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Abstract. This paper proposes an efficient numerical method to obtain analytical-numerical solutions
for a class of system of boundary value problems. This new algorithm is based on a reproducing kernel
Hilbert space method. The analytical solution is calculated in the form of series in reproducing kernel space
with easily computable components. In addition, convergence analysis for this method is discussed. In
this sense, some numerical examples are given to show the effectiveness and performance of the proposed
method. The results reveal that the method is quite accurate, simple, straightforward, and convenient to
handle a various range of differential equations.

1. Introduction

Systems of boundary value problems arise naturally in several branches, not only in mathematics, but
also in physics as physical differential equations and in scientific and engineering applications including
potential theory, electrostatics, fluid mechanics, astronomy, relaxation processes and so on. Actually,
many real life problems are often stated as boundary value problems, such as Sturm-Liouville forms,
wave and Laplace’s equations, different electromagnetic applications, and even some situations of black
holes appear as systematic treatments via boundary value problems. To get more information about
BVPs, we refer to [11, 13, 18, 29, 30]. Mostly, it is difficult to find the exact solutions of nonlinear and
non-homogeneous BVPs, so a lot of attention of many authors has been made to find their analytical
and numerical approximate solutions. Because of the significant difficulty to get a closed form solution
of various nonlinear BVPs, several iterative techniques can be applied to approach the results of many
numerical experiments that confirm the efficiency of the reduction to the boundary value problems. For
instance, see [5, 7, 8, 10, 23, 25, 26, 28, 31, 32] and the references therein. Anyhow, coupled of fourth and
second-order differential systems with homogeneous boundary conditions constitute a very interesting
class for many realism matters, they are actually found to be a powerful tool to describe certain physical
problems.

In this paper, iterative form of reproducing kernel method is proposed for solving coupled differential
systems of fourth and second-order BVPs in the appropriate Hilbert space. The key point is to construct
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Email addresses: ateiwi@hotmail.com (Ali Ateiwi), ayed_aledamat@yahoo.com (Ayed Al édamat), asad.freihat@bau.edu.jo
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the direct sum of the RKHSs that satisfying the boundary conditions of coupled differential systems in
order for determining their exact and numerical solutions. The exact and numerical solutions are proposed
very accurately in series formula with easily computable coefficients. However, coupled differential system
of fourth and second-order BVPs has been studied systematically in this approach for development and
implementation of reliable method. To be more precisely, consider the set of ordinary differential equations
in the form [33]:

L1u1 (x) = f1
(
x,u1 (x) ,u2 (x) ,u′1 (x) ,u′2 (x)

)
,

L2u2 (x) = f2
(
x,u1 (x) ,u2 (x) ,u′1 (x) ,u′2 (x)

)
,

(1)

with the boundary conditions

u1 (0) = u′′1 (0) = u1 (1) = u′′1 (1) = 0,

u2 (0) = u2 (1) = 0,
(2)

where the linear differential operators L1 and L2 are given by

L1 : W5
2 [0, 1]→W1

2 [0, 1] such that L1u1 (x) = u′′′′1 (x) ,

L2 : W3
2 [0, 1]→W1

2 [0, 1] such that L2u2 (x) = u′′2 (x) ,
(3)

x ∈ [0, 1], u1 ∈ W5
2 [0, 1] and u2 ∈ W3

2 [0, 1] are unknown functions to be determined, fi (x, v1,w1, v2,w2) , i =

1, 2, is continuous function in W1
2 [0, 1] as vi = vi (x) ∈ W5

2 [0, 1] and wi = wi (x) ∈ W3
2 [0, 1], 0 ≤ x ≤ 1,

−∞ < vi,wi < ∞, i = 1, 2, and W1
2 [0, 1] ,W3

2 [0, 1] ,W5
2 [0, 1] are RKHSs. Without loss of generality, we assume

that system. (1) to (3) has a unique analytical solution on [0, 1].
In 1907, the reproducing kernel was introduced by Stanislaw Zaremba. In the mid of 20th century,

Nachman Aronszajn developed the reproducing kernels, systematically. The RKHS theory has many
applications in quantum mechanics, computational processing, complex and harmonic analysis [6, 14, 16,
17]. Many recent papers in both differential and integral equations apply a method based on the theory to
solve related problems. To understand the fundamentals and the properties of reproducing kernel Hilbert
spaces, the reader is kindly requested to go over the references [1–4, 9, 12, 15, 19–22, 24, 27, 34]. On the other
hand, there is generally a drive to find new more advantageous ways to make the analyze problems using
practice methods. In our procedure, the approximate solution is obtained by n-th term intercept of the
analytical solution, whereas the error is proved to converge to zero in the sense of space norm. Besides that,
we have uniformly convergence of approximate solution to analytical solution together with its derivatives.
In addition, we show from the presented examples that the RKHS approach is capable to handle wide scale
of applications of BVPs. Finally, it is worth it to mention that we do not take care about transforming or
preserving a continuous-time system, so it does not matter at what time we make our calculations.

The structure of this article is organized as follows. In Section 2, we construct two useful direct sum
reproducing kernel spaces and obtain two extended reproducing kernel functions. Afterwards, in Section
3, there are more theoretical details written in a logical order based upon the reproducing kernel theory.
The main practical point is to describe iterative technique to handle non-linearity case of the proposed
system, as well as error analysis of the solutions are also presented in Section 4. The mentioned sections are
very important to build methodology of the presented method before passing to the numerical examples
in Section 5. After all, some remarkable concluded points are pointed out in Section 6. This paper ends in
Appendices with two parts about the kernel functions of the inner product spaces W3

2 [0, 1] and W5
2 [0, 1].

2. Building Appropriate Inner Product Spaces

The reproducing kernel approach builds on a Hilbert space H, which requires that all Dirac evaluation
functional in H are bounded and continuous. In this section, two essential RKHSs W5

2 [0, 1]
⊕

W3
2 [0, 1]

and W1
2 [0, 1]

⊕
W1

2 [0, 1] are constructed. Then, we utilize the reproducing kernel concept to obtain the
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reproducing kernel functions
(
R{5}x

(
y
)
,R{3}x

(
y
))T

and
(
R{1}x

(
y
)
,R{1}x

(
y
))T

in order to formulate the solutions
in the mentioned spaces, in which every function satisfies the boundary conditions of Eq. (2). Before the
construction, it is necessary to present some preliminary facts upon the reproducing kernel theory that will
be used further in the remainder of the paper. Throughout this analysis, the symbol C indicates the set of

complex numbers while L2 [0, 1] = {u |
∫ 1

0 u2 (x) dx < ∞} and l2 = {A |
∞∑

i=1
A2

i < ∞}.

Definition 2.1. ([6]) Let H be a Hilbert space of function θ : Ω→ H on a set Ω. A function R : Ω ×Ω→ C
is a reproducing kernel of H if the following conditions are satisfied. Firstly, R (·, x) ∈ H for each x ∈ Ω.
Secondly, 〈θ (·) ,R (·, x)〉 = θ (x) for each θ ∈ H and each x ∈ Ω.

The last condition is called ”the reproducing property” which means that, the value of the function θ at
the point x is reproducing by the inner product of θ with R (·, x). Indeed, a Hilbert space which possesses a
reproducing kernel is called a RKHS.

Definition 2.2. ([27]) The kernel space W1
2 [0, 1] is defined as W1

2 [0, 1] = {z : z is absolutely continuous
function on [0, 1] and z′ ∈ L2 [0, 1]}. The inner product in W1

2 [0, 1] is given by

〈z1(x), z2(x)〉W1
2

= z1 (0) z2 (0) +

∫ 1

0
z′1(x)z′2(x)dx, (4)

and the norm is ||z||W1
2

=
√
〈z (x) , z (x)〉W1

2
, where z1, z2 ∈W1

2 [0, 1].

Definition 2.3. The kernel space W3
2 [0, 1] is defined as W3

2 [0, 1] = {z : z, z′, z′′ are absolutely continuous
functions on [0, 1], z′′′ ∈ L2 [0, 1], and z (0) = 0, z (1) = 0}. The inner product in W3

2 [0, 1] is given by

〈z1 (x) , z2 (x)〉W3
2

=

2∑
i=0

z(i)
1 (0) z(i)

2 (0) +

∫ 1

0
z′′′1 (x)z′′′2 (x)dx, (5)

and the norm is ||z||W3
2

=
√
〈z (x) , z (x)〉W3

2
, where z1, z2 ∈W3

2 [0, 1].

Definition 2.4. The kernel space W5
2 [0, 1] is defined as W5

2 [0, 1] = {z : z(i), i = 0, 1, 2, 3, 4 are absolutely
continuous functions on [0, 1], z(5)

∈ L2 [0, 1], and z (0) = z′′ (0) = z (1) = z′′ (1) = 0}. The inner product in
W5

2 [0, 1] is given by

〈z1 (x) , z2 (x)〉W5
2

=

2∑
i=0

z(i)
1 (0) z(i)

2 (0) +

1∑
i=0

z(i)
1 (1) z(i)

2 (1) +

∫ 1

0
z(5)

1 (x)z(5)
2 (x)dx, (6)

and the norm is ||z||W5
2

=
√
〈z (x) , z (x)〉W5

2
, where z1, z2 ∈W5

2 [0, 1].

An important subsets of RKHSs are those associated to continuous kernels. These spaces have wide
applications, including complex analysis, quantum mechanics, statistics, machine learning and harmonic
process [6, 14, 16, 17]. Before any further discussion, we need to obtain the reproducing kernels functions
of the spaces W1

2 [0, 1], W3
2 [0, 1], and W5

2 [0, 1], respectively, as follows.

Theorem 2.1. ([27]) The Hilbert space W1
2 [0, 1] is a complete reproducing kernel with the reproducing kernel

function

R{1}x
(
y
)

=

 R{1}x,1
(
y
)

= 1 + y, y ≤ x,

R{1}x,2
(
y
)

= 1 + x, y > x.
(7)
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Theorem 2.2. (a) The Hilbert space W3
2 [0, 1] is a complete reproducing kernel with the reproducing kernel function

R{3}x
(
y
)

=


R{3}x,1

(
y
)

=
5∑

i=0
ai(x)yi, y ≤ x,

R{3}x,2
(
y
)

=
5∑

i=0
bi(x)yi, y > x,

(8)

where ai(x) and bi(x), i = 0, 1, ..., 5, are unknown coefficients of R{3}x
(
y
)
.

(b) The Hilbert space W5
2 [0, 1] is a complete reproducing kernel with the reproducing kernel function

R{5}x
(
y
)

=


R{5}x,1

(
y
)

=
9∑

i=0
ci(x)yi, y ≤ x,

R{5}x,2
(
y
)

=
9∑

i=0
di(x)yi, y > x,

(9)

where pi(x) and qi(x), i = 0, 1, ..., 9 are unknown coefficients of R{5}x
(
y
)
.

Proof. The proof with the coefficients ai(x), bi(x), i = 0, 1, ...5, of R{3}x
(
y
)

and pi(x), qi(x), i = 0, 1, ..., 9, of R{5}x
(
y
)

are given in Appendices.

Henceforth and not to conflict unless stated otherwise, we denote W [0, 1] = W5
2 [0, 1]

⊕
W3

2 [0, 1],

H [0, 1] = W1
2 [0, 1]

⊕
W1

2 [0, 1], and Rx
(
y
)

=
(
R{5}x

(
y
)
,R{3}x

(
y
))T

, rx
(
y
)

=
(
R{1}x

(
y
)
,R{1}x

(
y
))T

.

Definition 2.5. (a) The Hilbert space H [0, 1] is defined as H [0, 1] = {z = (z1, z2)T : z1, z2 ∈ W1
2 [0, 1]}. The

inner product in H [0, 1] is building as 〈z(x),w(x)〉H =
2∑

j=1

〈
z j(x),w j(x)

〉
W1

2

and the norm is ||z||H =

√
2∑

j=1

∣∣∣∣∣∣z j

∣∣∣∣∣∣2
W1

2
,

where z,w ∈ H [0, 1].

(b) The Hilbert space W [0, 1] is defined as W [0, 1] = {z = (z1, z2)T : z1 ∈ W5
2 [0, 1] and z2 ∈ W3

2 [0, 1]}.
The inner product in W [0, 1] is building as 〈z(x),w(x)〉W = 〈z1(x),w1(x)〉W5

2
+ 〈z2(x),w2(x)〉W3

2
and the norm is

||z||W =
√
||z1||

2
W5

2
+ ||z2||

2
W3

2
, where z,w ∈W [0, 1].

3. Exact and Numerical Solutions

In this section, we introduce many useful properties together with family of hypotheses relating to
RKHSs to solve the coupled differential system of Eqs. (1) - (3). Anyhow, formulation and implementation
method of exact and numerical solutions are given in the RKHSs W [0, 1] and H [0, 1]. Meanwhile, we con-
struct an orthogonal function basis of the space W [0, 1] based on the use of Gram-Schmidt orthogonalization
process.

For conduct of proceedings in the algorithm construction, set f =
(

f1, f2
)T, u = (u1,u2)T, u′ =

(
u′1,u

′

2

)T
,

and L = diag(L1,L2), where

L : W [0, 1]→ H [0, 1] . (10)

Thus, the coupled differential systems of Eqs. (1) - (3) can be written as follows:

Lu (x) = f (x,u (x) ,u′ (x)) , (11)

with boundary conditions:

u (0) = u (1) =
(
eT

1 u′′ (0)
)

e1 =
(
eT

1 u′′ (1)
)

e1 = (0, 0)T , (12)

where u ∈W [0, 1] and f ∈ H [0, 1]. Here,
(
eT

1 u′′ (0)
)

e1 =
(
u′′1 (0) , 0

)T
and

(
eT

1 u′′ (1)
)

e1 =
(
u′′1 (1) , 0

)T
.
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Lemma 3.1. The operators L1 : W5
2 [0, 1]→W1

2 [0, 1] and L2 : W3
2 [0, 1]→W1

2 [0, 1] are linear bounded operators.

Proof. Clearly, L1 and L2 are linear operators. Thus, it is enough to show that they are bounded. For
L1, we need to prove that ‖L1u‖2W1

2
≤ M ‖u‖2W5

2
, where M is positive constant. From Equation (4), we

have ‖L1u‖2W1
2

= 〈L1u (x) ,L1u (x)〉W1
2

= [L1u (0)]2 +
1∫

0

[
(L1u1)′ (x)

]2 dx. By reproducing property of R{5}x
(
y
)
, we

have u (x) =
〈
u
(
y
)
,R{5}x

(
y
)〉

W5
2

, (L1u) (x) =
〈
u
(
y
)
, (L1R{5}x )

(
y
)〉

W5
2

and (L1u)′ (x) =
〈
u
(
y
)
, (L1R{5}x )′

(
y
)〉

W5
2

. By

Schwarz inequality, we get

|(L1u) (x)| =
∣∣∣∣∣〈u (x) , (L1R{5}x ) (x)

〉
W5

2

∣∣∣∣∣ ≤ ∥∥∥(L1R{5}x ) (x)
∥∥∥

W1
2
‖u‖W5

2
≤M1 ‖u‖W5

2
,∣∣∣(L1u)′ (x)

∣∣∣ =

∣∣∣∣∣〈u (x) , (L1R{5}x )′ (x)
〉

W5
2

∣∣∣∣∣ ≤ ∥∥∥(L1R{5}x )′ (x)
∥∥∥

W1
2
‖u‖W5

2
≤M2 ‖u1‖W5

2
,

(13)

where M1,M2 > 0. Thus, ‖L1u‖2W1
2

= [L1u (0)]2 +
1∫

0

[
(L1u)′ (x)

]2 dx ≤
(
M2

1 + M2
2

)
‖u‖2W5

2
,where M =

(
M2

1 + M2
2

)
>

0. Similarly for L2, one can prove that ‖L2u‖2W1
2
≤ C ‖u‖2W3

2
, C > 0 using the reproducing property of

R{3}x
(
y
)
.

Theorem 3.1. The operator L : W [0, 1]→ H [0, 1] is bounded linear operator.

Proof. Clearly, L is a linear operator. For each u ∈W [0, 1], using Definition 5, we have

‖Lu‖H =

√
2∑

j=1

∣∣∣∣∣∣L ju j

∣∣∣∣∣∣2
W1

2
=

√
||L1u1||

2
W1

2
+ ||L2u2||

2
W1

2
≤

√(
||L1|| ||u1||W5

2

)2
+

(
||L2|| ||u2||W3

2

)2

≤

 2∑
j=1

∣∣∣∣∣∣L j

∣∣∣∣∣∣2 (||u1||
2
W5

2
+ ||u2||

2
W3

2

)1/2

≤

 2∑
j=1

∣∣∣∣∣∣L j

∣∣∣∣∣∣21/2

||u||W .

The boundedness of L j for j = 1, 2, implies that L is bounded.

To construct an orthogonal function systems of the space W [0, 1], we set ϕi j (x) = R{1}xi
(x) e j and ψi j (x) =

L∗ϕi j (x), j = 1, 2, i = 1, 2, 3, ..., on a dense subset {xi}
∞

i=1 of [0, 1] , where e1 = (1, 0)T, e2 = (0, 1)T and L∗ =

diag
(
L∗1,L

∗

2

)
is the adjoint operator of L.

The orthonormal system
{
ψi j (x)

}(∞,2)

(i, j)=(1,1)
of W[0, 1] can be derived from Gram-Schmidt orthogonalization

process of
{
ψi j (x)

}(∞,2)

(i, j)=(1,1)
as follows

ψi j (x) =

i∑
l=1

j∑
k=1

βi j
lkψlk (x) , βi j

lk > 0, i = 1, 2, 3, ..., j = 1, 2,

where the orthogonalization coefficients βi j
lk are described in the following algorithm:

Algorithm 3.1. To determine the orthonormal function system
{
ψi j (x)

}(∞,2)

(i, j)=(1,1)
of the space W [0, 1] , do the following:

Stage 1: For i = 1, 2, 3, ..., and j = 1, 2, we have

If l = i = 1, then set βi j
lk = 1
‖ψ1k‖W

,
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If l = i , 1, then set βi j
lk = 1

di j
lk

,,

If l < i, then set βi j
lk = −1

di j
lk

l−1∑
p=i

cpj
lk β

i j
pk,

where di j
lk =

√∥∥∥ψlk

∥∥∥2

W −
l−1∑
p=1

(
cpj

lk

)2
, cpj

lk =
〈
ψlk (x) , ψpk (x)

〉2

W
.

Stage 2: For i = 1, 2, 3, ... and j = 1, 2 set that

ψi j (x) =

i∑
l=1

j∑
k=1

βi j
lkψlk (x) ; (14)

Output: the orthogonalization coefficients βi j
lk of the orthonormal systems ψi j (x), and then the or-

thonormal function systems
{
ψi j (x)

}(∞,2)

(i, j)=(1,1)
.

Frankly, ψi j (x) = L∗ϕi j (x) =
〈
L∗ϕi j

(
y
)
,Rx

(
y
)〉

W
=

〈
ϕi j

(
y
)
,LyRx

(
y
)〉

H
= LyRx

(
y
)∣∣∣

y=xi
∈ W [0, 1]. Hence,

ψi j (x) can be expressed in the form of ψi j (x) = LyRx (s)
∣∣∣
y=xi

. Here, Ly indicates that the operator L applies to
the function of y.

βi j =
1∥∥∥ψ1

∥∥∥ , for i = j = 1,

βi j =
1

dik
, for i = j , 1,

βi j = −
1

dik

i−1∑
k= j

cikβkj, for i > j,

such that dik =

√∥∥∥ψi

∥∥∥2
−

i−1∑
k=1

(cik)2, cik =
〈
ψi, ψk

〉
W3

2

, and
{
ψi (x)

}∞
i=1 is the orthogonal system in W3

2 [0, 1].

Theorem 3.2. For Eqs. (11) and (12). Let {xi}
∞

i=1 be dense subset on [0, 1], then
{
ψi j (x)

}(∞,2)

(i, j)=(1,1)
is the complete

function systems of the space W [0, 1].

Proof. For each fixed u ∈ W [0, 1], let
〈
u (x) , ψi j (x)

〉
W

= 0, this means,
〈
u (x) , ψi j (x)

〉
W

=
〈
u (x) ,L∗ϕi j (x)

〉
W

=〈
Lu (x) , ϕi j (x)

〉
H

= Lu (xi) = 0. Whilst on the other hand, u (x) =
2∑

j=1
u j (x) e j =

2∑
j=1

〈
u (·) ,Rx (·) e j

〉
W

e j; thus,

Lu (xi) =
2∑

j=1

〈
Lu (x) , ϕi j (x)

〉
H

e j = 0. Since {xi}
∞

i=1 is dense on [0, 1], then Lu (x) = 0. From the existence of

inverse operator L−1 it’s concluded that u (x) = 0.

Theorem 3.3. If {xi}
∞

i=1 is dense on [0, 1] and the solution of Eqs. (11) and (12) is unique, then the exact solution
satisfies the infinite expansion form

u (x) =

∞∑
i=1

2∑
j=1

i∑
l=1

j∑
k=1

βi j
ik fk (xl,u (xl) ,u′ (xl)) ψ̄i j (x) . (15)
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Proof. Applying Theorem 3.2, one can easy to see that
{
ψ̄i j (x)

}(∞,2)

(i, j)=(1,1)
is the complete orthonormal basis

of W [0, 1]. Remark that
〈
u (x) , ϕi j (x)

〉
= u j (xi) for each u ∈ W [0, 1], and

∞∑
i=1

2∑
j=1

〈
u (x) , ψ̄i j (x)

〉
W
ψ̄i j (x) is the

Fourier series expansion about
{
ψ̄i j (x)

}(∞,2)

(i, j)=(1,1)
. Then the series

∞∑
i=1

2∑
j=1

〈
y (x) , ψ̄i j (x)

〉
W
ψ̄i j (x) is convergent in

the sense of ‖·‖W . So we have

u (x) =
∞∑

i=1

2∑
j=1

〈
u (x) , ψ̄i j (x)

〉
W
ψ̄i j (x)

=
∞∑

i=1

2∑
j=1
〈u (x) ,

i∑
l=1

j∑
k=1
βi j

lkψlk (x)〉Wψ̄i j (x)

=
∞∑

i=1

2∑
j=1

i∑
l=1

j∑
k=1
βi j

lk

〈
u (x) ,L∗ϕlk (x)

〉
W ψ̄i j (x)

=
∞∑

i=1

2∑
j=1

i∑
l=1

j∑
k=1
βi j

lk

〈
Lu (x) , ϕlk (x)

〉
H ψ̄i j (x)

=
∞∑

i=1

2∑
j=1

i∑
l=1

j∑
k=1
βi j

lk

〈
fk (x,u (x) ,u′ (x)) , ϕlk (x)

〉
H ψ̄i j (x)

=
∞∑

i=1

2∑
j=1

i∑
l=1

j∑
k=1
βi j

lk fk (xl,u (xl) ,u′ (xl)) ψ̄i j (x) .

(16)

The proof is complete.

Anyhow, the numerical solution un (x) of u (x) for Eqs. (11) and (12) can be obtained directly by taking
finitely many terms in the series representation form of u (x) for Eq. (15) as follows:

un (x) =

n∑
i=1

2∑
j=1

i∑
l=1

j∑
k=1

βi j
lk fk (xl,u (xl) ,u′ (xl)) ψ̄i j (x) . (17)

Remark 3.1. According to the basic motivation for the RKHS method in solving Eqs. (11) and (12), we
notice the following two cases:

Case 1: If Eq. (11) is linear, then the approximate solution can be obtained directly from Eqs. (15).

Case 2: If Eq. (11) is nonlinear, then the approximate solution can be obtained by the following iterative
process.

From Eq. (15), the representation form of the exact solution of Eqs. (11) and (12) can be written as

u (x) =

∞∑
i=1

2∑
j=1

Ai jψ̄i j (x) , (18)

where Ai j =
i∑

l=1

j∑
k=1
βi j

ik fk (xl,u (xl) ,u′ (xl)). Prior to apply of the proceedings, set x1 = 0, that is, u (x1) is known

from the boundary conditions of Eq. (12), which implies that the exact value of f (x1,u (x1) ,u′ (x1)) is also
known. From a different viewpoint, for numerical computations, we define initial data u0(x1) = u (x1) = 0
(or choose any fixed u0(x) in W [0, 1]) and the n-term approximation to u (x) by

un (x) =

n∑
i=1

2∑
j=1

Bi jψ̄i j (x) , (19)
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where the coefficients Bi j of ψ̄i j (x) are given by

Bi j =

i∑
l=1

j∑
k=1

βi j
lk fk

(
xl,ul−1 (xl) ,u′l−1 (xl)

)
. (20)

Hence, Eq. (18) is obtained by substituting the coefficients of Eq. (19) in (20), which satisfies the
boundary conditions of Eq. (12).

4. Convergence Analysis of iterative Technique

In this section, we will show that un (x) in the above iterative formula is converge to the exact solution
u (x) of Eqs. (11) and (12).

Lemma 4.1. If z ∈W [0, 1], then there exist positive numbers Ki such that
∣∣∣z(i) (x)

∣∣∣ ≤ Ki ‖z‖W , where i = 0, 1, 2.

Proof. For each z1 ∈ W5
2 [0, 1], then

∣∣∣z(i)
1 (x)

∣∣∣ =

∣∣∣∣∣〈z1 (x) , ∂i
xRx (x)

〉
W5

2

∣∣∣∣∣ ≤ ∥∥∥∂i
xRx (x)

∥∥∥
W5

2
‖z1‖W5

2
≤ Mi ‖z1‖W5

2
, where

i = 0, 1, 2, 3, 4. Similarly, for each z2 ∈ W3
2 [0, 1], one can get

∣∣∣z(i)
2 (x)

∣∣∣ =

∣∣∣∣∣〈z2 (x) , ∂i
xRx (x)

〉
W3

2

∣∣∣∣∣ ≤ ∥∥∥∂i
xRx (x)

∥∥∥
W3

2

‖z2‖W3
2
≤ Ni ‖z2‖W3

2
, where i = 0, 1, 2. On the other aspect as well, if z ∈ W [0, 1], then z (x) = (z1 (x) , z2 (x))T

with z1 ∈W5
2 [0, 1] and z2 ∈W3

2 [0, 1]. Thus, we have that∣∣∣z(i) (x)
∣∣∣ =

√∣∣∣z(i)
1 (x)

∣∣∣2 +
∣∣∣z(i)

2 (x)
∣∣∣2

≤

√
M2

i ‖z1‖
2
W5

2
+ N2

i ‖z2‖
2
W3

2

≤

√
max

{
M2

i ,N
2
i

} (
‖z1‖

2
W5

2
+ ‖z2‖

2
W3

2

)
≤ Ki ‖z‖W , Ki =

√
max

{
N2

i ,M
2
i

}
, i = 0, 1, 2.

(21)

Theorem 4.1. If ‖un−1 − u‖W → 0, xn → y (n → ∞), ‖un‖W is bounded, and f (x,u (x) ,u′ (x)) is continuous for
x ∈ [0, 1], then f (xn,un−1 (xn) ,u′n−1 (xn))→ f (y,u

(
y
)
,u′

(
y
)
) as n→∞.

Proof. First of all, we note that∣∣∣un−1 (xn) − u
(
y
)∣∣∣ =

∣∣∣un−1 (xn) − un−1
(
y
)

+ un−1
(
y
)
− u

(
y
)∣∣∣

≤

∣∣∣un−1 (xn) − un−1
(
y
)∣∣∣ +

∣∣∣un−1
(
y
)
− u

(
y
)∣∣∣

≤

∣∣∣u′n−1 (ξ1)
∣∣∣ ∣∣∣xn − y

∣∣∣ +
∣∣∣un−1

(
y
)
− u

(
y
)∣∣∣ , ξ1 lies between xn and y.

(22)

By Lemma 4.1, it is known that
∣∣∣un−1

(
y
)
− u

(
y
)∣∣∣ ≤ K0 ‖un−1 − u‖W , which yields |un−1 (s) − u (s)| → 0 as

n → ∞, and
∣∣∣u′n−1 (ξ1)

∣∣∣ ≤ K1 ‖un−1‖W . By boundedness of ‖un−1 (x)‖W , one gets that
∣∣∣un−1 (xn) − u

(
y
)∣∣∣ → 0 as

n→∞. Now, we will show that u′n−1 (xn)→ u′
(
y
)

as follows∣∣∣u′n−1 (xn) − u′
(
y
)∣∣∣ =

∣∣∣u′n−1 (xn) − u′n−1

(
y
)

+ u′n−1

(
y
)
− y′

(
y
)∣∣∣

≤

∣∣∣u′n−1 (xn) − u′n−1

(
y
)∣∣∣ +

∣∣∣u′n−1

(
y
)
− u′

(
y
)∣∣∣

≤

∣∣∣u′′n−1 (ξ2)
∣∣∣ ∣∣∣xn − y

∣∣∣ +
∣∣∣u′n−1

(
y
)
− u′

(
y
)∣∣∣ , ξ2 lies between xn and y.

(23)

Similarly, it is known that
∣∣∣u′n−1

(
y
)
− u′

(
y
)∣∣∣ ≤ K1 ‖un−1 − u‖W , which yields

∣∣∣u′n−1

(
y
)
− u′

(
y
)∣∣∣ → 0 as

n → ∞, and
∣∣∣u′′n−1 (ξ2)

∣∣∣ ≤ K2 ‖un−1‖W . Thus,
∣∣∣u′n−1 (xn) − u′

(
y
)∣∣∣ → 0 as n → ∞. From the continuation

of f (x,u (x) ,u′ (x)), it is implies that f (xn,un−1 (xn) ,u′n−1 (xn))→ f (y,u
(
y
)
,u′

(
y
)
) as n→∞.
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Theorem 4.2. Suppose that ||un||W is bounded in Eq. (19). If {xi}
∞

i=1 is dense on [0, 1], then the n-term approximate
solution un (x) in the iterative formula of Eq. (20) converges to the exact solution u (x) of Eqs. (11) and (12) in
W[0, 1].

Proof. First of all, we will prove the convergence of un (x). From Eq. (19), we get that un+1(x) = un(x) +
2∑

j=1
B(n+1) jψ̄(n+1) j (x). By the orthogonality of

{
ψ̄i j (x)

}(∞,2)

(i, j)=(1,1)
, it follows that ||un+1||

2
W = ||un||

2
W +

2∑
j=1

B2
(n+1) j =

||un−1||
2
W +

2∑
j=1

B2
nj +

2∑
j=1

B2
(n+1) j = ... = ||u0||

2
W +

n+1∑
i=1

2∑
j=1

B2
i j. That is, ||un+1||W ≥ ||un||W . Due to the condition that

||un||W is bounded, ||un||W is convergent as n→ ∞. Then, there exists a constant α such that
∞∑

i=1

2∑
j=1

B2
i j = α. It

implies that
2∑

j=1
B2

i j ∈ l2, i = 1, 2, 3, .... Since (um (x) − um−1 (x))⊥(um−1 (x) − um−2 (x))⊥...⊥(un+1 (x) − un (x)), for

m > n, one get that

||um − un||
2
W = ||um − um−1 + um−1 − ... + un+1 − un||

2
W

≤ ||um − um−1||
2 + ||um−1 − um−2||

2 + ... + ||un+1 − un||
2
W =

m∑
l=n+1

2∑
j=1

B2
l j.

(24)

Consequently, as n,m → ∞, we have ||um − um−1||
2
W → 0 as soon as

m∑
l=n+1

2∑
j=1

B2
l j → 0. Considering the

completeness of W [0, 1], there exist a u(x) ∈ W [0, 1] such that un (x) → u(x) as n → ∞ in the sense of the
norm of W[0, 1].

Secondly, we will show that u (x) is the solution of Eqs. (11) and (12). From Eq. (19), we have

(Lu) (x) =
∞∑

i=1

2∑
j=1

Bi jLψ̄i j (x), and then (Lu)k (xl) =
∞∑

i=1

2∑
j=1

Bi j

〈
Lψ̄i j (x) , ϕlk (x)

〉
H

=
∞∑

i=1

2∑
j=1

Bi j

〈
ψ̄i j (x) ,L∗ϕlk (x)

〉
W

=

∞∑
i=1

2∑
j=1

Bi j

〈
ψ̄i j (x) , ψlk (x)

〉
W

. Thus,

l∑
l′=1

k∑
k′=1

Blk
l′k′ (Lu)k′ (xl′ ) =

∞∑
i=1

2∑
j=1

Bi j〈ψ̄i j (x) ,
l∑

l′=1

k∑
k′=1

Blk
l′k′ψl′k′ (x)〉W =

∞∑
i=1

2∑
j=1

Bi j

〈
ψ̄i j (x) , ψ̄l′k′ (x)

〉
W

= Blk. For

l = 1, we have (Lu) j (x1) = f j

(
x1,u0 (x1) ,u′0 (x1)

)
, j = 1, 2, that is, Lu (x1) = f

(
x1,u0 (x1) ,u′0 (x1)

)
. Also, for

l = 2, we have (Lu) j (x2) = f j

(
x2,u1 (x2) ,u′1 (x2)

)
, j = 1, 2, that is, Lu (x2) = f

(
x2,u1 (x2) ,u′1 (x2)

)
. Hence, the

general pattern formula can be written as Lu (xn) = f
(
xn,un−1 (xn) ,u′n−1 (xn)

)
. Since {xi}

∞

i=1 is dense on [0, 1],

for every y ∈ [0, 1], there exists subsequence
{
xn j

}∞
j=1

such that xn j → y as j→ ∞. Here, it is easy to see that

Lu
(
xn j

)
= f

(
xn j ,un j−1

(
xn j

)
,u′n j−1

(
xn j

))
. Therefore, let j → ∞, then by Theorem 4.1 and the continuity of f ,

one gets that Lu
(
y
)

= f
(
y,u

(
y
)
,u′

(
y
))
, that is, u (x) is solution of Eq. (11). Since ψ̄i j (x) ∈ W [0, 1], u (x)

satisfies the boundary conditions in Eq. (12). To put in another way, u (x) is the solution of Eqs. (11) and

(12) , where u (x) =
∞∑

i=1

2∑
j=1

Bi jψ̄i j (x). The proof is complete.

Theorem 4.3. Assume that u (x) is the solution of Eqs. (11) and (12) and εn is the error between the approximate
solution un (x) in Eq. (17) and the exact solution u (x). Then, the error sequence {εn} is monotone decreasing with
regards to the norm of W [0, 1] and εn → 0 (n→∞).

Proof. Suppose that u (x) and un (x) are given by Eqs. (15) and (17) , respectively. Then, we have
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ε2
n =

∞∑
i=n+1

2∑
j=1

〈
u (x) , ψ̄i j (x)

〉2

W
and ε2

n−1 =
∞∑

i=n

2∑
j=1

〈
u (x) , ψ̄i j (x)

〉2

W
, which implies that εn−1 ≥ εn and shows the

error εn is monotone decreasing with regards to ||·||W . But on the other aspect as well, from Theorem 3.3, we know

that
∞∑

i=1

2∑
j=1

〈
u (x) , ψ̄i j (x)

〉
W
ψ̄i j (x) is convergent. Therefore, ε2

n =
∞∑

i=n+1

2∑
j=1

〈
u (x) , ψ̄i j (x)

〉2

W
→ 0.

5. Numerical Outcomes

In this section, the proposed method is applied to demonstrate the simplicity and effectiveness for some
systems of BVPs. The method is implemented in a direct way without using transformation, linearization
or restrictive assumptions. Numerical results indicate that the present approach is very convenient for
solving such systems. Anyhow, we all know that the algorithm is a finite sequence of rules for performing
computations on a computer such that at each instant the rules determine exactly what the computer has
to do next. Next algorithm is utilized to implement a procedure to solve the coupled differential system of
Eqs. (1) - (3) numerically in terms of its grid points based on RKHS method.

Algorithm 5.1. To obtain the approximate solution un (x) for Eqs. (11) and (12), we do the following stages:

Input: The interval [0, 1], integer n, kernel functions R{i}x
(
y
)
, differential operator L, and function f .

Output: Approximate solution un (x) at each point in the independent compact interval [0, 1].

Stage 1: Fixed x in [0, 1] and set y ∈ [0, 1];

If y ≤ x, set Rx
(
y
)

=
(
R{5}x,1

(
y
)
,R{3}x,1

(
y
))T

;

Else set Rx
(
y
)

=
(
R{5}x,2

(
y
)
,R{3}x,2

(
y
))T

;

For i = 1, 2, ...,n and j = 1, 2, do the following:

Set xi = i−1
n−1 ;

Set ψi, j(x) = Ly
[
Rx

(
y
)]

y=xi
;

Stage 2: For l = 2, 3...,n and k = 1, 2..., l, do Algorithm 3.1 for l and k;

Stage 3: For l = 2, 3...,n − 1 and k = 1, 2..., l − 1, do the following:

Set ψi j (x) =
i∑

l=1

j∑
k=1
βi j

lkψlk (x);

Stage 4: Set u0(x1) = u (x1) = 0;

Set Bi j =
i∑

l=1

2∑
k=1
βi j

lk fk
(
xl,ul−1 (xl) ,u′l−1 (xl)

)
;

Set ui (x) =
i∑

i=1

2∑
j=1

Bi jψ̄i j (x), and then stop.

Using RKHS algorithms, taking xi = i−1
n−1 , i = 1, 2, ...,n in un (xi) of Eq. (17), and applying Algorithms

3.1 and 5.1 throughout the numerical computations; some graphical results, tabulate data, and numerical
comparison are presented and discussed quantitatively at some selected grid points on [0, 1] to illustrate
the approximate solution for the following coupled differential system of fourth and second-order BVPs.



A. Ateiwi et al. / Filomat 33:2 (2019), 599–615 609

Example 5.1. Consider the linear differential system in following form:

u(4)
1 (x) = x2u′2 (x) − u (x) + exu2 (x) + f1 (x) ,

u′′2 (x) = xu1 (x) + sin (x) u′1 (x) + x3u2 (x) + f2 (x) ,
(25)

with the boundary conditions

u1 (0) = u′′1 (0) = u1 (1) = u′′1 (1) = 0,

u2 (0) = u2 (1) = 0,
(26)

where x ∈ [0, 1] in which f1 (x) and f2 (x) are chosen such that the exact solutions are u (x) = x(1 − x)ex(1−x)

and u2 (x) = sinh (x (1 − x)).

Example 5.2. Consider the nonlinear differential system in following form:

u(4)
1 (x) = u2

1 (x) +
(
u′1 (x)

)3
−

(
u′2 (x)

)2
+ sin (x) eu2(x) + f1 (x) ,

u′′2 (x) = sinh (u1 (x)) − u′1 (x) u′2 (x) + u1 (x) u2 (x) + f2 (x) ,
(27)

with the boundary conditions

u1 (0) = u′′1 (0) = u1 (1) = u′′1 (1) = 0,

u2 (0) = u2 (1) = 0,
(28)

where x ∈ [0, 1] in which f1 (x) and f2 (x) are chosen such that the exact solutions are u (x) = 1.5x3 (x − 1)3 cosh
(
ex+1

)
and u2 (x) = x(x − 1) cos (x).

Example 5.3. Consider the nonlinear differential system in following form:

u(4)
1 (x) = u′2 (x)2

√
u1 (x) + 1 − cosh (x) u2 (x) + f1 (x) ,

u′′2 (x) = cos
(
u′1 (x) + u′2 (x)

)
+ ln (u1 (x) u2 (x)) + f2 (x) ,

(29)

with the boundary conditions

u1 (0) = u′′1 (0) = u1 (1) = u′′1 (1) = 0,

u2 (0) = u2 (1) = 0,
(30)

where x ∈ [0, 1] in which f1 (x) and f2 (x) are chosen such that the exact solutions are u1 (x) = x3(3x−3)3

x+1 and
u2 (x) = x(1−x)

x(1−x)+1 .

The agreement between exact and approximate solution is investigated for Examples 5.1, 5.2, and 5.3 at
several x values in [0, 1] by computing the absolute and relative errors and summarized in Tables 1, 2, 3,
4, 5, and 6, respectively. From the tables, it is clear that the approximate solutions are in close agreement
with exact solutions for all examples, while the accuracy is in advanced by using only few tens of the
RKHS iterations. Here, we can conclude that higher accuracy can be achieved by computing further RKHS
iterations.
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Table 1. The numerical results of u1 (x) for Example 5.1.
x Exact solution Numerical solution Absolute error Relative error

0.1 0.098475685533469 0.098475624737515 6.07959539 × 10−8 6.17370203 × 10−7

0.2 0.187761739358690 0.187761660786022 7.85726676 × 10−8 4.18470067 × 10−7

0.3 0.259072392590916 0.259072343529560 4.90613560 × 10−8 1.89373154 × 10−7

0.4 0.305099796077137 0.305099655080952 1.40996185 × 10−7 4.62131365 × 10−7

0.5 0.321006354171935 0.321006152535450 2.01636485 × 10−7 6.28138611 × 10−7

0.6 0.305099796077137 0.305099565257299 2.30819838 × 10−7 7.56538814 × 10−7

0.7 0.259072392590916 0.259072338803208 5.37877080 × 10−8 2.07616518 × 10−7

0.8 0.187761739358690 0.187761728355463 1.10032266 × 10−8 5.86020702 × 10−8

0.9 0.098475685533469 0.098475593822828 9.17106414 × 10−8 9.31302391 × 10−7

Table 2. The numerical results of u2 (x) for Example 5.1.
x Exact solution Numerical solution Absolute error Relative error

0.1 0.090121549216991 0.090121507174177 4.20428137 × 10−8 4.66512327 × 10−7

0.2 0.160683541012799 0.160683526872999 1.41398004 × 10−8 8.79978145 × 10−8

0.3 0.211546906993278 0.211545976182294 9.30810984 × 10−7 4.40002171 × 10−6

0.4 0.242310644627426 0.242310591478829 5.31485966 × 10−8 2.19340742 × 10−7

0.5 0.252612316808168 0.252611689867891 6.26940277 × 10−7 2.19340742 × 10−7

0.6 0.242310644627426 0.242310443690914 2.00936512 × 10−7 8.29251691 × 10−7

0.7 0.211546906993278 0.211546529489625 3.77503653 × 10−7 1.78449148 × 10−6

0.8 0.160683541012799 0.160683493094276 4.79185229 × 10−8 2.98216747 × 10−7

0.9 0.090121549216991 0.090121504120859 4.50961319 × 10−8 5.00392328 × 10−7

Table 3. The numerical results of u1 (x) for Example 5.2.
x Exact solution Numerical solution Absolute error Relative error

0.1 −0.011054720961117 −0.011054739275356 1.83142390 × 10−8 1.65668940 × 10−6

0.2 −0.085093581239469 −0.085093620404585 3.91651156 × 10−8 4.60259341 × 10−7

0.3 −0.272619317970376 −0.272619488500633 1.70530257 × 10−7 6.25525212 × 10−7

0.4 −0.598379076348348 −0.598379157896445 8.15480975 × 10−8 1.36281666 × 10−7

0.5 −1.035880634370310 −1.035881249273993 6.14903684 × 10−7 5.93604768 × 10−7

0.6 −1.468220546701186 −1.468221327693474 7.80992288 × 10−7 5.31931180 × 10−7

0.7 −1.655891723299256 −1.655891757273746 3.39744901 × 10−8 2.05173379 × 10−8

0.8 −1.302423245272149 −1.302423268398874 2.31267247 × 10−8 1.77566892 × 10−8

0.9 −0.437962101925840 −0.437962142512359 4.05865195 × 10−8 9.26713049 × 10−8

Table 4. The numerical results of u2 (x) for Example 5.2.
x Exact solution Numerical solution Absolute error Relative error

0.1 −0.089550374875022 −0.089550384925649 1.00506270 × 10−8 1.12234338 × 10−7

0.2 −0.156810652454599 −0.156811023357907 3.70903308 × 10−7 2.36529408 × 10−6

0.3 −0.200620662716377 −0.200620673090301 1.03739239 × 10−8 5.17091500 × 10−8

0.4 −0.221054638560692 −0.221054698735664 6.01749720 × 10−8 2.72217640 × 10−7

0.5 −0.219395640472593 −0.21939619957025 5.59097657 × 10−7 2.54835354 × 10−6

0.6 −0.198080547578323 −0.198080728440439 1.80862116 × 10−7 9.13073589 × 10−7

0.7 −0.160616859329743 −0.160616933305013 7.39752702 × 10−8 4.60569772 × 10−7

0.8 −0.111473073495546 −0.111473504764069 4.31268523 × 10−7 3.86881343 × 10−6

0.9 −0.055944897144360 −0.055944947730899 5.05865386 × 10−8 9.04220781 × 10−7
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Table 5. The numerical results of u1 (x) for Example 5.3.
x Exact solution Numerical solution Absolute error Relative error

0.1 0.017893636363636 0.017893625305815 1.10578213 × 10−8 6.17975078 × 10−7

0.2 0.092160000000000 0.092159955401006 4.45989945 × 10−8 4.83930062 × 10−7

0.3 0.192343846153846 0.192343763269042 8.28848043 × 10−8 4.30919970 × 10−7

0.4 0.266605714285714 0.266605676640272 3.76454423 × 10−8 1.41202684 × 10−7

0.5 0.281250000000000 0.281249947846163 5.21538368 × 10−8 1.85435864 × 10−7

0.6 0.233280000000000 0.233279921351801 7.86481991 × 10−8 3.37140771 × 10−7

0.7 0.147086470588235 0.147085787534663 6.83053572 × 10−7 4.64389124 × 10−6

0.8 0.061440000000000 0.061439878719195 1.21280805 × 10−7 1.97397143 × 10−6

0.9 0.010359473684211 0.010359443212143 3.04720677 × 10−8 2.94146871 × 10−6

Table 6. The numerical results of u2 (x) for Example 5.3.
x Exact solution Numerical solution Absolute error Relative error

0.1 0.082568807339450 0.082568775755825 3.15836246 × 10−8 3.82512787 × 10−7

0.2 0.137931034482759 0.137930962508336 7.19744231 × 10−8 5.21814568 × 10−7

0.3 0.173553719008264 0.173553511174514 2.07833750 × 10−7 1.19751828 × 10−6

0.4 0.193548387096774 0.193548326700641 6.03961325 × 10−8 3.12046685 × 10−7

0.5 0.200000000000000 0.199999644964896 3.55035104 × 10−7 1.77517552 × 10−6

0.6 0.193548387096774 0.193548304849392 8.22473822 × 10−8 4.24944808 × 10−7

0.7 0.173553719008264 0.173553564235657 1.54772607 × 10−7 8.91785022 × 10−7

0.8 0.137931034482759 0.137930128016954 9.06465805 × 10−7 6.57187709 × 10−6

0.9 0.082568807339450 0.082568788849990 1.84894604 × 10−8 2.23927909 × 10−7

The numerical values of absolute errors for Example 5.3 have been plotted in Figures 1 and 2, respectively.
As the plots show, the values of approximate solution various smoothly along the x-axis by satisfying their
conditions of the corresponding systems. We recall that the accuracy and duration of simulation depend
directly on size of the steps taken by the solver. Generally, decreasing step size increases accuracy of the
results, while increasing the time required to simulate the problem.

Figure 1: Graphical results for first derivatives of solutions for Example 3: (a) u′1,n (xi) and (b) u′2,n (xi)
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Figure 2: Graphical results for second derivatives of solutions for Example 3: (a) u′′1,n (xi) and (b) u′′2,n (xi)

6. Concluding remarks

The reproducing kernel algorithm is practical and useful to solve not only the differential but also the
integral equations. Recently, many authors take in their accounts the efficiency of this method. Meanwhile,
this paper explores more large scale to apply RKHSs for solving differential systems of different orders.
To do so, we construct appropriate Hilbert spaces, and we simplify the used algorithms and computations
step by step. As a consequence, we come up with these results; firstly, the obtained solutions are smooth
and uniformly convergent to the approximate ones; secondly, the efficient way to get the solution because
that the error converges to zero in the norm space; thirdly, the capability of the process to handle different
interesting numerical examples; fourthly, no time discretization is considered for computations. As a result,
the current study shows how RKHSs method incorporates attractive features. In the future, we can handle
more applications into our method. In process of computation, all the symbolic and numerical results are
performed by using MAPLE 13 software package.
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7. Appendices

Proof. [Proof of Theorem 2.2] By using the tabular integration by parts of
1∫

0
z′′′

(
y
)
∂3

yR{3}x
(
y
)

ds, one can get

that 〈
z
(
y
)
,R{3}x

(
y
)〉

W3
2

=

2∑
i=0

z(i) (0) [∂i
yR{3}x (0) + (−1)i+1∂5−i

y R{3}x (0)] (31)

+

2∑
i=0

(−1)iu(i) (1) ∂5−i
y R{3}x (1) −

∫ 1

0
z
(
y
)
∂6

yR{3}x
(
y
)

dy.
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If R{3}x
(
y
)
∈ W3

2 [0, 1], then R{3}x (0) = R{3}x (1) = 0 and if z ∈ W3
2 [0, 1], then z (0) = z (1) = 0. Hence, for each

x, y ∈ [0, 1], assume R{3}x
(
y
)

satisfy the following: ∂4
yR{3}x (1) = 0, ∂3

yR{3}x (1) = 0, ∂2
yR{3}x (0) − ∂3

yR{3}x (0) = 0, and

∂yR{3}x (0) + ∂4
yR{3}x (0) = 0, then Eq. ((31)) becomes

〈
z
(
y
)
,R{3}x

(
y
)〉

W3
2

=
∫ 1

0 z
(
y
)

(−∂6
yR{3}x

(
y
)
)dy. Also, assume

R{3}x
(
y
)

satisfy the formula

∂6
yR{3}x

(
y
)

= −δ
(
x − y

)
, δ dirac-delta function, (32)

so
〈
z
(
y
)
,R{3}x

(
y
)〉

W3
2

= z (x). For conduct of proceedings of expression form of R{3}x
(
y
)
, we note that the

auxiliary formula of Eq. (32) is λ6 = 0 and its auxiliary values are λ = 0 with multiplicity 6. So, let
the expression form of R{3}x

(
y
)

be as defined in Eq. (8). But on the other hand of Eq. (32) , let R{3}x
(
y
)

satisfy ∂i
yR{3}x (x + 0) = ∂i

yR{3}x (x − 0) , i = 0, 1, ..., 4. Thus by integrating ∂6
yR{3}x

(
y
)

= −δ
(
x − y

)
from x − ε

to x + ε with respect to y and letting ε → 0, we have jump degree of ∂5
yR{3}x

(
y
)

at y = x such that
∂5

yR{3}x (x + 0) − ∂5
yR{3}x (x − 0) = −1. Therefore, the unknown coefficients ai(x) and bi(x), i = 0, 1, ..., 5 of

Eq. (8) can be obtained as in Remark 7.1. Similarly for part (b), by several integration by parts of∫ 1

0 z(5) (y) ∂5
yR{5}x

(
y
)

dy, we have

〈
z
(
y
)
,R{5}x

(
y
)〉

W5
2

=

2∑
i=0

z(i) (0) ∂i
yR{5}x (0) +

1∑
i=0

z(i) (1) ∂i
yR{5}x (1)

+

4∑
i=0

(−1)4−i z(i) (y) ∂9−i
y R{5}x

(
y
)
|
y=1
y=0 −

∫ 1

0
z
(
y
)
∂10

y R{5}x
(
y
)

dy.

Hence, if R{5}x
(
y
)
∈W5

2 [0, 1] satisfy the following

R{5}x (0) = ∂2
yR{5}x (0) = R{5}x (1) = ∂2

yR{5}x (1) = 0

∂i
yR{5}x (0) = ∂i

yR{5}x (1) = 0, i = 5, 6,

∂1
yR{5}x (0) + ∂8

yR{5}x (0) = 0,

∂1
yR{5}x (1) − ∂8

yR{5}x (1) = 0,

∂i
yR{5}x (x + 0) = ∂i

yR{5}x (x − 0) , i = 0, 1, ..., 8,

∂9
yR{5}x (x − 0) − ∂9

yR{5}x (x + 0) = 1,

then, the unknown coefficients ci(x) and di(x), i = 0, 1, ..., 9 of Eq. (9) can be obtained as in Remark 7.2. This
completes the proof.

Remark 7.1. The coefficients of R{3}x
(
y
)

in W3
2 [0, 1] are obtained by

a0 (x) = 0, b0 (x) =
1

120
x5,

a1 (x) =
1

156

(
−x + 36 − 30x − 10x2 + 5x3

− x4
)

, b1 (x) =
1

312
x
(
72 − 60x − 20x2

− 3x3
− 2x4

)
,

a2 (x) =
1

624
x
(
−120 + 126x − 10x2 + 5x3

− x4
)

, b2 (x) =
1

624
x
(
−120 + 126x + 42x2 + 5x3

− x4
)
,

a3 (x) =
1

1872
x
(
−120 + 126x − 10x2 + 5x3

− x4
)

, b3 (x) =
1

1872
x
(
−120 − 30x − 10x2 + 5x3

− x4
)
,

a4 (x) =
1

3744
x
(
−36 + 30x + 10x2

− 5x3 + x4
)

, b4 (x) =
1

3744
x
(
120 + 30x + 10x2

− 5x3 + x4
)
,

a5 (x) =
1

18720

(
156 − 120x − 30x2

− 10x3 + 5x4
− x5

)
, b5 (x) =

1
18720

x
(
−120 − 30x − 10x2 + 5x3

− x4
)
.
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Remark 7.2. The coefficients of R{5}x
(
y
)

in W5
2 [0, 1] are obtained by

c0 (x) = 0, d0 (x) =
1

362880
x9,

c1 (x) =
1

725764

(
362884x − 725782x3 + 362903x4

− 12x7 + 9x8
− 2x9

)
,

d1 (x) =
1

7315701120
x
(
3657870720 − 7315882560x2 + 3658062240x3

− 120960x6
− 90721x7

− 20160x8
)
,

c2 (x) = 0, d2 (x) =
1

10080
x7,

c3 (x) =
1

43894206720
(−43895295360x + 87800025610x3

− 43910173465x4 + 10160696x5
− 5806148x7

+1088673x8
− 6x9),

d3 (x) =
1

43894206720
x
(
−43895295360 + 87800025610x2

− 43910173465x3
− 5806148x6 + 1088673x7

− 6x8
)
,

c4 (x) =
1

87788413440
x(43896746880 − 87820346930x2 + 43950816165x3

− 30482088x4 + 4354668x6

−1088709x7 + 14x8),

d4 (x) =
1

87788413440
x
(
43896746880 − 87820346930x2 + 43950816165x3 + 4354668x6

− 1088709x7 + 14x8
)
,

c5 (x) = 0, d5 (x) = −
1

2880
x4,

c6 (x) = 0, d6 (x) =
1

4320
x3,

c7 (x) =
1

21947103360
x
(
−362880 + 2177292x − 2903074x2 + 1088667x3

− 12x6 + 9x7
− 2x8

)
,

d7 (x) =
1

21947103360
x
(
−362880 − 2903074x2 + 1088667x3

− 12x6 + 9x7
− 2x8

)
,

c8 (x) =
1

29262804480
x
(
−362884 + 725782x2

− 362903x3 + 12x6
− 9x7 + 2x8

)
,

d8 (x) =
1

29262804480
x
(
362880 + 725782x2

− 362903x3 + 12x6
− 9x7 + 2x8

)
,

c9 (x) =
1

131682620160

(
362882 − 362880x − 18x3 + 21x4

− 12x7 + 9x8
− 2x9

)
,

d9 (x) =
1

131682620160
x
(
−362880 − 18x2 + 21x3

− 12x6 + 9x7
− 2x8

)
.


