X into Y by
(X,Y). G. Bennett [6] studied on matrix transformations preserving r—convexity for all r = 0,1,2, ..., i.e.
monotonicity-preserving.

For ordinary Hausdorff or H (i) transformation, (see Hardy [8]), the transformation

y =H(u)x
can be exppressed in the following form:

A'yo = uA'x, (r=0,12.). (1)
Lemma 2.1. ([6]) Suppose that a, b and c are sequences of real (or complex) numbers satisfying

ANag =b,AN ¢, (r=0,1,2,..).

Then, in fact,

k
Nag = Z (A"by.s) (k)Arci, (rk=0,1,2,..).

, i
i=0
The above lemma lets us replace (1) by a more generous identity:

k
Ay = Z (A1) (’;)Afxi, (rk=0,1,2,.).

i=0

This expresses all the rth differences of y as positive linear combinations of rth differences of x, as a result of
that H (u) preserves r-convexity for each r = 0,1,2, .... Hence any positive multiple H (u) is monotonicity-
preserving.

Theorem 2.2. ([6]) The matrix transformation

n

yn = Z ai’lixil (n = 0/ 1/ 2/ )

i=0

is monotonicity-preserving if and only if agg > 0 and

1
amzaoo(’}) f 0'(1-0y"du(0), (n,i=0,12,..),

0
where du is some probability measure on [0,1] . In other words, A is a positive multiple of a Hausdor{f mean.
A double sequence x = {xij} of real or complex numbers is said to be bounded if
Ildlleo = sup [xij| < oo,
ij

and is said to be convergent to the limit | in the Pringsheim sense (shortly, p-convergent tol) if for every ¢ > 0 there
exists N € IN such that |xij - l| < &£ whenever i, j > N. In this case  is called the p—Iimit of x. We denote by
L and C), the space of bounded double sequences and the space of p-convergent sequences, respectively.
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Note that, a convergent double sequence need not be bounded. The space of bounded p-convergent double
sequences is denoted by Cy, [11].

Let A = (@mij : m,n,i,j = 0,1,...) be a four dimensional infinite matrix of real numbers. The double
series

(o) (o)
Z Z AmnijXij
i=0 ]:O

is called A—transform of the double sequence x = {xij} and denoted by Ax. We say that a sequence x is
A-summable to the limit s if the the A—transform of x exists for all m,n = 0,1, ... and is convergent in the
Pringsheim sense, i.e.,

p= i ) Y iy = Yo

and

p— lim y,, =s.

mmn— oo

It is known that A € (Cbp,Cb,,) , that is, A is conservative if and only if (see [10])

p = lima,; = a;; for eachi, j; ()
~lim Z Z Qi = 4 ; (3)
- 11mZ | unij| = ao; for each j; (4)
- 11mZ |8nif| = ai0 for eachi; (5)

- hm Z Z |amm ]| exists ; (6)
1]l = sup Z Y Jammif] < oo, 7)
mn 7

If Aisconservative and p —lim Ax = p —lim x for all x € Cy,, the matrix A is said to be RH — regular and we
denote A € (CbP’CbP)reg' Also, it is known that A € (Cbp,Cbp)mg if and only if conditions (6), (7) hold, and

also (2) with a;; = 0, (3) with a = 1, (4) and (5) with ay; = ajo = 0 hold.
The double E-] Hausdorff method corresponding to the sequence {,,,} is regular if and only if

1 Al
#7(;:15) = f f ™" Pdg(u,v),  m,mn=0,1,2,..,
0o Jo

where g(u, v) is a function of bounded variation in the unit square with
g(u,0) = g(u,0%) = 9(0*,v) =g(0,v) =0, 0<u,v<l, (8)
and

9(1/1)_9(110)_9(0/1)-"9(0/0)=1 (9)
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If, in addition, H(*#) has all nonnegative entries, then g is nonnegative and nonincreasing in each variable.
This condition is equivalent to all of the forward differences in

h(“ﬁ) — (m+a)(n +ﬁ)Am 1A2 !/lzj

mnij m-—i1)\n—j

being nonnegative.
The following lemma is double version of Lemma 2.1

Lemma 2.3. ([4]) Suppose that a, b and c are real double sequences such that
AZAZHOO = brsA;A;CQO, (T,S = 0, 1, 2, ) .
Then,
kol - 0\ /]
ArA;akl = Z Z Ak_lAz_]br+i,s+j) (i)(]-)A;A;Cijr
i=0 j=0
r,s,k,1=0,1,2,....
Quite recently, Akgiin and Rhoades [4] studied the following doubly matrix transformation
m n
]/mn = Z Z amnijxij/ (m/ n= 0/ 1/ 2/ ) (10)
i=0 j=0

such that all monotonicities are preserved. The matrix A is said to preserve all monotonicities if any kind
of monotonic behavior is transferred to y. A sequence {x”} is rs-convex if its rs-th differences, A]A’x;;, are all
non-negative. Forall r,s = 0,1,2,... if A{ASx;; > 0 then one must have A]ASy,, > 0, for allm,n =0,1,2,.
We call such double matrices also monotonicity-preserving. In [4], they proved the result of Bennett [6] to
double Hausdorff matrix with all nonnegative entries. Their theorem is as follows.

Theorem 2.4. ([4]) A double triangular matrix A is monotonicity preserving if and only if it is a positive multiple
of a double regular Hausdorff matrix with nonnegative entries.

Let ). ) aumy be an infinite double series with real or complex numbers, with partial sums
m=0n=0

tmn

[

i gk

i
\-/

g\ m =i J\n j

I ol TR P @ B\ (m\("\ an-i

B Z‘ (1+m)(1+n)'"(1+i+1)(1+j+1)(1)(])A A2 H”s”
i=0 j=0

= (1+3) 1+ F ...(1+.i) 14 L)oo,
, m n i+1 j+1)
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since

and

(087 o

Therefore, the double E-J Hausdorff method H{®#) (1) proceeds from the ordinary double Hausdorff method
HO9 (4) by multiplying the Hausdorff element hfﬁﬁi by the factor

(1+%)(1+i) (1+ f1)(1+j+i1)'

Fora = -k, p=-I,(k1=1,2,..), there is a very simple interpretation. Since, if m > kand n > I, fori < k
and j </,

(m k) Oand( l,)=0,
m—1i n—j

we have for the transformed sequence f,,,
5 (s
= \m —iJ\n—j
m—k N\ i
e

]
m—k\(n—1
= ( . )( ] )Am k= lAn i I»l1+k]+lsz+k]+l

- - 1
i=0 j=0

tmn -

D= 1P
-

I
L o=

! =
n—

Now, in the light of Theorem 2.2 and Theorem 2.4, we will express the following theorem.

Theorem 2.5. The matrix transformation (10) is monotonicity-preserving if and only if agogo = 0 and

1 1
A = aoooo(m ’ a)(z tf) f f ol (1= u)" (1 - 0)" dg(u, ),
0 0

m,n,i,j=0,1,2,.., where g(u,v) is a function of bounded variation in the unit square with (8) and (9).

2.1. Equivalence for Double Summability
LetA=(a,;:n,i=0,1,..)and B = (bmj :m,j=0,1, ) be single infinite matrices and c4 and cp denote
the convergence domains of A and B, respectively, cs = {x = {x;} : im Y ap;x; exists} . A and B are said to be
noizQ

(o]
equivalent if they have the same convergence domain; i.e., if x is a sequence such that lim } a,;x; exists, then
=0

hm ): b, jX;j exists, and conversely. This equivalence will be shown as A = B. If c4 C cp, then we say that B is
j=0
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stronger than A. A lower triangular matrix with nonzero principal diagonal entries is called a triangle. If A
and B are conservative triangles, then ¢4 C ¢ is equivalent to BA™! being conservative. Consequently, if A
and B are conservative triangles, then A = B is equivalent to AB™! and BA™! are equivalent to convergence;
i.e., they each sum only convergent sequences. It should be noted that this definition of equivalence does
not require AB~! and BA™! be regular.

Let (H(“), y) and (H(ﬁ), ‘Ll) be two E-] Hausdorff matrices with the same mass function. Assume that

y;“). ‘ugﬁ ) # 0 for each n, i.e., that the matrices are triangle. Thus

n

(), = 00, (49,2, "
i=k
_ = (n+a ni, 1+ B \ie
B i=k (”—i)A ‘uil (i_k)A e

where A, = %ﬂ) Therefore, to show that the matrices are equivalent, it will be necessary and sufficient to

show that the matrix defined by (11), and the corresponding matrix with the roles of &« and § interchanged, is
equivalent to convergence. The matrix (C, 6) is an ordinary Hausdorff matrix with mass function y defined
by x()=1-(1-1°,0<t<1.

Quite recently, Albayrak and Rhoades [5] proved the following theorem.

Theorem 2.6. ([5]) For each a > 0, § > 0, the matrices (C(“), 6) and (C(ﬁ), 6) are equivalent in B (c) .

A double infinite matrix A is said to be the product of two single infinite matrices, A’ and A", written
A=A A", ifayj=a a’,mn,ij=0,1,2,..1f A”and A” are any two regular matrices, then A = A”.A”

mi nj’
is regular for the class of double sequences which are bounded A [3]. Let A’, A”, B’ and B” be row finite
matrices. Adams [2] has proved thatif A = A”©A” and B= B’ ©B”, then AB = (A’.B’) © (A”.B”). If A’ and
A" both have inverses, which we shall denote by D’ and D", respectively, then A = A’ © A” has as inverse
Al'=D'oD".

A double infinite Cesaro matrix (C, y, 0) is a special case of the double Hausdorff matrix with entries

—i—T\n+6—j-1
(m+11/_il )(n+n_; )

p—— , 7,6>0.
")

mnij =

We use to denote the corresponding E-J generalizations of the (C, y, 9).

(C(“'ﬁ), Y, 6) has the moment sequence

1 1
Higl:lﬁ) = f f um+avn+ﬂy6 (1 _ u))/—l (1 _ v) 6_1d1/ldv,
0 Jo
where

x(u,v) =y6 fu fﬂ (1-s)"1 (1 =) dsdt.
0o Jo
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Fori<mandj<n,

o) = f f (m”)(“f) P (1= )™ (1= 0" dy ()

]
_ yé(m+0é)(7’l+ﬁ) f 1+a(1 u)m i+y— 1U]+ﬁ(1 Z])n 91 440
m n—j
= 6(Zt?)(z+f)3(z+a+lm—1+)/)B(]+ﬁ+1n j+0)

yITm+a+1)T(m—i+y) OL(n+Bp+1)T'(n—j+0)
Im—i+ DI m+a+y+)T(n—j+1)T(n+p+06+1)
EV 1E01

m—i— n-j

E', E0

m+a n+[§

For the special case y,0 =1,

1 : .
(Cl@M,1,1) = { rsae(neper)’ i<mandj<n,

0, otherwise.

is a double E-] Hausdorff matrix.
Since (C(“'ﬁ), y, 6) is triangle, and can be written as the products (C(”'ﬁ), y, (5) = (C(“), 7/) o} (C(ﬁ), 6) , now
we feel ready to write the following theorem.

Theorem 2.7. Let (C(""ﬁ),y, (S) and (C(Q"P),y, 6) be double infinite E-] Cesaro matrices with y,6 > 0. Then
(C(“'ﬁ), y, 6) and (C(""P), y, 6) are equivalent.

3. Conclusion

In this study, we studied some further results for E-] Hausdorff transformations for double sequences.
Therefore the present paper is filled up a gap in the existing literature.
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