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Abstract. Let σod(n) =
∑

d|n,2-d d. In this paper, we study the solutions of σod(n) = σod(n + 1), their relations
to Pell numbers, and some interesting conjectures. Finally, we obtain that the equation σod(n) = σod(n + 1) =
σod(n + 2) ≡ 1 (mod 2) has no solution.

1. Introduction: A Question on Odd Divisor Functions

Let

σ(n) =
∑
d|n

d, and σod(n) =
∑

d|n,2-d

d

be the divisor function, and the odd divisor function, respectively, where n is a positive integer. The
divisor function and the odd divisor function are important in number theory. They appear naturally as
the coefficients of a (quasi-) modular form.

Let q = e2πiτ, where τ is a complex variable whose imaginary part is greater than 0. The Dedekind eta
function η(τ) is defined as

η(τ) = q1/24
∞∏

n=1

(
1 − qn) .

Taking the logarithmic derivative of η(τ), i.e., q
d
dq

ln, or equivalently,
1

2πi
d

dτ
ln, we get

E2(τ) =
1
24

+ q
∞∑

n=1

−nqn−1

1 − qn =
1
24
−

∞∑
n=1

σ(n)qn.
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The eta quotient η(τ)/η(2τ) is equal to

η(τ)
η(2τ)

= q−1/24
∞∏

n=1,2-n

(
1 − qn) .

Similarly, taking the logarithmic derivative, we get

E2,2(τ) = −
1

24
+ q

∞∑
n=1,2-n

−nqn−1

1 − qn = −
1

24
−

∞∑
n=1

σod(n)qn.

It is known that E2(τ) is a quasi-modular form (see [4]) and E2,2(τ) is a modular form for the congruence
subgroup Γ0(2) (see [5],pp.18-19).

Ramanujan gave a formula for the convolution sum of the divisor function, that is,∑
k+l=n

σ(k)σ(l) =
1
12
{5σ3(n) + (1 − 6n)σ1(n)} .

Recently, various kinds of convolution sums of the divisor function were studied in [3, 6, 8, 9, 13, 15, 17,
22].

A formula of the convolution sum of the odd divisor function was given in [16, (11)], [22, p. 130], that
is, ∑

k+l=n

σod(k)σod(l) =
1
24

(11σ3(n) − σ3(2n) − 2σod(n)).

Kim and Bayad [18] introduced several definitions and properties of odd divisor functions.
In this paper, we will study a new question on the odd divisor function. There is an unsolved problem

on the divisor function, which asks that if σ(n) = σ(n + 1) infinitely often ([11, p. 103], [21, p. 166]).
Erdös [7] made the much stronger conjecture that for every integer k ≥ 1 there is an n such that σ(n) =
σ(n + 1) = · · · = σ(n + k) has infinitely many solutions for each k. In this study, we are interested in the
question whether σod(n) = σod(n + 1) infinitely often or not. By computer, we find all the solutions of
σod(n) = σod(n + 1) up to n ≤ 240. We list the prime factorizations of these n and n + 1 in a table (see the
Appendix, https://drive.google.com/open?id=1zuZ6DbgKUg7ueMMtbC6SVRhP9W8Exxgc ).

From the Appendix, we find the following statements in Conjecture 1.1 are true up to n ≤ 240. We
conjecture that they are true for all n ≥ 2 (except the trivial case: σod(1) = σod(2)).

Conjecture 1.1. Assume that σod(n) = σod(n + 1) and n ≥ 2 is an integer. Then

(i) 4 - n and 4 - (n + 1);

(ii) The even one of n and n + 1 has at least four distinct odd prime factors;

(iii) The odd one of n and n + 1 is not a prime;

(iv) Neither n nor n + 1 is a square.

A natural number n is called perfect if σ(n) = 2n. Euclid found, and Euler proved that all the even
perfect numbers are of the form 2p−1(2p

− 1), where p and 2p
− 1 are both primes (or equivalently, 2p

− 1 is a
Mersenne prime). On the other hand, no odd perfect number is known up to now. Let ω(n) be the number
of distinct prime factors of n. The main result of [20] shows that ω(n) ≥ 9 for n being odd perfect.

Analogous to the perfect numbers, a natural number n is called quasi-perfect (resp., almost-perfect)
if σ(n) − 2n = 1 (resp., −1). The only known almost-perfect numbers are powers of 2 (p.74 of [11]). For
quasi-perfect numbers, Cattaneo [2] showed that they are odd squares. But still none of them is found.
Hagis and Cohen [12] proved ω(n) ≥ 7 for n being a quasi-perfect number.
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It seems to be mysterious that no odd perfect number, no odd almost-perfect number and no odd
quasi-perfect number are found up to now.

A natural number n is called near-perfect if σ(n) − 2n = 2 in [19]. There is no odd near-perfect number
up to 1010 by computer searching (See [19, Remark 2.4]). The main result of [19] proved that ω(n) ≥ 6, for n
being an odd near-perfect number.

In special cases, the new question about σod(n) = σod(n+1) is related to perfect numbers and near-perfect
numbers. In details,

(i) If n is an odd prime and 4 - n + 1, then σod(n) = n + 1 and σod(n + 1) = σ((n + 1)/2). Therefore, in this
case, σod(n) = σod(n + 1) is equivalent to (n + 1)/2 is an odd perfect number.

(ii) If n + 1 is an odd prime and 4 - n, then σod(n + 1) = n + 2 and σod(n) = σ(n/2). Therefore, in this case,
σod(n) = σod(n + 1) is equivalent to n/2 is an odd near-perfect number.

Since no odd perfect number and no odd near-perfect number is found up to now, this gives some
evidence of Conjecture 1.1 (iii). Assume that σod(n) = σod(n + 1) and n ≥ 2 is an integer. Then we prove that
the even one of n and n + 1 has at least three distinct odd prime factors. Moreover, if the odd one of n and
n + 1 is a prime power pt, then the even one of n and n + 1 has at least 4 distinct odd prime factors. This
gives a partial result on Conjecture 1.1 (ii).

Bayad and Kim [18] suggest notions of polygon-shape number, n-gon, order, convex, area, and prime.
Our result give several information of a study of polygon-shape number, for example, we see examples
satisfying the difference of area of n + 1-gon and n-gon A(n + 1) − A(n) = 1

2 with σod(n) = σod(n + 1).
The paper is organized as follows. In Section 2, we derive some basic conditions for the solutions of

σod(n) = σod(n + 1). In Section 3, we prove the equations σod(pt) = σod(pt + 1) with pt + 1 = 2 · pt1
1 pt2

2 pt3
3

and σod(pt
− 1) = σod(pt) with pt

− 1 = 2 · pt1
1 pt2

2 pt3
3 have no solutions. In Section 4, we obtain the equation

σod(n) = σod(n + 1) = σod(n + 2) ≡ 1 (mod 2) has no solution. The solutions of σod(n) = σod(n + 1)(n ≤ 240) are
given in the Appendix, https://drive.google.com/open?id=1zuZ6DbgKUg7ueMMtbC6SVRhP9W8Exxgc

2. General Results

Lemma 2.1. The integers t1, t2 · · · ts are positive. Let n = qt1
1 qt2

2 · · · q
ts
s be the prime factorization of a positive integer

n. Then(
1 +

1
q1

)
· · ·

(
1 +

1
qs

)
≤
σ(n)

n
<

(
1 +

1
q1 − 1

)
· · ·

(
1 +

1
qs − 1

)
.

Proof. Since

σ(n) = σ(qt1
1 ) · · · σ(qts

s ) = (1 + q1 + · · · + qt1
1 ) · · · (1 + qs + · · · + qts

s ),

we get

σ(n)
n

= (1 + q−1
1 + · · · + q−t1

1 ) · · · (1 + q−1
s + · · · + q−ts

s ).

Letting t1 = t2 = · · · = ts = 1, we get

σ(n)
n
≥

(
1 +

1
q1

) (
1 +

1
q2

)
· · ·

(
1 +

1
qs

)
. (1)

Letting t1, t2, · · · , ts all go to +∞, we get

σ(n)
n

<

(
1 +

1
q1 − 1

) (
1 +

1
q2 − 1

)
· · ·

(
1 +

1
qs − 1

)
. (2)
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Theorem 2.2. The integers t0, t1, t2 · · · ts are positive. Let n ≥ 2 be an integer. Assume σod(n) = σod(n + 1). Then

(i) If n is an odd integer and n + 1 = 2t0 qt1
1 qt2

2 · · · q
ts
s is the prime factorization of n + 1,

(ii) If n is an even integer and n = 2t0 qt1
1 qt2

2 · · · q
ts
s is the prime factorization of n, then, s ≥ 3. Moreover, if s = 3,

then the only possibility of {q1, q2, q3} is {3, 5, 7}, {3, 5, 11},or {3, 5, 13}.

Proof. (i) Directly from definition of σod(n) and σod(n + 1), we see that

σ(n) = σ(qt1
1 qt2

2 · · · q
ts
s ).

Dividing it by n + 1, we get

σ(n)
n + 1

=
σ(qt1

1 qt2
2 · · · q

ts
s )

n + 1
=

1
2t0

σ(qt1
1 qt2

2 · · · q
ts
s )

qt1
1 qt2

2 · · · q
ts
s
. (3)

Obviously,

σ(n)
n + 1

≥ 1 and t0 ≥ 1.

So, we get

σ(qt1
1 qt2

2 · · · q
ts
s )

qt1
1 qt2

2 · · · q
ts
s
≥ 2t0 ≥ 2.

By inequality (2), we get(
1 +

1
q1 − 1

) (
1 +

1
q2 − 1

)
· · ·

(
1 +

1
qs − 1

)
> 2. (4)

Since (
1 +

1
3 − 1

) (
1 +

1
5 − 1

)
=

15
8
< 2,

by equation (4), we get s ≥ 3.
Now assume s = 3 and q1 < q2 < q3. Since(

1 +
1

5 − 1

) (
1 +

1
7 − 1

) (
1 +

1
11 − 1

)
=

77
48

< 2,

by equation (4), we get q1 = 3. Since(
1 +

1
3 − 1

) (
1 +

1
7 − 1

) (
1 +

1
11 − 1

)
=

77
40

< 2,

by equation (4), we get q2 = 5. From(
1 +

1
3 − 1

) (
1 +

1
5 − 1

) (
1 +

1
13 − 1

)
=

195
96

> 2,(
1 +

1
3 − 1

) (
1 +

1
5 − 1

) (
1 +

1
17 − 1

)
=

255
128

< 2,

we conclude that the only possibility of q3 is 7, 11, or 13. Therefore, we find

(q1, q2, q3) = (3, 5, 7), (3, 5, 11) or (3, 5, 13). (5)



D. Kim et al. / Filomat 33:2 (2019), 543–559 547

(ii) In a similar way, we get

σ(n + 1)
n

=
σ(qt1

1 qt2
2 · · · q

ts
s )

n
=

1
2t0

σ(qt1
1 qt2

2 · · · q
ts
s )

qt1
1 qt2

2 · · · q
ts
s
. (6)

Obviously,

σ(n + 1)
n

> 1 and t0 ≥ 1.

So, we get

σ(qt1
1 qt2

2 · · · q
ts
s )

qt1
1 qt2

2 · · · q
ts
s

> 2t0 ≥ 2.

Then, again by inequality (2), we can get equation (4). The rest procedure is as the same as in the proof of
Theorem 2.2(i).

Remark 2.3. If n = 103 · 263 = 27089 and n + 1 = 2 · 32
· 5 · 7 · 43, then σod(n) = σod(n + 1).

And if n = 2 · 35
· 5 · 72

· 157 = 18693990 and n + 1 = 37 · 41 · 12323 = 18693991, then σod(n) = σod(n + 1).
Therefore, the bound 4 in Conjecture 1.1 (ii) is right.

A positive integer n is called abundant, perfect, or deficient according as σ(n) > 2n, = 2n, < 2n.

Proposition 2.4. Let n ≥ 2 be an integer. Assume σod(n) = σod(n + 1).

(i) If n is an odd integer and n + 1 = 2t0 qt1
1 qt2

2 qt3
3 is the prime factorization of n + 1, then n is always deficient,

(ii) If n is an even integer and n = 2t0 qt1
1 qt2

2 qt3
3 is the prime factorization of n, then, n + 1 is always deficient.

Proof. (i) By Theorem 2.2, we know that the only possibility of {q1, q2, q3} is {3, 5, 7} {3, 5, 11},or {3, 5, 13}.
Firstly, we consider the case of n + 1 = 2t0 3t1 5t2 7t3 . By equation (3) and inequality (2), we get

σ(n)
n + 1

=
1

2t0

σ(3t1 5t2 7ts )
3t1 5t2 7ts

<
1

2t0

(
1 +

1
3 − 1

) (
1 +

1
5 − 1

) (
1 +

1
7 − 1

)
.

(7)

Since t0 ≥ 1, we get

σ(n)
n + 1

<
35
32
. (8)

V. Annapurna [1] proved that

σ(n) <
6
π2 n
√

n (9)

for every natural number n , 1, 2, 3, 4, 6, 8. Since n ≥ 2 · 3t1 5t2 7t3 − 1 ≥ 209, from (9), we have

σ(n)
n
−
σ(n)
n + 1

= σ(n)
1

n(n + 1)

<
6
π2

n
√

n
n(n + 1)

=
6
√

n
π2(n + 1)

≤
3
π2

(10)
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by 2
√

n ≤ n + 1. By (8) and (10), σ(n)
n = 35

32 + 3
π2 < 2.

Finally, we consider the case of n + 1 = 2t0 3t1 5t2 11t3 and n + 1 = 2t0 3t1 5t2 13t3 . Similarly, as in the case of
n + 1 = 2t0 3t1 5t2 11t3 , we have

σ(n)
n + 1

<
1
2

(
1 +

1
3 − 1

) (
1 +

1
5 − 1

) (
1 +

1
11 − 1

)
=

33
32

;

while in the case of n + 1 = 2t0 3t1 5t2 13t3 , we have

σ(n)
n + 1

<
1
2

(
1 +

1
3 − 1

) (
1 +

1
5 − 1

) (
1 +

1
13 − 1

)
=

65
64
.

Therefore, using the same method, we can derive that σ(n) < 2n in both cases. Summing up, Proposition
2.4 (i) is proved.

(ii) By equation (6), we know that

σ(n + 1)
n + 1

<
σ(n + 1)

n
=

1
2t0

σ(qt1
1 qt2

2 qt3
3 )

qt1
1 qt2

2 qt3
3

.

Therefore, by Lemma 2.1, we get

σ(n + 1)
n + 1

<
1
2

(
1 +

1
q1 − 1

) (
1 +

1
q2 − 1

) (
1 +

1
q3 − 1

)
.

By Theorem 2.2, we know that the only possibility of {q1, q2, q3} is {3, 5, 7}, {3, 5, 11}, {3, 5, 13}. Hence,

σ(n + 1)
n + 1

<
1
2

(
1 +

1
3 − 1

) (
1 +

1
5 − 1

) (
1 +

1
7 − 1

)
=

35
32
.

So, n + 1 is deficient.

3. Results on Conjecture 1.1 (ii)

In this section, we want to give some partial results on Conjecture 1.1 (ii). To prove Conjecture 1.1 (ii),
we only need to exclude the case that the even one of n and n + 1 has prime factorization 2t0 qt1

1 qt2
2 qt3

3 with

(q1, q2, q3) = (3, 5, 7), (3, 5, 11) or (3, 5, 13).

by Theorem 2.2.

Lemma 3.1. Let n ≥ 2 be an integer. Assume σod(n) = σod(n + 1).

(i) If n is an odd integer and n + 1 = 2t0 qt1
1 qt2

2 qt3
3 is the prime factorization of n + 1, then t0 must be equal to 1,

(ii) If n is an even integer and n = 2t0 qt1
1 qt2

2 qt3
3 is the prime factorization of n, then t0 must be equal to 1.

Proof. (i) Assume t0 ≥ 2. From equation (3), we get

σ(n)
n + 1

=
1

2t0

σ(qt1
1 qt2

2 qt3
3 )

qt1
1 qt2

2 qt3
3

.

Since t0 ≥ 2, we have

σ(qt1
1 qt2

2 qt3
3 )

qt1
1 qt2

2 qt3
3

≥ 4
σ(n)
n + 1

≥ 4.
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By inequality (2), we get(
1 +

1
q1 − 1

) (
1 +

1
q2 − 1

) (
1 +

1
q3 − 1

)
> 4. (11)

From equation (5), we get(
1 +

1
q1 − 1

) (
1 +

1
q2 − 1

) (
1 +

1
q3 − 1

)
≤

3
2
·

5
4
·

7
6

=
35
16
,

which contradicts to equation (11). Therefore, t0 = 1.
(ii) Similarly we can obtain the desired result.

By Lemma 3.1, we only need to exclude the case: n + 1 = 2 · 3t1 5t2 qt3 with q = 7, 11 or 13, and the case:
n = 2 · 3t1 5t2 qt3 with q = 7, 11 or 13, in order to prove the Conjecture 1.1 (ii). But this seems to be hard. The
reason, we thought, might be that we do not know the prime factorization of the odd one of n and n + 1. In
the following, we assume the odd one of n and n + 1 is a prime power pt. Under this condition, we prove
Conjecture 1.1.

The following lemma will be used in the proof of Lemma 3.3.

Lemma 3.2. Let p and q be primes and t, t1, t2, t3 be positive integers.

(i) If pt + 1 = 2 · 3t1 5t2 qt3 , then t must be odd and p ≡ 29 (mod 60). Moreover, if t1 ≥ 2 and p ≡ 2, 5 (mod 9),
then 3|t,

(ii) If pt
− 1 = 2 · 3t1 5t2 qt3 , then t must be odd and p ≡ 31 (mod 60). Moreover, if t1 ≥ 2 and p ≡ 4, 7 (mod 9),

then 3|t.

Proof. (i) From pt + 1 = 2 · 3t1 5t2 qt3 , we get

pt + 1 ≡ 2 (mod 4), (12)

pt + 1 ≡ 0 (mod 3), (13)

pt + 1 ≡ 0 (mod 5). (14)

Clearly, p is a prime not equaling to either of 2, 3 and 5. Since p2
≡ 1 (mod 3), if t is even, then pt + 1 ≡ 2

(mod 3), which contradicts to (13). Therefore, t must be odd. If p ≡ −1 (mod 4), then pt + 1 ≡ 0 (mod 4)
as t is odd, which contradicts to (12). So p ≡ 1 (mod 4). If p ≡ 1 (mod 3), then pt + 1 ≡ 2 (mod 3), which
contradicts to (13). So p ≡ −1 (mod 3). If p ≡ 1 (mod 5), then pt + 1 ≡ 2 (mod 5), which contradicts to (14).
If p ≡ 2, 3 (mod 5), from (14), we get t ≡ 2 (mod 4). Since t is odd, it is still a contradiction. So p ≡ −1
(mod 5). Summing up, p ≡ 29 (mod 60) by the Chinese Reminder theorem. Moreover, if t1 ≥ 2, then

pt + 1 ≡ 0 (mod 9). (15)

Since p ≡ −1 (mod 3), p must ≡ 2, 5, 8 (mod 9). If p ≡ 2, 5 (mod 9), then t ≡ 3 (mod 6). Therefore, 3|t.
(ii) In a similar way, we get (ii).

Lemma 3.3. Let t, t1, t2, t3 be positive integers. Then:

(i) If pt + 1 = 2 · 3t1 5t2 7t3 , there does not exist an odd prime p satisfying σod(pt) = σod(pt + 1).

(ii) If pt
− 1 = 2 · 3t1 5t2 7t3 , there does not exist an odd prime p satisfying σod(pt) = σod(pt

− 1).

(iii) If pt + 1 = 2 · 3t1 5t2 11t3 , there does not exist an odd prime p satisfying σod(pt) = σod(pt + 1).

(iv) If pt
− 1 = 2 · 3t1 5t2 11t3 , there does not exist an odd prime p satisfying σod(pt) = σod(pt

− 1).
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(v) If pt + 1 = 2 · 3t1 5t2 13t3 , there does not exist an odd prime p satisfying σod(pt) = σod(pt + 1).

(vi) If pt
− 1 = 2 · 3t1 5t2 13t3 , there does not exist an odd prime p satisfying σod(pt) = σod(pt

− 1).

Proof. (i) Assume pt + 1 = 2 · 3t1 5t2 7t3 and σod(pt) = σod(pt + 1). We will seek a contradiction. We have

σ(pt) = σ(3t1 5t2 7t3 ). (16)

Dividing (16) by 2 · 3t1 5t2 7t3 , we get

σ(pt)
pt + 1

=
35
32

(1 −
1

3t1+1 )(1 −
1

5t2+1 )(1 −
1

7t3+1 ). (17)

By the inequality (2), we have

1 ≤
σ(pt)
pt + 1

<
σ(pt)

pt < 1 +
1

p − 1
. (18)

Denote

A1(t1, t2, t3) =
35
32

(1 −
1

3t1+1 )(1 −
1

5t2+1 )(1 −
1

7t3+1 ). (19)

Combining (17), (18) and (19), we get

1 ≤ A1(t1, t2, t3) < 1 +
1

p − 1
. (20)

In the following, we will seek a lower bound of A1(t1, t2, t3) (shortly, lb(A1(t1, t2, t3))), which is strictly greater
than 1, case by case. Then by inequality (20), we will get an upper bound of p. Note that A1(t1, t2, t3) is
monotonic increasing with each variable ti, where 1 ≤ i ≤ 3. Note that

A1(1, t2, t3) <
35
32
·

8
9

=
35
36

< 1,

which contradicts to (20). So t1 ≥ 2. We will divide the discussion into two cases: t1 = 2 and t1 ≥ 3.
Case: t1 = 2:
If t2 ≥ 2, then A1(2, t2, t3) is equal to or greater than

35
32

(1 −
1
33 )(1 −

1
53 )(1 −

1
72 ) =

1612
1575

= 1 +
1

42.5675...
.

By inequality (20), p < 44. If t3 ≥ 4, then A1(2, t2, t3) is equal to or greater than

35
32

(1 −
1
33 )(1 −

1
52 )(1 −

1
75 ) =

36413
36015

= 1 +
1

90.4899...
.

By inequality (20), p < 92. Otherwise, we have t2 = 1 and t3 ≤ 3. Since 2 · 325173 < 240, by the table in the
Appendix, we have σod(pt) , σod(pt + 1) with pt + 1 = 2 · 3t1 5t2 7t3 . Therefore, these finitely many cases can be
ruled out.

Case: t1 ≥ 3:
In this case, A1(t1, t2, t3) is equal to or greater than

35
32

(1 −
1
34 )(1 −

1
52 )(1 −

1
72 ) =

64
63

= 1 +
1

63
.
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By inequality (20), p < 64. Finally, by the above argument, we only need to consider the case p < 92. We
use congruent method to exclude the case p < 92. Since pt + 1 = 2 · 3t1 5t2 7t3 , by Lemma 3.2, p = 29 or 89, and
t is odd. From pt + 1 = 2 · 3t1 5t2 7t3 , we also get

pt + 1 ≡ 0 (mod 7). (21)

If p = 29, then pt + 1 ≡ 2 (mod 7), which contradicts to (21). If p = 89, from (21), we get t ≡ 3 (mod 6).
Hence 3|t. Since t is odd, we get

893 + 1|89t + 1 = 2 · 3t1 5t2 7t3 .

But 893 + 1 = 2 × 33
× 5 × 7 × 373. This is a contradiction.

(ii) Similarly, we get

A1(t1, t2, t3) = 1 +
1

p − 1
+

1
pt − 1

. (22)

By the Appendix, we find σod(pt) , σod(pt
− 1) with pt

− 1 = 2 · 3t1 5t2 7t3 and pt
− 1 ≤ 240. So we can assume

pt
− 1 > 240. Thus, we have

1 +
1

p − 1
+

1
pt − 1

< 1 +
1

p − 1
+

1
240 . (23)

Combining (22) and (23), we get

1 < A1(t1, t2, t3) < 1 +
1

p − 1
+

1
240 . (24)

In the following, we will seek a lower bound of A1(t1, t2, t3) (shortly, lb(A1(t1, t2, t3))), which is strictly greater
than 1, case by case. Then by inequality (24), we will get an upper bound of p. Compared inequality (24)
with inequality (20), they have a difference 2−40. Since 2−40 is very close to 0, we will get an upper bound
of p (Shortly, ub(p)), which is very close to that in Lemma 3.2(i). To get a better understanding of ub(p) and
lb(A1(t1, t2, t3)), we give the following table.

t1 t2 t3 lb(A1(t1, t2, t3)) ub(p)
2 ≥ 2 ≥ 1 1.0234... 43.5675...
2 ≥ 1 ≥ 4 1.0110... 91.4899...
≥ 3 ≥ 1 ≥ 1 1.0158... 64.0000...

TABLE 1. lb(A1(t1, t2, t3)) and ub(p)

From Table 1, we conclude the prime p < 92. Now we use the congruent method. Since pt
−1 = 2·3t1 5t2 7t3 ,

by Lemma 3.2(ii), p ≡ 31 (mod 60) and t is odd. Therefore, p = 31. From pt
− 1 = 2 · 3t1 5t2 7t3 , we get

pt
− 1 ≡ 0 (mod 7). (25)

Since p ≡ 3 (mod 7), from (25), we get 6|t. Since t is odd, it is a contradiction.
(iii) Assume pt + 1 = 2 · 3t1 5t2 11t3 and σod(pt) = σod(pt + 1). We will seek a contradiction. Using the same

method as in (i), we have

σ(pt)
pt + 1

=
33
32

(1 −
1

3t1+1 )(1 −
1

5t2+1 )(1 −
1

11t3+1 ). (26)

Denote

A2(t1, t2, t3) =
33
32

(1 −
1

3t1+1 )(1 −
1

5t2+1 )(1 −
1

11t3+1 ). (27)
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Similarly, we get

1 ≤ A2(t1, t2, t3) < 1 +
1

p − 1
. (28)

In the following, we will still seek a lower bound of A2(t1, t2, t3), hence, an upper bound of p, by inequality
(28). Note that

A2(2, t2, t3) <
33
32
· (1 −

1
33 ) =

143
144

< 1,

and

A2(t1, 1, t3) <
33
32
· (1 −

1
52 ) =

99
100

< 1,

which contradict to (28). Therefore, t1 ≥ 3 and t2 ≥ 2. We divide the discussion into two cases t1 = 3 and
t1 ≥ 4.

Case 1: t1 = 3.
If t2 ≥ 6, then A2(3, t2, t3) is greater than or equal to

33
32

(1 −
1
34 )(1 −

1
57 )(1 −

1
112 ) = 1 +

1
99.1268...

.

From (28), we get p < 101. If t3 ≥ 3, then A2(3, t2, t3) is greater than or equal to

33
32

(1 −
1
34 )(1 −

1
53 )(1 −

1
114 ) = 1 +

1
97.0745...

.

From (28), we get p < 99. The rest cases are t2 ≤ 5 and t3 ≤ 2. Since 2 × 3355112 < 240, by the table in the
Appendix, we have σod(pt) , σod(pt + 1) with pt + 1 = 2 · 3t1 5t2 11t3 . Therefore, these finitely many cases can
be ruled out.

Case 2: t2 ≥ 4.
In this case, A2(t1, t2, t3) is greater than or equal to

33
32

(1 −
1
35 )(1 −

1
53 )(1 −

1
112 ) = 1 +

1
96.4285...

.

From (28), we get p < 98. We can conclude the suitable prime number p must < 101. Now we use the
congruent method. Since pt + 1 = 2 · 3t1 5t2 11t3 , by Lemma 3.2, p ≡ 29 or 89, and t is odd. Also, we get

pt + 1 ≡ 0 (mod 11). (29)

If p = 29, then 29 ≡ 2 (mod 9). As t1 ≥ 2, by Lemma 3.2, we get 3|t. Since t is odd, we get

293 + 1|29t + 1 = 2 · 3t1 5t2 7t3 .

But 293 + 1 = 2 × 32
× 5 × 271. This is a contradiction.

If p = 89, then pt + 1 ≡ 2 (mod 11), which contradicts to (29).
(iv) Assume pt

− 1 = 2 · 3t1 5t2 11t3 and σod(pt) = σod(pt
− 1). We will seek a contradiction. Similarly as in

(iii), we denote

A2(t1, t2, t3) =
33
32

(1 −
1

3t1+1 )(1 −
1

5t2+1 )(1 −
1

11t3+1 ). (30)

Using the same method as in (ii), we get

A2(t1, t2, t3) = 1 +
1

p − 1
+

1
pt − 1

(31)
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and

1 < A2(t1, t2, t3) < 1 +
1

p − 1
+

1
240 . (32)

From 1 < A2(t1, t2, t3), similarly as in (iii), we get

t1 ≥ 3 and t2 ≥ 2.

Similarly as in (iii), we will get a lower bound of A2(t1, t2, t3), hence, an upper bound of p by inequality (32),
case by case. For a better understanding, we list them in the following table.

t1 t2 t3 lb(A2(t1, t2, t3)) ub(p)
3 ≥ 6 ≥ 1 1.0100... 100.1268...
3 ≥ 2 ≥ 3 1.0103... 98.0745...
≥ 4 ≥ 2 ≥ 1 1.0103... 97.4285...

TABLE 2. lb(A2(t1, t2, t3)) and ub(p)

From Table 2, we conclude p < 101. Now we use the congruent method. Since pt
− 1 = 2 · 3t1 5t2 11t3 , by

(ii), p ≡ 31 (mod 60) and t is odd. Therefore, p = 31. Since p ≡ 4 (mod 9) and t1 ≥ 2, we get 3|t, by (ii).
Therefore,

313
− 1|31t

− 1 = 2 · 3t1 5t2 11t3 .

But 113
− 1 = 2 × 5 × 7 × 19. A contradiction.

(v) Assume pt + 1 = 2 · 3t1 5t2 13t3 and σod(pt) = σod(pt + 1). We will seek a contradiction. Using the same
method as in (i), we have

σ(pt)
pt + 1

=
65
64

(1 −
1

3t1+1 )(1 −
1

5t2+1 )(1 −
1

13t3+1 ). (33)

Denote

A3(t1, t2, t3) =
65
64

(1 −
1

3t1+1 )(1 −
1

5t2+1 )(1 −
1

13t3+1 ) (34)

Similarly, we get

1 ≤ A3(t1, t2, t3) < 1 +
1

p − 1
. (35)

In the following, we will still seek a lower bound of A3(t1, t2, t3), hence, an upper bound of p by inequality
(35). Note that

A3(2, t2, t3) <
65
64
· (1 −

1
33 ) =

845
864

< 1,

and

A2(t1, 1, t3) <
65
64
· (1 −

1
52 ) =

39
40

< 1,

which contradict to (35). Therefore, t1 ≥ 3 and t2 ≥ 2. We divide the discussion into six cases t1 = 3, 4, 5, 6, 7
and t1 ≥ 8.

Case 1: t1 = 3.
Note that

A3(3, 2, t3) <
65
64
· (1 −

1
34 )(1 −

1
53 ) =

403
405

< 1,
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and

A3(3, t2, 1) <
65
64
· (1 −

1
34 )(1 −

1
132 ) =

350
351

< 1,

which contradict to (35). Therefore, t2 ≥ 3 and t3 ≥ 2 in this case. If t2 ≥ 5, then A2(3, t2, t3) is greater than
or equal to

65
64

(1 −
1
34 )(1 −

1
56 )(1 −

1
133 ) = 1 +

1
389.7601...

From (35), we get p < 391. If t3 ≥ 5, then A2(3, t2, t3) is greater than or equal to

65
64

(1 −
1
34 )(1 −

1
54 )(1 −

1
136 ) = 1 +

1
675.0945...

.

From (35), we get p < 677. The rest cases are t2 ≤ 4 and t3 ≤ 4. Since 2 × 3354134 < 240, these finitely many
cases can be ruled out by the table in the Appendix.

Case 2: t1 = 4.
If t2 ≥ 3, then A3(4, t2, t3) is greater than or equal to

65
64

(1 −
1
35 )(1 −

1
54 )(1 −

1
132 ) = 1 +

1
259.6153...

.

From (35), we get p < 261. If t3 ≥ 2, then A3(4, t2, t3) is greater than or equal to

65
64

(1 −
1
35 )(1 −

1
53 )(1 −

1
133 ) = 1 +

1
345.1588...

.

From (35), we get p < 347. The rest cases are t2 = 2 and t3 = 1. Since 2 × 345213 < 240, this case can be ruled
out by the table in the Appendix.

Case 3∼5: t1 = 5, 6, 7. These cases can be discussed similarly as the case: t1 = 4. Precisely, in each case,
if t2 ≥ 3 or t3 ≥ 2, we will get a larger lower bound of A3(t1, t2, t3), hence, a smaller upper bound of p, in this
case than in the case: t1 = 4. Otherwise, t2 = 2 and t3 = 1. Since 2 × 375213 < 240, it can be excluded by the
table in the Appendix.

Case 6: t1 ≥ 8. In this case, A3(t1, t2, t3) is equal to or greater than

65
64

(1 −
1
39 )(1 −

1
53 )(1 −

1
132 ) = 1 +

1
672.2336...

.

By inequality (35), p < 674. Summing up, the suitable prime p must < 677. Now, we use the congruent
method. Since pt + 1 = 2 · 3t1 5t2 13t3 , by (i), t is odd and

p ∈ {29, 89, 149, 269, 389, 449, 509, 569}.

From pt + 1 = 2 · 3t1 5t2 13t3 , we get

pt + 1 ≡ 0 (mod 13). (36)

If p ≡ 2, 6, 7, 11 (mod 13), then t ≡ 6 (mod 12). Since t is odd, this is impossible. If p ≡ 5, 8 (mod 13), then
t ≡ 2 (mod 4). Since t is odd, this is impossible. If p ≡ 1 (mod 13), then pt

≡ 1 (mod 13), which contradicts
to (36). If p ≡ 3, 9 (mod 13), then pt

≡ 1, 3, 9 (mod 13), which contradicts to (36). Therefore, p ≡ 4, 10, 12
(mod 13). This implies p = 389 or p = 569. If p = 569, since t is odd,

p + 1|pt + 1 = 2 · 3t1 5t2 13t3 .

But p + 1 = 570 = 2 × 3 × 5 × 19. A contradiction! If p = 389, then p ≡ 2 (mod 9). Since t1 ≥ 2, by (i), we get
3|t. Since t is odd,

3893 + 1|389t + 1 = 2 · 3t1 5t2 13t3 .
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But 3893 + 1 = 2 × 3 × 5 × 13 × 50311. A contradiction!
(vi) Assume pt

− 1 = 2 · 3t1 5t2 13t3 and σod(pt) = σod(pt
− 1). We will seek a contradiction. Similarly as in

(v), we denote

A4(t1, t2, t3) =
33
32

(1 −
1

3t1+1 )(1 −
1

5t2+1 )(1 −
1

13t3+1 ). (37)

Using the same method as in (ii), we get

A4(t1, t2, t3) = 1 +
1

p − 1
+

1
pt − 1

(38)

and

1 < A4(t1, t2, t3) < 1 +
1

p − 1
+

1
240 . (39)

From 1 < A3(t1, t2, t3), like in (v), we get

t1 ≥ 3, t2 ≥ 2 and if t1 = 3, then t2 ≥ 3 and t3 ≥ 2.

Similarly as in (v), we will get a lower bound of A4(t1, t2, t3), hence, an upper bound of p by inequality (39),
case by case. For a better understanding, we list them in the following table.

t1 t2 t3 lb(A4(t1, t2, t3)) ub(p)
3 ≥ 5 ≥ 2 1.0025... 390.7601...
3 ≥ 3 ≥ 5 1.0014... 676.0945...
4 ≥ 3 ≥ 1 1.0038... 260.6153...
4 ≥ 2 ≥ 2 1.0028... 346.1588...
5 ≥ 3 ≥ 1 1.0066... 152.1194...
5 ≥ 2 ≥ 2 1.0056... 177.6778...
... ... ... ... ...
≥ 8 ≥ 2 ≥ 1 1.0014... 673.2336...

TABLE 3. lb(A4(t1, t2, t3)) and ub(p)

Hence, we consider the prime numbers p < 677. Since pt
− 1 = 2 · 3t1 5t2 13t3 , by (ii), t is odd and

p ∈ {31, 151, 211, 271, 331, 571, 631}. (40)

From pt
− 1 = 2 · 3t1 5t2 13t3 , we get

pt
− 1 ≡ 0 (mod 13). (41)

Since t is odd, from (41), the order of p modulo 13 must be 1 or 3. Therefore, p ≡ 1, 3, 9 (mod 13), which
contradicts to (40).

By Theorem 2.2, Lemma 3.1 and Lemma 3.3, we get the following corollary.

Corollary 3.4. Let pt +1 = 2t0 qt1
1 qt2

2 · · · q
ts
s (resp., pt

−1 = 2t0 qt1
1 qt2

2 · · · q
ts
s ) with p and qi (1 ≤ i ≤ s) being odd distinct

prime numbers. If σod(pt) = σod(pt + 1) (resp., σod(pt
− 1) = σod(pt)) then s ≥ 4.

Remark 3.5. Suppose that n + 1 = 2t0 qt1
1 · · · q

ts
s and t0 ≥ 2. Assume σod(n) = σod(n + 1), then

σ(n) = σ(qt1
1 · · · q

ts
s ) = (

t1∑
k1=0

qk1
1 ) · · · (

ts∑
ks=0

qks
1 ).
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It is obvious that σ(n) − (n + 1) ≥ 0, then we have

n + 1 + (σ(n) − (n + 1)) = σ(qt1
1 · · · q

ts
s ) = (

t1∑
k1=0

qk1
1 ) · · · (

ts∑
ks=0

qks
1 )

and

n + 1 ≤ (
t1∑

k1=0

qk1
1 ) · · · (

ts∑
ks=0

qks
1 ). (42)

Divide (42) by qt1
1 · · · q

ts
s , then

2t0 ≤

(
∑t1

k1=0 qk1
1 ) · · · (

∑ts
ks=0 qks

1 )

qt1
1 · · · q

ts
s

=

1 − q−(t1+1)
1

1 − q−1
1

 · · ·
1 − q−(ts+1)

s

1 − q−1
s


and  1

1 − q−1
1

 · · · ( 1
1 − q−1

s

)
> 4.

Let q[1] = 2, q[2] = 3, · · · , q[i] be the i-th prime number. Using Mathematica 9.0, we get(
1

1 − q[2]−1

)
· · ·

(
1

1 − q[21]−1

)
=

2033432863950094091347
512616335105064960000

< 4

and (
1

1 − q[2]−1

)
· · ·

(
1

1 − q[22]−1

)
=

160641196252057433216413
39984074138195066880000

> 4.

So, if σod(n) = σod(n + 1) and 4|n + 1, then n + 1 has at least 21 distinct odd prime divisors. Similarly, if
σod(n) = σod(n + 1) and 4|n, then n has at least 21 distinct odd prime factors. Therefore, if n <

∏22
i=2 p[i] − 1 =

6435289534681345815798169108259 with n ≡ 0 or −1 (mod 4), then σod(n) , σod(n + 1). Assume 4|n + 1 and
3 6 |n + 1. Similarly, using Mathematica 9.0, we get(

1
1 − q[3]−1

)
· · ·

(
1

1 − q[140]−1

)
< 4

and (
1

1 − q[3]−1

)
· · ·

(
1

1 − q[141]−1

)
> 4.

So, if σod(n) = σod(n + 1) with 4|n + 1 and 3 6 |n + 1, then n + 1 has at least 139 odd prime factors. Similarly, if
σod(n) = σod(n + 1) with 4|n and 3 6 |n, then n has at least 139 odd prime factors.

4. Results on Conjecture 1.1 (iv)

The following lemma, though simple, is the key point to our proof.

Lemma 4.1. Let N denote the largest odd integer dividing n. Then σod(n) is odd if and only if N is a perfect square.

Proof. Glaisher [6, p. 294] considered σod(n) = σ(N). In [22, p. 28] σ(n) is odd if and only if N is a perfect
square. This completes the proof of Lemma 4.1.
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Corollary 4.2. If σod(n) = σod(n + 1) is even, then neither n nor n + 1 is a square.

Proof. As in Lemma 4.1, let N denote the largest odd integer dividing n and N′ denote the largest odd
integer dividing n + 1. By Lemma 4.1, neither N nor N′ is a square. Therefore, neither n nor n + 1 is a
square.

Remark 4.3. Assume σod(n) = σod(n + 1) such that n or n + 1 is a square. It is easily checked that

n (mod 4) 0 1 2 3
n + 1 (mod 4) 1 2 3 0

TABLE 4. n and n + 1 (mod 4)

and the possible case of square integers for n and n+1 is n ≡ 0 (mod 4) and n+1 ≡ 1 (mod 4). By Corollary
4.2, to prove Conjecture 1.1 (v), we only need to consider the case:

σod(n) = σod(n + 1) ≡ 1 (mod 2),

that is, n ≡ 0 (mod 4) and n ≡ 1 (mod 4) (see Table 4).
Firstly, we consider the case n ≡ 1 (mod 4), by Lemma 4.1, there exist odd positive integers M and L

satisfying n = M2 and n + 1 = 2lL2. Since n = M2
≡ 1 (mod 4), l must be 1. Therefore, such pair n and n + 1,

can be parameterized by positive solutions of the negative Pell equation, i.e.,

M2
− 2L2 = −1, n = M2, n + 1 = 2L2. (43)

x = 1, y = 1 is an obvious solution of the equation x2
− 2y2 = −1, and is fundamental as any smaller

solution would have x and y < 1. The other positive solutions can be obtained by iteration:

xm+1 = 3xm + 4ym and ym+1 = 2xm + 3ym,

that is:

(1, 1), (7, 5), (41, 29), (239, 169), (1393, 985), (8119, 5741), (47321, 33461), (1607521, 1136689), ...,

(46305156912921105124676500756345112056691727724000577129664401793869058047789742202

70447822703484163801, 32742690457033652340770680969440171184861124790238682838820336

04409842361054556976605396860319012519349), · · · .

Assume x2
m − 2y2

m = −1 with m ≥ 2. Using Mathematica 9.0, we checked σod(x2
m) , σod(2y2

m) satisfying
x2

m + 1 = 2y2
m with m = 2, ..., 135.

Thus, if n ≤ 463051569129211051246765007563451120566917277240005771296644017938690580477 89742202704478227034841638012,
that is, (n < 10205) and σod(n) = σod(n + 1), then neither n nor n + 1 is a square except n = 1.

Secondly, we consider the case n ≡ 0 (mod 4). There exist odd positive integers K, U and l satisfying

n + 1 = K2 and n = K2
− 1 = 2lU2 (44)

by Lemma 4.1. If l = 2l′ then we cannot find positive integers K and U satisfying K2
− (2l′U)2 = 1. By (44),

put l = 2l′ + 1, we consider σod(n) = σod(n + 1) satisfying n + 1 = K2 and n = K2
− 1 = 2(2l′U)2. Put 2l′U = U.

Then we get the classical Pell equation K2
− 2U2 = 1.The solutions of x2

− 2w2 = 1 are

(x1,w1) = (3, 2), (x2,w2) = (17, 12), (x3,w3) = (99, 70), (x3,w3) = (99, 70),
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(x4,w4) = (577, 408), (x5,w5) = (3363, 2378), .., (x130,w130) = (16620657195672643875956

20839613920483911723740125085355030801429665220366155075897997802501222942737, 117525794

1083711279465456977691532980497533808327824270765753191808758291738555073278938547461890828).

Using Mathematica 9.0, we checked σod(2w2
m) , σod(x2

m) satisfying x2
m − 2w2

m = 1 with m = 1, ..., 130.

Remark 4.4. Let n ≤ 153168087149 be an odd non-square-free positive integer. Then, using Appendix,
there does not exist n satisfying σod(n) = σod(n + 1). First case is σod(153168087150) = σod(153168087151) with
153168087151 = 6722

× 1481 × 23039.

Theorem 4.5. There does not exist n satisfying σod(n) = σod(n + 1) = σod(n + 2) ≡ 1 (mod 2).

Proof. We assume that there exist n satisfying σod(n) = σod(n + 1) = σod(n + 2) ≡ 1 (mod 2). By Table 4 and
Lemma 4.1 the possible case of n is n ≡ 0 (mod 4). We have x2

m − 2y2
m = −1 and x′2l − 2w2

l = 1 by Remark
4.3. By assumption there exist m and l satisfying xm = x′l. But we cannot find positive integers ym and wl
satisfying 2y2

m − 2w2
l = 2. This is the proof of Theorem 4.5.

Remark 4.6. Sierpiński has asked if σ(n) = σ(n + 1) infinitely often. Jud McCranie found 832 solutions of

σ(n) = σ(n + 1) for n < 4.25 × 109 ;

(see [11, p. 103]).
Erdös [7] made the much stronger conjecture that for every integer k ≥ 1 there is an n such that σ(n) =
σ(n + 1) = · · · = σ(n + k) has infinitely many solutions for each k. Haukkanen [14] observed that for no
n ≤ 2 · 108 such that σ(n) = σ(n + 1) = σ(n + 2). Let σ∗(n) =

∑
d|n, n

d odd

d. By [17, Table 11] and the Appendix, we

shall compare the above problem for σ(n), σ∗(n) and σod(n) as follows.

n σ∗(n) = σ∗(n + 1) σ(n) = σ(n + 1) σod(n) = σod(n + 1)
n < 200 3, 6, 7, 10, 22, 31, 14 1

58, 82, 106, 140,
154, 160, 166, 180

n < ]{n|σ∗(n) = σ∗(n + 1)} ]{n|σ(n) = σ(n + 1)} ]{n|σod(n) = σod(n + 1)}
4.25 × 109 = 1870 = 832 = 64

n σ∗(n) = σ∗(n + 1) σ(n) = σ(n + 1) σod(n) = σod(n + 1)
= σ∗(n + 2) = σ(n + 2) = σod(n + 2)

n < 6 no no
4.25 × 109

TABLE 5. σ∗(n), σ(n) and σod(n).

The equationσod(n) = σod(n+1) = σod(n+2) has no solution for n ≤ 240 (see the Appendix, https://drive.google.com/
open?id=1zuZ6DbgKUg7ueMMtbC6SVRhP9W8Exxgc ).
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