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Abstract. This paper adds in our hands a different analytic numeric method to solve a class of fuzzy
fractional differential equations (FFDEs) based on the residual power series method (RPSM) under strongly
generalized differentiability. The analytic and approximate solutions are provided with the series form
according to their parametric form. The new method explained in the current paper has a lot of advantages
as follows: First, its nature is global according to the obtainable solutions along with being able to solve
numerous problems such as mathematical, physical and engineering ones. Second. It is easily noted that it
is precise, needs few efforts to have the required results achieved, alongside being developed for nonlinear
problems and cases. As for the third advantage, it can be said that any point in the interval of interest will
be possibly picked, in addition, to have the approximate solutions applied. Fourth, the method does not
need the variables discretization, also it is not implemented by computational round off errors. At last, the
results reached in the current paper show several features concerning the new method such as potentiality,
generality and superiority to handle such problems arising in physics and engineering as well.

1. Introduction

Fuzzy theory of fractional differential equations is an important branch of mathematics. It has ample
applications due to the fact that many practical problems in industrial engineering, computer science,
physics, artificial intelligence, and operations research may be converted to uncertain process problems
of fractional order. Recently, it has gained considerable attention of researchers in modeling a lot of
phenomena which are inherently vague. However, the theory of fractional calculus which is a generalization
of classical calculus, deals with the discussion of the integrals and derivatives of non-integer order, has a
long history, dates back to the seventeenth century. It was primarily developed in the past times to be a pure
mathematical and theoretical field, is still effectively used in various fields such as rheology, viscoelasticity,
electrochemistry and diffusion processes (see for example [2, 11, 17]). Indeed, there are several significant
works on the topic of fractional calculus, but the most newly influential work was the monograph of
Podlubny [32] and Kilbas et al. [25]. It should be noted that the fuzzy fractional differential equations
can be effectively and strongly applied to model a collection of real world physical problems, which really
requires a lot of investigations. As a fact, there are many examples about functioning modeling in real life
situations such as earthquakes model, the model of fluid dynamic traffic with fractional derivatives, the
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process of measuring of viscoelastic material properties, etc [7]. Accordingly, numerous research papers
were conducted to examine and investigate the aforementioned theory and solutions of fuzzy and fractional
differential equations (see [3, 4, 21, 30, 34–36]).

A lot of mathematicians and authors have recently presented the idea of solutions for fuzzy differential
equations of fractional order. To mention a few, the authors in [6] have deemed the concept of Riemann–
Liouville differentiability which depends on Hukuhara differentiability to solve fuzzy fractional differential
equations. The concepts concerning the generalized Hukuhara fractional Riemann–Liouville and Caputo
differentiability of fuzzy-valued functions have been investigated in [8, 9]. In [28], a modified fractional
Euler method was selected and applied to investigate the solution of fuzzy fractional initial value problem
under Caputo fuzzy fractional derivatives. The method of the fuzzy Laplace transform is applied to solve
the fuzzy fractional differential equations along with the parallel fuzzy initial and boundary value problems
under Riemann–Liouville H-differentiability ([38, 39]). Further research papers regarding numerical tech-
niques for differential equations, we refer to [5, 12–15]. A new model with fractional order which include
the fuzzy parameter was solved by [7] using a new spectral tau method. In [31], the optimization technique
was used to solve the differential equation of fractional order, utilizing the artificial neural network (ANN).
Their work which is based on an ANN scheme was validated by different types of examples of fuzzy
differential equations (FDEs).

The aim of this work is to extend the application of the residual power series method (RPSM) under the
assumption of strongly generalized differentiability to provide numerical approximate solutions for FDEs
of the general form

xα(t) = f (t, x(t)), a ≤ t ≤ b, (1)

subject to the fuzzy initial condition

x(0) = x0, (2)

where f : [a, b] ×RF → RF is a continuous fuzzy-valued function, α ∈ (0, 1], in which RF denote the set of
fuzzy numbers on R.

There are three main approaches in solving fuzzy differential equations with initial conditions. The first
approach, postulates that even if the initial value is only fuzzy number, the solution will be fuzzy function,
where as a result, the derivatives must be regarded as fuzzy derivatives. To achieve these derivatives,
Hukuhara derivative for fuzzy-valued functions has to be used [33]. However, there is a shortcoming
related to this approach, where the solution turns to be fuzzier as time passes, therefore, the fuzzy solution
acts in a way that is quite dissimilar from the crisp solution. As for the second approach, the fuzzy equation
is converted to a crisp one as a family of differential inclusions [25]. The main drawback concerning the
use of differential inclusions is that it does not contain a fuzzification of the differential operator, instead,
the solution is not essentially a fuzzy interval-valued function. The third approach stems from Zadeh’s
extension principle, where the related crisp equation is solved and the initial fuzzy values, which are in the
solution, are replaced in terms of real constants as well as arithmetic operations regarded as operations on
fuzzy numbers in the final solution [32]. Zadeh’s extension principle’s weak point lies in having the solution
in the fuzzy setting re-written, making the techniques of solution less friendly and more constrained with
a lot of steps of computation to do. The latest solutions approach, which focuses on searching fuzzy set of
real-valued functions, not fuzzy-valued functions examplified with these real-valued functions, fulfills the
said restrictions.

The proposed method has the following characteristics. First, the technique yields Taylor expansions of
the solutions, as a result, the exact solutions are available when the solutions are polynomials. Second, the
solutions along with their derivatives can be applied for each arbitrary point in the given interval. Third,
the aforementioned method does not require modifications while converting from the lower to the higher
order. Consequently, this method can be easily and directly applied to the given system by selecting an
appropriate value for the initial guesses approximations. Fourth, the RPSM requires minor computational
requirements with less time and more accuracy. It was developed as an efficient method to determine
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values of the coefficients of the power series solution for fuzzy differential equations ([10, 19, 20, 26, 27, 29?
]).

The current paper is mainly organized into six sections including the introduction. As for section two,
the primary definitions and basic results relating to fuzzy calculus along with fuzzy fractional calculus will
be shown. As for section three, a general review of the FFDEs theory will be presented. Section 4 will
present a fractional power series techniuqe as an effective tool to solve the FFDEs of order 0¡1. Numerical
solutions for two examples in order to illustrate the proposed, RPSM’s abilities are introduced in Section 5.
The conclusion of the current paper will rest in section 6.

2. Fuzzy Calculus Theory

A fuzzy set v in a nonempty set S is described by its membership function v : S → [0, 1]. So, for each
s ∈ S the degree of membership of an element s in v is defined by v(s). For each s, t ∈ R and 0 ≤ λ ≤ 1, if
v(λs + (1 − λ)t) ≥ min{v(s), v(t)}, then we call v is convex on R, and if for σ ∈ [0, 1], the set {s ∈ R|v(s) ≥ σ} is
closed, then we say v is upper semicontinuous. Also, we say that v is normal if ∃ s ∈ R such that v(s) = 1.
A fuzzy set which is defined as {s ∈ R|v(s) > 0} is called the support of v.

Definition 2.1. ([23]). Let v be a fuzzy number. One says that v is a fuzzy subset of the real line with it is
upper semicontinuous membership function of bounded support, normal, and convex.

Let [v]σ = {s ∈ R | v(s) ≥ σ} and [v]0 = {s ∈ R | v(s) > 0}, ∀σ ∈ [0, 1], and the symbol {∗} refer the closure
of {∗}. Then, it is easy to establish that v is a fuzzy number if and only if [v]σ is compact convex subset
of R for each σ ∈ [0, 1] and [v]1 , φ [23]. So, if v is a fuzzy number, then [v]σ = [v1(σ), v2(σ)], where
v1(σ) = min{s | s ∈ [v]σ} and v1(σ) = max{s | s ∈ [v]σ} for each σ ∈ [0, 1]. We call the symbol [v]σ the σ−cut
representation or the form of parametric for a fuzzy number v.

Theorem 2.1. ([23]). Suppose that v1, v2 : [0, 1]→ R satisfy the following conditions:

1. v1 is a bounded nondecreasing function,
2. v2 is a bounded nonincreasing function,
3. v1(1) ≤ v2(1),
4. for each k ∈ (0, 1], limσ→k− v1(σ) = v1(k) and limσ→k− v2(σ) = v2(k),
5. limσ→0+ v1(σ) = v1(0) and limσ→0+ v2(σ) = v2(0).

Then v : R → [0, 1] defined by v(s) = sup{σ | v1(σ) ≤ s ≤ v2(σ)} is a fuzzy number with parametrization
[v1(σ), v2(σ)]. Furthermore, if v1, v2 : [0, 1] → R is a fuzzy number with parametrization [v1(σ), v2(σ)], then the
functions v1 and v2 satisfy the aforementioned conditions.

Definition 2.2. ([41]). The complete metric structure on RF is given by the Hausdorff distance mapping
DH : RF ×RF → R+

∪ {0} such that

DH(v,w) = sup
0≤σ≤1

max{|v1σ − w1σ|, |v2σ − w2σ|},

for arbitrary fuzzy numbers v and w.

Two fuzzy numbers v and w are equal if [v]σ = [w]σ for each σ ∈ [0, 1]. For arithmetic operations on
fuzzy numbers, the following results are well-known and coincide with the theory of interval analysis.

Theorem 2.2. ([40]). If v and w are two fuzzy numbers and λ ∈ R \ {0}, then for each σ ∈ [0, 1], we have

1. [v + w]σ = [v]σ + [w]σ = [v1σ + w1σ, v2σ + w2σ];
2. [v − w]σ = [v]σ − [w]σ = [v1σ − w2σ, v2σ − w1σ];
3. [λv]σ = λ[v]σ = [min{λv1σ, λv2σ},max{λv1σ, λv2σ}];
4. [vw]σ = [min{v1σw1σ, v1σw2σ, v2σw1σ, v2σw2σ},max{v1σw1σ, v1σw2σ, v2σw1σ, v2σw2σ}].
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Definition 2.3. ([22]). Let v,w ∈ RF . If there exists an element P ∈ RF such that v = w + P, then we say
that P is the Hukuhara difference (H- difference) of v and w, denoted by v 	 w.

Remark 2.1. The sign 	 stands always for Hukuhara difference. Thus, it should be noted that v 	 w ,
v + (−1)w. Normally, v + (−1)w denoted by v − w. If the H-difference v 	 w exists, then [v 	 w]σ =
[v1(σ) − w1(σ), v2(σ) − w2(σ)].

Definition 2.4. ([40]). Let y be a fuzzy function on [a, b]. Then theσ-cut function on [a, b] is an interval valued
function yσ : [a, b]→ RC defined by yσ(x) = [y(x)]σ,∀σ ∈ [0, 1]. Hence, yσ(x) =

[
y1σ(x), y2σ(x)

]
where y1σ and

y2σ are real valued functions on [a, b] given by y1σ(x) = min{yσ(x)} and y2σ(x) = max{yσ(x)},∀σ ∈ [0, 1].

As we turn now to present the concept of fuzzy function differentiation, it should be noted that Hukuhara
presented the derivative for set valued mappings in late sixties. Later on, Puri and Ralescu extended it for
the fuzzy valued mappings in early eighties.

Definition 2.5. ([33]). A mapping y : [a, b] → RF is said to be Hukuhara differentiable, or simply H-
differentiable, at x∗ ∈ [a, b] if there is a fuzzy number y′(x∗) such that limh→0+

y(x∗+h)	y(x∗)
h and limh→0+

y(x∗)	y(x∗−h)
h

exist and are equal to y′(x∗) which is called the H-derivative.

Here, the limit is taken in the metric space (RF ,DH) and at the endpoints of [a, b], we consider only
one-sided derivatives.

Definition 2.6. ([16]). Let y : [a, b] → RF and for fixed x∗ ∈ [a, b]. Then y is called a strongly generalized
differentiable at x∗, if there is an element y′(x∗) ∈ RF such that either

i. The H-differences y(x∗ + ξ) 	 y(x∗), y(x∗) 	 y(x∗ − ξ) exist, for each ξ > 0 sufficiently tends to 0 and

limξ→0+

y(x∗ + ξ) 	 y(x∗)
ξ

= y′(x∗) = limξ→0+

y(x∗) 	 y(x∗ − ξ)
ξ

,

ii. The H-differences y(x∗) 	 y(x∗ + ξ), y(x∗ − ξ) 	 y(x∗) exist, for each ξ > 0 sufficiently tends to 0 and

limξ→0+

y(x∗) 	 y(x∗ + ξ)
−ξ

= y′(x∗) = limξ→0+

y(x∗ − ξ) 	 y(x∗)
−ξ

.

As well, it should be noted that the limits within Definition 2.6 is taken in the complete metric space
(RF ,DH) and at the endpoints of [a, b] by considering only one-sided derivatives.

Definition 2.7. ([24]). Let y : [a, b]→ RF is differentiable for any point x ∈ (a, b). Then y is differentiable on
(a, b). Moreover, if y is differentiable in term of the first condition of definition 2.6, where its derivative at
x∗ is given by y′(x∗) = D1

1y(x∗), then we say that y is (1)-differentiable on (a, b). As well, if y is differentiable
in term of second condition of definition 2.6, where its derivative at x∗ is given by y′(x∗) = D1

2y(x∗), then we
say that y is (2)-differentiable on (a, b). However, if D1

1y(x∗) exists, then D1
2y(x∗) does not exists.

Theorems below assist us to convert the fuzzy fractional differential equations (FFDEs) into a system of
ordinary fractional differential equations (OFDEs), ignoring the fuzzy setting approach.

Theorem 2.3. ([24]). Let y : [a, b]→ RF , where [y(x)]σ =
[
y1σ(x), y2σ(x)

]
for each σ ∈ [0, 1],

1. if y is (1)-differentiable, then y1σ and y2σ are differentiable functions and
[
D1

1y(x)
]σ

=
[
y′1σ(x), y′2σ(x)

]
,

2. if y is (2)-differentiable, then y1σ and y2σ are differentiable functions and
[
D1

2y(x)
]σ

=
[
y′2σ(x), y′1σ(x)

]
.

Let y : [a, b]→ RF be a fuzzy-valued function. Then the function y is continuous at x∗ ∈ [a, b] if for every
ε > 0,∃ δ = δ (x∗, ε) > 0, such that DH(y(x), y(x∗)) < ε for each x ∈ [a, b], whenever |x − x∗| < δ. Consequently,
we say that y is continuous on [a, b] if y is continuous at each x∗ ∈ [a, b] such that the continuity is one-sided
at endpoints of [a, b].
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Next, the second fuzzy derivatives definition is given based on the derivative types selection in each
differentiation step. For a given fuzzy-valued function y(x), we have two possibilities according to def-
inition 2.7 in order to obtain the derivative of y(x) as follows: D1

1y(x) and D1
2y(x). Anyhow, for each

of these two derivatives, we have again two possibilities of derivatives: D1
1

(
D1

1y(x)
)
,D1

2

(
D1

1y(x)
)

and

D1
1(D1

2y(x)),D1
2

(
D1

2y(x)
)
, respectively.

Definition 2.8. ([24]). Suppose that y : [a, b] → RF . One can say y(x) is (n,m)-differentiable on [a, b] if
D1

ny(x) exist and its (m)-differentiable. The second derivatives of y are denoted by D2
n,my(x) for n,m ∈ {1, 2}.

Theorem 2.4. ([24]). Let D1
1y : [a, b] → RF and D1

2y : [a, b] → RF , where [y(x)]σ = [y1σ(x), y2σ(x)] for each
σ ∈ [0, 1]:

1. D1
1y is (1)-differentiable, then y′1σ and y′2σ are differentiable functions and

[
D2

1,1y(x)
]σ

=
[
y′′1σ(x), y′′2σ(x)

]
,

2. D1
1y is (2)-differentiable, then y′1σ and y′2σ are differentiable functions and

[
D2

1,2y(x)
]σ

=
[
y′′2σ(x), y′′1σ(x)

]
,

3. D1
2y is (1)-differentiable, then y′1σ and y′2σ are differentiable functions and

[
D2

2,1y(x)
]σ

=
[
y′′2σ(x), y′′1σ(x)

]
,

4. D1
2y is (2)-differentiable, then y′1σ and y′2σ are differentiable functions and

[
D2

2,2y(x)
]σ

=
[
y′′1σ(x), y′′2σ(x)

]
.

Definition 2.9. ([37]). Let y : [a, b] → RF and y ∈ CF [a, b] ∩ LF [a, b] be a fuzzy set-value function. Then

y is said to be Caputo fuzzy H-differentiable at x when
(

CDα
a+ y

)
(x) =

1
Γ(1 − α)

∫ x

a

y′(t)
(x − t)α

dt exists, where

0 < α ≤ 1.

As well, we say that y is Caputo [(1)−α]-differentiable if y is (1)-differentiable, and y is Caputo [(2)−α]-
differentiable if y is (2)-differentiable.

Theorem 2.5. ([37]). Let 0 < α ≤ 1 and y ∈ ACF [a, b]. Then the fuzzy Caputo fractional derivative exists almost
everywhere on (a, b) and for all σ ∈ [0, 1], we have[(

CDα
a+ y

)
(x)

]σ
=

[
1

Γ(1 − α)

∫ x

a

y′1σ(t)

(x − t)α
dt,

1
Γ(1 − α)

∫ x

a

y′2σ(t)
(x − t)α

dt
]

=
[
J1−α
a+ Dy1σ(x), J1−α

a+ Dy2σ(x)
]

for (1)-differentiable,[(
CDα

a+ y
)

(x)
]σ

=

[
1

Γ(1 − α)

∫ x

a

y′2σ(t)
(x − t)α

dt,
1

Γ(1 − α)

∫ x

a

y′1σ(t)

(x − t)α
dt

]
=

[
J1−α
a+ Dy2σ(x), J1−α

a+ Dy1σ(x)
]

for (2)-differentiable.

3. Fuzzy Fractional Differential Equation

When the world physical phenomena are modeled, the role of the ordinary differential equations (ODEs)
can be effectively seen in several fields of discipline such as engineering, economics, physics and applied
mathematics. There are experts in such fields who use crisp ODEs it to understand and solve some problems
underin their studies. In several situations, information about these related world physical phenomena
is prevail and covered with sense of uncertainty. The uncertainty can be strongly appeared in a number
of places, namely: the part of experiment, the process of data collection, and measurement in addition
to determining the initial values. Therefore, it is necessary to have some mathematical tools in order to
understand this uncertainty. Hence, it would be natural to employ fuzzy differential equations (FDEs).
Consequently, it is too essential to apply some mathematical tools to comprehend this uncertainty. Hence,
it would be natural to employ (FDE).

Let 0 < α ≤ 1. Then the FFDE (1) and (2) is equivalent to one of the following integral equations:

x(t) = x(0)+
1

Γ(α)

∫ t

0

y (s,X(s)) ds

(t − s)1−α , if x(t) is Caputo [(1)−α]-differentiable, and x(t) = x(0)	
−1

Γ(α)

∫ t

0

y (s,X(s)) ds

(t − s)1−α ,

if x(t) is Caputo [(2) − α]-differentiable.
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Theorem 3.1. ([37]). The FFDE (1) and (2) is equivalent to the system of ordinary fractional differential equations
(OFDEs): if x(t) is Caputo [(1) − α]-differentiable, then(

CDα
t+
0
x1σ

)
(t) = f1σ (t, x1σ(t), x2σ(t))(

CDα
t+
0
x2σ

)
(t) = f2σ (t, x1σ(t), x2σ(t))

x1σ(0) = x01σ
x2σ(0) = x02σ.

(3)

if x(t) is Caputo [(2) − α]-differentiable, then FFDE (1) and (2) is equivalent to the following system of OFDEs:(
CDα

t+
0
x1σ

)
(t) = f2σ (t, x1σ(t), x2σ(t))(

CDα
t+
0
x2σ

)
(t) = f1σ (t, x1σ(t), x2σ(t))

x1σ(0) = x01σ
x2σ(0) = x02σ.

(4)

Algorithm 3.1. To find the solutions of FFDE (1) and (2), we discuss the following two cases:
Case (1): If x(t) is Caputo [(1) − α]-differentiable, we convert FFDE (1) and (2) to the system (3) and follow
the steps:

Step 1: Solve the system (3).
Step 2: Ensure that [x1σ(t), x2σ(t)] and [x′1σ(t), x′2σ(t)] are valid level sets for σ ∈ [0, 1].
Step 3: Use Zadeh’s principle to construct the solution x(t) whose σ-cut representation is [x1σ(t), x2σ(t)].

Case (2): If x(t) is Caputo [(2) − α]-differentiable, we convert FFDE (1) and (2) to the system (4) and follow
the steps:

Step 1: Solve the system (4).
Step 2: Ensure that [x1σ(t), x2σ(t)] and [x′1σ(t), x′2σ(t)] are valid level sets for σ ∈ [0, 1].
Step 3: Use Zadeh’s principle to construct the solution x(t) whose σ-cut representation is [x1σ(t), x2σ(t)].

4. Fractional Power Series Technique

In this section, we utilize the RPSM for constructing and obtaining FFDE (3) and (4)’s solutions through
substituting the expansion of its fractional power series (FPS) among its truncated residual functions. In
view of that, the resultant equation helps us to derive a recursion formula for the coefficients computation,
where the FPS expansions coefficients can be computed recursively through recurrent fractional differenti-
ating of the truncated residual function. It is necessary to begin with the following theory and definition
that are required in the current paper.

Definition 4.1. ([20]). A power series expansion of the form

∞∑
m=0

cm (t − t0)mα = c0 + c1 (t − t0)α + c2 (t − t0)2α + · · · , (5)

is called fractional PS about t = t0, where t is a variable and cm’s are constants called the coefficients of the
series.

Theorem 4.1. ([20]). Suppose that f has a fractional PS representation at t = t0 of the form

f (t) =

∞∑
m=0

cm (t − t0)mα . (6)
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If Dmα f (t) are continuous on (t0, t0 + R),m = 0, 1, 2, . . . , then coefficients cm of Eq. (6) are given by the formula

cm =
Dmα f (t) |t=t0

Γ(mα + 1)
, m = 0, 1, 2, . . . (7)

where Dmα = Dα
·Dα
· · ·Dα (m−times).

Next, we employ RPSM to construct the analytic and approximate series solutions for FFDE (1) and (2)
with respect to Caputo [(1) − α]-differentiable. However, the same technique can be employed to construct
solutions under Caputo [(2) − α]-differentiable. Throughout this paper, we assume that, x1σ, x2σ, f1σ and f2σ
are analytic functions on the given interval for each σ ∈ [0, 1].

It is worth noting that the RPSM consists in expressing the solution of system of OFDEs (3) as an FPS
expansion about the initial point t = 0. To make our goal come true, we assume that these solutions take the
form x1σ(t) =

∑
∞

n=0 xn,1σ(t) and x2σ(t) =
∑
∞

n=0 xn,2σ(t), where xn,1σ(t) and xn,2σ(t) are two terms of approximation
and are represented as:

xn,1σ(t) = cn
tnα

Γ(1 + nα)
,

xn,2σ(t) = dn
tnα

Γ(1 + nα)

(8)

We notice that, if n = 0, then x0,1σ(t) and x0,2σ(t) satisfy the initial condition system of OFDEs (3), in which,
x0,1σ(0) and x0,2σ(0) are the initial guesses approximations of x1σ and x2σ, respectively, so from Eq. (8), we
obtain x1σ(0) = x0,1σ = c0 and x2σ(0) = x0,2σ = d0.

On the other aspect as well, if we choose x0,1σ and x0,2σ as an initial guesses approximations of x1σ(t)
and x2σ(t), respectively, then we can calculate xn,1σ(t) and xn,2σ(t), for n = 0, 1, 2, . . . , and approximate the
solutions x1σ(t) and x2σ(t) for system of OFDEs (3) by the kth-truncated series

xk,1σ(t) = c0 +

k∑
n=1

cn
tnα

Γ(1 + nα)
,

xk,2σ(t) = d0 +

k∑
n=1

dn
tnα

Γ(1 + nα)
.

(9)

Before applying the RPS algorithm for finding the value of coefficients cn and dn,n = 1, 2, 3, . . . , k, in the
series expansion, we should define the residual functions Res1σ(t) and Res2σ(t) for Eq. (3) as follows:

Res1σ(t) =
(

CDα
t+
0
x1σ

)
(t) − f1σ (t, x1σ(t), x2σ(t)) ,

Res2σ(t) =
(

CDα
t+
0
x2σ

)
(t) − f2σ (t, x1σ(t), x2σ(t)) .

(10)

As well, for k = 1, 2, 3, . . . . The kth-residual function Resk,1σ and Resk,2σ as the following of the style form:

Resk,1σ(t) =
(

CDα
t+
0
xk,1σ

)
(t) − f1σ

(
t, xk,1σ(t), xk,2σ(t)

)
,

Resk,2σ(t) =
(

CDα
t+
0
xk,2σ

)
(t) − f2σ

(
t, xk,1σ(t), xk,2σ(t)

)
.

(11)

Consequently, we note that Resnσ(t) = 0 and limk→0 Resk,nσ(t) = Resnσ ≡ 0 for n = 1, 2 and each t ≥ 0.
In fact, these lead to Dmα

t Resnσ(t) = 0, since the fractional derivative of a constant function in the Caputo’s
sense is zero. Also, the fractional derivatives Dmα

t Resnσ(t) and Dmα
t Resk,nσ(t) are equivalent at t = 0 for each
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m = 0, 1, 2, . . . , k; that is, Dmα
t Resnσ(0) = Dmα

t Resk,nσ(0) = 0. For finding the coefficient values’ cn and dn of Eq.
(9), for n = 1, 2, 3, . . . , k, we solve the following system:

D(k−1)α
t Resk,1σ(0) = 0,

D(k−1)α
t Resk,2σ(0) = 0.

(12)

In other words, our claim is to determine the unknown coefficients cn and dn of Eq. (9). So, in order to find
those coefficients, we need substituting Eq. (9) into the kth-residual functions, Resk,1σ and Resk,2σ of Eq. (11).
Following, we compute the fractional derivative formula D(k−1)α

t on both sides of Resk,1σ,Resk,2σ and then we
solve the obtained algebraic systems D(k−1)α

t Resk,1σ(0) = 0 and D(k−1)α
t Resk,2σ(0) = 0 for 0 < α ≤ 1, t ≥ 0.

To obtain the coefficient, cn and dn for n = 1, 2, 3, . . . , k, we do the following steps:

Firstly, to find c1 and d1, we consider k = 1, in Eq. (9), then we substitute x1,1σ(t) = c0 + c1
tα

Γ(1 + α)
and

x1,2σ(t) = d0 + d1
tα

Γ(1 + α)
, into Res1,1σ(t) and Res1,2σ(t) of Eq. (11), that is,

Res1,1σ(t) =
(

CDα
t+
0
x1,1σ

)
(t) − f1σ

(
t, x1,1σ(t), x1,2σ(t)

)
,

= c1 − f1σ

(
t, c0 + c1

tα

Γ(1 + α)
, d0 + d1

tα

Γ(1 + α)

)
.

Res1,2σ(t) =
(

CDα
t+
0
x1,2σ

)
(t) − f2σ

(
t, x1,1σ(t), x1,2σ(t)

)
,

= d1 − f2σ

(
t, c0 + c1

tα

Γ(1 + α)
, d0 + d1

tα

Γ(1 + α)

)
.

(13)

Depending on the result of Eq. (12), for k = 1, the substitution of t = 0 through Eq. (13) will yields

c1 = f1σ (0, c0, d0) .
d1 = f2σ (0, c0, d0) .

(14)

Thus, the first RPS approximate solution for system of OFDEs (3) can be written as:

x1,1σ(t) = c0 + f1σ (0, c0, d0)
tα

Γ(1 + α)
,

x1,2σ(t) = d0 + f2σ (0, c0, d0)
tα

Γ(1 + α)
.

(15)

Secondly, to determine c2 and d2, we set k = 2, in Eq. (9), then we substitute x2,1σ(t) = c0 + c1
tα

Γ(1 + α)
+

c2
t2α

Γ(1 + 2α)
and x2,2σ(t) = d0 + d1

tα

Γ(1 + α)
+ d2

t2α

Γ(1 + 2α)
into Res2,1σ(t) and Res2,2σ(t) of Eq. (11), as follows:

Res2,1σ(t) =
(

CDα
t+
0
x2,1σ

)
(t) − f1σ

(
t, x2,1σ(t), x2,2σ(t)

)
,

= c1 + c2
tα

Γ(1 + α)
− f1σ

(
t, c0 + c1

tα

Γ(1 + α)
+ c2

t2α

Γ(1 + 2α)
, d0 + d1

tα

Γ(1 + α)
+ d2

t2α

Γ(1 + 2α)

)
,

Res2,2σ(t) =
(

CDα
t+
0
x2,2σ

)
(t) − f2σ

(
t, x2,1σ(t), x2,2σ(t)

)
,

= d1 + d2
tα

Γ(1 + α)
− f2σ

(
t, c0 + c1

tα

Γ(1 + α)
+ c2

t2α

Γ(1 + 2α)
, d0 + d1

tα

Γ(1 + α)
+ d2

t2α

Γ(1 + 2α)

)
.

(16)
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By applying the operator Dα
t on both sides of Eq. (16) gives the α − th fractional derivative of Res2,1σ(t)

and Res2,2σ(t) and then we solve the obtained algebraic equations Dα
t Res2,1σ(0) = 0 & Dα

t Res2,2σ(0) = 0, to
conclude

c2 = f1σ (0, c1Γ(1 + α), d1Γ(1 + α)) ,
d2 = f2σ (0, c1Γ(1 + α), d1Γ(1 + α)) .

(17)

Therefore, the second RPS approximate solution for the system of OFDEs (3) can be written as

x2,1σ(t) = c0 + f1σ (0, c0, d0)
tα

Γ(1 + α)
+ f1σ (0, c1Γ(1 + α), d1Γ(1 + α))

t2α

Γ(1 + 2α)
.

x2,2σ(t) = d0 + f2σ (0, c0, d0)
tα

Γ(1 + α)
+ f2σ (0, c1Γ(1 + α), d1Γ(1 + α))

t2α

Γ(1 + 2α)
.

(18)

Thirdly, to derive the coefficients c3 and d3, we consider k = 3, in Eq. (9), then we substitute x3,1σ(t) =

c0 + c1
tα

Γ(1 + α)
+ c2

t2α

Γ(1 + 2α)
+ c3

t3α

Γ(1 + 3α)
and x3,2σ(t) = d0 + d1

tα

Γ(1 + α)
+ d2

t2α

Γ(1 + 2α)
+ d3

t3α

Γ(1 + 3α)
, into the

Res3,1σ and Res3,2σ of Eq. (11), then we have

Res3,1σ(t) =
(

CDα
t+
0
x3,1σ

)
(t) − f1σ

(
t, x3,1σ(t), x3,2σ(t)

)
= c1 + c2

tα

Γ(1 + α)
+ c3

t2α

Γ(1 + 2α)
− f1σ

(
t, c0 + c1

tα

Γ(1 + α)
+ c2

t2α

Γ(1 + 2α)
+ c3

t3α

Γ(1 + 3α)
,

d0 + d1
tα

Γ(1 + α)
+ d2

t2α

Γ(1 + 2α)
+ d3

t3α

Γ(1 + 3α)

)
Res3,2σ(t) =

(
CDα

t+
0
x3,2σ

)
(t) − f2σ

(
t, x3,1σ(t), x3,2σ(t)

)
= d1 + d2

tα

Γ(1 + α)
+ d3

t2α

Γ(1 + 2α)
− f2σ

(
t, c0 + c1

tα

Γ(1 + α)
+ c2

t2α

Γ(1 + 2α)
+ c3

t3α

Γ(1 + 3α)
,

d0 + d1
tα

Γ(1 + α)
+ d2

t2α

Γ(1 + 2α)
+ d3

t3α

Γ(1 + 3α)

)
.

(19)

According to Eq. (12), we solve D2α
t Res3,1σ(t) |t=0 and D2α

t Res3,2σ(t) |t=0, to get the values of c3 and d3 as
the following:

c3 = f1σ (0, c2Γ(1 + 2α), d2Γ(1 + 2α)) .
d3 = f2σ (0, c2Γ(1 + 2α), d2Γ(1 + 2α)) .

(20)

As a matter of fact, from Eq (20) and based on the previous results of Eqs (14) and (17) and the initial
gusses approximations, the third RPS approximate solution for system (3) can be summarized in the
following expansion:

x3,1σ(t) = c0 + f1σ (0, c0, d0)
tα

Γ(1 + α)
+ f1σ (0, c1Γ(1 + α), d1Γ(1 + α))

t2α

Γ(1 + 2α)

+ f1σ (0, c2Γ(1 + 2α), d2Γ(1 + 2α))
t3α

Γ(1 + 3α)

x3,2σ(t) = d0 + f2σ (0, c0, d0)
tα

Γ(1 + α)
+ f2σ (0, c1Γ(1 + α), d1Γ(1 + α))

t2α

Γ(1 + 2α)

+ f2σ (0, c2Γ(1 + 2α), d2Γ(1 + 2α))
t3α

Γ(1 + 3α)
.

(21)
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By the same argument, the process can be repeated till the arbitrary order coefficients of the FPS solution
for the system of OFDE (3) are obtained. So, we have the following recurrence relation for n ≥ 1.

cn = f1σ (0, cn−1Γ(1 + (n − 1)α), dn−1Γ(1 + (n − 1)α)) .
dn = f2σ (0, cn−1Γ(1 + (n − 1)α), dn−1Γ(1 + (n − 1)α)) .

(22)

Moreover, the kth-RPS approximate solution for system (3) can be written in the following expansion:

xk,1σ(t) = c0 +

k∑
n=1

tnα

Γ(1 + nα)
f1σ (0, cn−1Γ(1 + (n − 1)α), dn−1Γ(1 + (n − 1)α)) ,

xk,2σ(t) = d0 +

k∑
n=1

tnα

Γ(1 + nα)
f2σ (0, cn−1Γ(1 + (n − 1)α), dn−1Γ(1 + (n − 1)α)) .

(23)

It is worth noting that the RPSM is a numerical technique depends on the formula of generalized Taylor
series which constructs an analytical solution in the convergent series form. Thus, we can reach a good
approximation with the exact solution through the only use of limited numbers of terms. In view of that,
the overall errors can be lessened through adding more terms for the approximations of the RPS.

5. Numerical Results

To demonstrate the features of the current new method, namely: efficiency, properties, behavior along
with its applicability, two clear examples including linear and nonlinear problems are numerically pre-
sented.

Example 5.1. Consider the FFDE:(
CDβ

0+ x
)

(t) = −x(t) + sin(t), 0 < β ≤ 1, t ∈ [0, 1]

subject to

[x(0)]r =
[24
25

+
1

25
r,

101
100
−

1
100

r
]
.

(24)

Depending on the type of differentiability, (24) can be converted to one of the following systems:
Case (1): Under Caputo [(1) − β]-differentiability, the system of OFDEs corresponding to Caputo [(1) − β]-
differentiable is

CDβ
0+ x1r(t) = −x1r(t) + sin(t)

CDβ
0+ x2r(t) = −x2r(t) + sin(t)

(25)

subject to

x1r(0) =
24
25

+
1

25
r

x2r(0) =
101
100
−

1
100

r

If β = 1, then the exact solution of (25) is:

x1r(t) =
1
2

(sint − cost) +
1
2

e−t +
(24

25
+

1
25

r
)

cosh t −
(101

100
−

1
100

r
)

sinh t,

x2r(t) =
1
2

(sint − cost) +
1
2

e−t +
(101

100
−

1
100

r
)

cosh t −
(24

25
+

1
25

r
)

sinh t,
(26)
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Next some graphical results and tabulated data are presented.

Figure 1: Approximate solutions x1r(t) and x2r(t) at r = 1
3 for different values of β for Example 1, case1. - - - Exact (β = 1), Approximate

(β = 1), Approximate (β = 0.9), . . . Approximate (β = 0.8).

Table 1: The absolute error of approximating x1r(t) for Eq. (25).
t r = 0 r = 0.25 r = 0.5 r = 0.75 r = 1

0.2 0.786561 × 10−10 0.37662 × 10−10 0.417873 × 10−10 0.356916 × 10−10 0.418666 × 10−10

0.4 0.919491 × 10−9 0.135547 × 10−9 0.743873 × 10−9 0.778036 × 10−9 0.659107 × 10−9

0.6 0.742514 × 10−8 0.462194 × 10−8 0.809546 × 10−8 0.072125 × 10−8 0.431608 × 10−8

0.8 0.081362 × 10−7 0.484576 × 10−7 0.483455 × 10−7 0.066379 × 10−7 0.156841 × 10−7

1 0.293303 × 10−6 0.988609 × 10−6 0.076106 × 10−6 0.381373 × 10−6 0.830071 × 10−6

Case (2): Under Caputo [(2)−β]-differentiability, the system of OFDEs corresponding to Caputo [(2)−β]-
differentiable is

CDβ
0+ x1r(t) = −x2r(t) + sin(t)

CDβ
0+ x2r(t) = −x1r(t) + sin(t)

(27)

subject to

x1r(0) =
24
25

+
1

25
r

x2r(0) =
101
100
−

1
100

r

If β = 1, then the exact solution of (27) is:

x1r(t) =
1
2

(sint − cost) +
(1

2
+

24
25

+
1

25
r
)

e−t,

x2r(t) =
1
2

(sint − cost) +
(1

2
+

101
100
−

1
100

r
)

e−t.
(28)

Next some graphical results and tabulated data are present
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Figure 2: Approximate solutions x1r(t) and x2r(t) at r = 1
3 for different values of β for Example 1, case 2. - - - Exact (β = 1), Approximate

(β = 1), Approximate (β = 0.9), . . . Approximate (β = 0.8).

Table 2: The absolute error of approximating x1r(t) for Eq. (27).
t r = 0 r = 0.25 r = 0.5 r = 0.75 r = 1

0.2 0.987369 × 10−10 0.584262 × 10−10 0.899036 × 10−10 0.841897 × 10−10 0.159156 × 10−10

0.4 0.160604 × 10−9 0.23812 × 10−9 0.683479 × 10−9 0.526032 × 10−9 0.689592 × 10−9

0.6 0.035859 × 10−8 0.016719 × 10−8 0.956339 × 10−8 0.937085 × 10−8 0.767948 × 10−8

0.8 0.865089 × 10−7 0.361176 × 10−7 0.027726 × 10−7 0.803166 × 10−7 0.909273 × 10−7

1 0.544426 × 10−6 0.352355 × 10−6 0.713772 × 10−6 0.502104 × 10−6 0.395093 × 10−6

Next numerical results of RPS method with the reproducing kernel Hilbert space method (RKHSM) are
presented for Example 1 as given in Tables 3 and 4:

Table 3: Numerical results case1 for Example 1 at β = 1.
t r = 0 r = 0.25 r = 0.5 r = 0.75 r = 1

0.4 1.1463 × 10−5 9.8552 × 10−6 8.2467 × 10−6 1.5596 × 10−6 6.6383 × 10−6

RKHSM 0.8 3.0507 × 10−5 2.8105 × 10−5 2.5702 × 10−5 1.2702 × 10−5 2.3300 × 10−5

RPSM 0.4 0.9194 × 10−9 0.1355 × 10−9 0.7438 × 10−9 0.77803 × 10−9 0.6591 × 10−9

0.8 0.0813 × 10−7 0.4845 × 10−7 0.4834 × 10−7 0.0663 × 10−7 0.1568 × 10−7

Table 4: Numerical results case1 for Example 1 at β = 1.
t r = 0 r = 0.25 r = 0.5 r = 0.75 r = 1

0.4 8.3323 × 10−6 7.7676 × 10−6 7.2030 × 10−6 8.5869 × 10−6 6.63832 × 10−6

RKHSM 0.8 2.4029 × 10−5 2.3786 × 10−5 2.3543 × 10−5 5.9829 × 10−5 2.3300 × 10−5

RPSM 0.4 0.1606 × 10−9 0.23812 × 10−9 0.6834 × 10−9 0.5260 × 10−9 0.6895 × 10−9

0.8 0.8650 × 10−7 0.361176 × 10−7 0.0277 × 10−7 0.8031 × 10−7 0.9092 × 10−7

Example 5.2. Consider the following FFD equation:(
CDβ

0+ x
)

(t) = 2tx(t) + tu, 0 < β ≤ 1, t ∈ [0, 1]

subject to
x(0) = u ∈ RF , u(s) = max{0, 1 − |s|},wheres ∈ R.

(29)

The r-cut representation of x(0) is [x(0)]r = [r − 1, 1 − r]. Hence, the FFDE (29) can be converted to the
following system of OFDEs:
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Case (1): Under Caputo [(1)−β]-differentiability, the system of OFDEs corresponding to Caputo [(1)−β]-
differentiable is

CDβ
0+ x1r(t) = 2tx1r(t) + t(r − 1)

CDβ
0+ x2r(t) = 2tx2r(t) + t(1 − r)

(30)

subject to

x1r(0) = r − 1,
x2r(0) = 1 − r,

If β = 1, then the exact solution of (30) is:

x1r(t) =
1
2

(
3et2
− 1

)
(r − 1),

x2r(t) =
1
2

(
3et2
− 1

)
(1 − r).

(31)

Next some graphical results and tabulated data are presented.

Table 5: The absolute error of approximating x1r(t) for Eq. (30).
t r = 0 r = 0.25 r = 0.5 r = 0.75 r = 1

0.2 0.256841 × 10−10 0.37662 × 10−10 0.417873 × 10−10 0.356916 × 10−10 0.418666 × 10−10

0.4 0.4289513 × 10−9 0.135547 × 10−9 0.743873 × 10−9 0.778036 × 10−9 0.659107 × 10−9

0.6 0.742514 × 10−8 0.462194 × 10−8 0.875546 × 10−8 0.2072125 × 10−8 0.431608 × 10−8

0.8 0.081362 × 10−7 0.564576 × 10−7 0.483455 × 10−7 0.066379 × 10−7 0.156841 × 10−7

1 0.2293303 × 10−6 0.988609 × 10−6 0.076106 × 10−6 0.781373 × 10−6 0.52071 × 10−6

Figure 3: Approximate solutions x1r(t) and x2r(t) at r = 0.25 for different values of β for Example 2, case 1. - - - Exact (β = 1),
Approximate (β = 1), Approximate (β = 0.9), . . . Approximate (β = 0.8).

Case (2): Under Caputo [(2)−β]-differentiability, the system of OFDEs corresponding to Caputo [(2)−β]-
differentiable is

CDβ
0+ x1r(t) = 2tx2r(t) + t(1 − r)

CDβ
0+ x2r(t) = 2tx1r(t) + t(r − 1)

(32)

subject to

x1r(0) = r − 1, x2r(0) = 1 − r,
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If β = 1, then the exact solution of (32) is:

x1r(t) =
1
2

(r − 1)
(
3e−t2

− 1
)
,

x2r(t) =
1
2

(1 − r)
(
3e−t2

− 1
)
.

(33)

Next some graphical results and tabulated data are presented.

Figure 4: Approximate solutions x1r(t) and x2r(t) at r = 1
3 for different values of β for Example 1, case 2. - - - Exact (β = 1), Approximate

(β = 1), Approximate (β = 0.9), . . . Approximate (β = 0.8).

Table 6: The absolute error of approximating x1r(t) for Eq. (32).
t r = 0 r = 0.25 r = 0.5 r = 0.75 r = 1

0.2 0.786561 × 10−10 0.037662 × 10−10 0.417873 × 10−10 0.356916 × 10−10 0.418666 × 10−10

0.4 0.919491 × 10−9 0.135547 × 10−9 0.743873 × 10−9 0.778036 × 10−9 0.659107 × 10−9

0.6 0.742514 × 10−8 0.462194 × 10−8 0.809546 × 10−8 0.072125 × 10−8 0.431608 × 10−8

0.8 0.081362 × 10−7 0.484576 × 10−7 0.483455 × 10−7 0.066379 × 10−7 0.156841 × 10−7

1 0.293303 × 10−6 0.988609 × 10−6 0.076106 × 10−6 0.381373 × 10−6 0.830071 × 10−6

Next numerical results of RPS with the reproducing kernel Hilbert space method (RKHSM) are presented
for Example 2 as given in Tables 7 and 8:

Table 7: Numerical results case 1 for Example 2 at β = 1.
t r = 0 r = 0.25 r = 0.5 r = 0.75 r = 1

0.4 1.5195 × 10−4 1.1396 × 10−4 7.5976 × 10−5 3.7988 × 10−5 0
RKHSM 0.8 1.9332 × 10−5 1.4499 × 10−5 9.6663 × 10−6 4.8331 × 10−6 0
RPSM 0.4 0.0813 × 10−7 0.5645 × 10−7 0.4834 × 10−7 0.0663 × 10−7 0.1568 × 10−7

0.8 0.0813 × 10−7 0.4845 × 10−7 0.4834 × 10−7 0.0663 × 10−7 0.1568 × 10−7

Table 8: Numerical results case 2 for Example 2 at β = 1.
t r = 0 r = 0.25 r = 0.5 r = 0.75 r = 1

0.4 1.1155 × 10−4 8.3662 × 10−5 5.5775 × 10−5 2.7887 × 10−5 0
RKHSM 0.8 5.7274 × 10−5 4.2956 × 10−5 2.8637 × 10−5 1.4318 × 10−5 0
RPSM 0.4 0.9194 × 10−9 0.1355 × 10−9 0.7438 × 10−9 0.7780 × 10−9 0.6591 × 10−9

0.8 0.0813 × 10−7 0.4845 × 10−7 0.4834 × 10−7 0.0663 × 10−7 0.1568 × 10−7
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6. Concluding remarks

In this paper, we introduce a novel numerical method in order to solve FFDEs by using the RPSM.
Besides, we assert the idea that the RPSM is able to have the solutions of FFDEs approximated under
strongly generalized differentiability. The number-one reason behind the use of the RPS method lies in its
applicability in function approximation. The obtained results show that the RPS approach is very totally
operable, effective and appropriate to handling such model.
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