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Suborbital Graphs for a Non-Transitive Action of the Normalizer
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Abstract. In this paper, we investigate a suborbital graph for the normalizer of Γ0(n) in PSL(2,R), where n
will be of the form 32p2, p is a prime and p > 3. Then we give edge and circuit conditions on graphs arising
from the non-transitive action of the normalizer.

1. Introduction

1.1. Triangle Groups
A triangle group is denoted by (l,m,n) where l,m,n are positive integers or∞ and has the presentation

{x, y, z | xl = ym = zn = xyz = 1}

under the convention that if any of l,m,n is∞we ignore the corresponding relation.
For a geometric interpretation of the triangle group (l,m,n) we consider a triangle T with angles

π
l
,
π
m
,
π
n

in a space X, where X is either the sphere, or the Euclidean plane, or the hyperbolic plane. Then, the group
generated by the reflections of X in the sides of T has a subgroup of index 2, consisting of orientation
preserving transformation, isomorphic to (l,m,n).The integers l,m,n determine completely the space X,
namely X is

the sphere if and only if
π
l

+
π
m

+
π
n
> 1

the Euclidean plane if and only if
π
l

+
π
m

+
π
n

= 1

the hyperbolic plane if and only if
π
l

+
π
m

+
π
n
< 1.

One of the most interesting, and definitely the most thoroughly studied, triangle groups in the literature is
the modular group Γ defined as 

a b
c d

 : a, b, c, d ∈ Z, ad − bc = 1


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(see [9, 17] for more detailed). Seeing Γ as a triangle group we get the isomorphism Γ ' (2, 3,∞). The cusp
set of Q̂ = Q ∪ {∞}, and of course Γ acts on it by

1 =

(
a b
c d

)
:

x
y
→

ax + by
cx + dy

,

under the usual convention to write∞ as a fraction with denominator 0.

1.2. The Normalizer

Γ0(n) = {1 ∈ Γ : c ≡ 0 (mod n)} is a well known congruence subgroup of the classical modular group Γ.
The normalizer turns to be a very important group in the study of moonshine and for this reason has been
studied by many authors [5,6,13]. It consists exactly of the matrices(

ae b/h
cn/h de

)
, ade2

− bcn/h2 = e,

where e ‖ n
h2 and h is the largest divisor of 24 for which h2

|n with understandings that the determinant e of
the matrix is positive, and that r ‖ s means that r|s and (r, s/r) = 1 (r is called an exact divisor of s).

In some ways triangle groups are the simplest Fuchsian groups, in [5] it is shown that maps (tessellations
of orientable surfaces) can be parametrized by subgroups of Fuchsian groups containing a period 2 and
that the regular maps correspond to normal subgroups. For these reasons, the authors found all values for
which Nor(n) is a triangle group as follows.

Lemma 1.1. ([2]) Nor(n) is a triangle group for precisely 26 values of n.
If n = 1, 22, 24, 26, 32, 22.32, 24.32, 26.32, then Nor(n) has signature (2, 3,∞).
If n = 2, 23, 25, 27, 2.32, 23.32, 25.32, 27.32, then Nor(n) has signature (2, 4,∞).
If n = 3, 22.3, 24.3, 26.3, 33, 22.33, 24.33, 26.33, then Nor(n) has signature (2, 6,∞).

1.3. Motivation

The modular group acts transitively on Q̂ and in a paper of Jones, Singerman, Wicks, the suborbital
graphs were studied and the most basic one turn out to be the well-known Farey graph [9].

Suborbital graphs of the normalizer were studied by same idea. All circuits in the suborbital graph were
found when n is a square-free positive integer [11,12] and when n satisfies the condition of transitive action
[12]. Then, non-transitive cases have been examined to reach the general statement [7,10]. Our intuitive
conclusion obtained from all these studies is that the general case is related the cases which Nor(n) is a
triangle group. The transitive action is automatically provided for n values, which Nor(n) is also a triangle
group. In this case, circuits in graphs are given in [12]. In non-transitive cases, if the decomposition of n
contains n values which provide normalizer to be triangle group, there would be a circuit in the graphs. If
not, graphs would be a forest. In the way of verification of this hypothesis, taking one of those values, we
examine the combinatorial properties of Nor(n).

2. Main Results

Throughout the paper, n will be of the from 32p2, where p is a prime and p > 3. In this case, since

h = 2min
{

3,[α/2]
}
3min

{
1,[β/2]

}
, h is equal to 3 for n = 2α3βpα3

3 · · · p
αr
r . As e ‖ n

h2 , e must be 1, p2. Hence, Nor(32p2)
consists of the following two types of the element:

T1 =

(
a b/3

3p2c d

)
: ad − bcp2 = 1, T2 =

(
ap2 b/3
3p2c dp2

)
: adp2

− bc = 1.
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2.1. Transitive Action

Lemma 2.1. ([2]) Let n have the prime power decomposition as 2α1 · 3α2 · pα3
3 · · · p

αr
r . Then Nor(n) acts transitively

on Q̂ if and only if α1 ≤ 7, α2 ≤ 3 and αi ≤ 1 for i = 3, . . . , r.

Hence, the following theorem holds.

Theorem 2.2. Nor(32p2) is not transitive on Q̂.

Therefore, we will find a maximal subset of Q̂ on which Nor(32p2) acts transitively. For this,

Lemma 2.3. ([7]) Let d|n. Then the orbit
(
a
d

)
of a/d with (a, d) = 1 under Γ0(n) is the set{

x/y ∈ Q̂ : (n, y) = d, a ≡ x y
d (mod (d,n/d))

}
. Furthermore the number of orbits

(
a
d

)
with d|n under Γ0(n) is just

ϕ(d,N/d) where ϕ(n) is Euler’s totient function which is the number of positive integers less than or equal to n that
are coprime to n.

In the view of the above theorem, we can give the following

Theorem 2.4. The orbits of Γ0(32p2) on Q̂ are as follows;(
1
1

)
;
(
1
3

)
,

(
2
3

)
;
(

1
32

)
;
(

1
p2

)
;
(

1
3p2

)
,

(
2

3p2

)
;
(

1
32p2

)
;
(
1
p

)
,

(
2
p

)
. . .

(
p − 1

p

)
;(

1
3p

)
,

(
p + 2

3p

)
, . . .

(
2p − 1

3p

)
;
(

1
32p

)
,

(
p + 2
32p

)
, . . .

(
2p − 1

32p

)
.

Proof. Let us denote the representatives of the orbits by
(
a
d

)
. The possible values of d are 1, 3, 32, p, 3p, 32p, p2,

3p2, 32p2 by Lemma 2.3. Hence, the number of non-conjugate classes of these orbits with Euler formula are
1; 2; p− 1 and 2(p− 1) for 1, 32, p2, 32p2; 3, 3p2 ; p, 32p and 3p respectively. Consequently, the number of orbits
of Γ0(32p2) on Q̂ is 4p + 4.

Theorem 2.5. The set Q̂(32p2) :=
(
1
1

)
∪

(
1
3

)
∪

(
2
3

)
∪

(
1
32

)
∪

(
1
p2

)
∪

(
1

3p2

)
∪

(
2

3p2

)
∪

(
1

32p2

)
, is a maximal orbit of

Nor(32p2) on Q̂.

Proof. Let us consider the orbit
(
1
1

)
under the action of the elements of Nor(32p2). For the element T1, taking

into account det(T1), we suppose that a, d-odd, one of b and c is even . Hence,

(i) If 3 ∦ d; then T1

(
1
1

)
=

(
3a + b

3(3p2c + d)

)
=

(
1
3

)
(ii) If 3 ∦ d and 3a + b-even; then T1

(
1
1

)
=

(
2a0

3(3p2c + d)

)
=

(
2
3

)
.

(iii) If 3 ‖ d; then T1

(
1
1

)
=

(
3a + b

32(p2c + d0)

)
=

(
1
32

)
.

For the element T2, taking into account det(T2), we suppose that a, d-odd, one of b and c is even . Hence,

(iv) If 3 ∦ d; then T2

(
1
1

)
=

(
3ap2 + b

3p2(3c + d)

)
=

(
1

3p2

)
.

(v) If 3 ∦ d and 3ap2 + b-even; then T2

(
1
1

)
=

(
2a0

3p2(3c + d)

)
=

(
2

3p2

)
.
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(vi) If 3 ‖ d; then T2

(
1
1

)
=

(
3ap2 + b

32p2(c + d0)

)
=

(
1

32p2

)
.

Lastly, we suppose that a, d-even and b, c-odd for the element T2.

(vii) If 3 ‖ b; then T2

(
1
1

)
=

(
ap2 + b0

p2(3c + d)

)
=

(
1
p2

)
.

Consequently, (Nor(32p2), Q̂(32p2)) is a transitive permutation group. We now consider the imprimitivity
of the action of Nor(32p2) on Q̂(32p2).

2.2. Imprimitive Action
Lemma 2.6. ([4]) Let (G,∆) be a transitive permutation group. (G,∆) is primitive if and only if Gα,the stabilizer of
α ∈ ∆, is a maximal subgroup of G for each α ∈ ∆.

From the above lemma we see that whenever, for some α, Gα � H � G, then Ω admits some G-invariant
equivalence relation other than the trivial cases. Because of the transitivity, every element of Ω has the
form 1(α) for some 1 ∈ G. Thus one of the non-trivial G-invariant equivalence relation on Ω is given as
follows:

1(α) ≈ 1′(α) if and only if 1′ ∈ 1H.
The number of blocks (equivalence classes) is the index |G : H| and the block containing α is just the

orbit H(α).
We can apply these ideas to the case where G is the Nor(32p2) and ∆ is Q̂(32p2) which is the orbit in Theorem

2.5, Gα is the stabilizer of ∞ in Q̂(32p2); that is, Nor(32p2)∞ =

〈(
1 1/3
0 1

)〉
, and H is H0 :=

〈
Γ0(32p2),A,B

〉
where

A =

(
ap b/3p
3pc dp

)
and B :=

(
ap b/p

32pc dp

)
.

Clearly, the relation Nor(32p2)∞ < H0 < Nor(32p2) produce an imprimitive action as desired.

2.3. Block Design
Lemma 2.7. ([1]) The index |Nor(n) : Γ0(n)| = 2ρh2τ,
where ρ is the number of prime factors of n/h2, τ = ( 3

2 )ε1 ( 4
3 )ε2 ,

ε1 =

{
1 if 22, 24, 26

‖ n
0 otherwise , ε2 =

{
1 if 9 ‖ n
0 otherwise

Using Lemma 2.7, we get following easily:

Theorem 2.8. There are only two blocks which are [∞] and [0]. These are as following:

[0] :=
(
1
1

)
∪

(
1
3

)
∪

(
2
3

)
∪

(
1
32

)
and [∞] :=

(
1
p2

)
∪

(
1

3p2

)
∪

(
2

3p2

)
∪

(
1

32p2

)
.

Proof. First, let us calculate the index |Nor(32p2) : Γ0(32p2)| using Lemma 2.7. Since h = 3, we have ρ = 1. As
32
‖ 32p2, then ε1 = 0, ε2 = 1. Hence, it can be concluded that |Nor(32p2) : Γ0(32p2)| = 2.32. 43 = 24.
Second, we calculate the index |H0 : Γ0(32p2)| using [1]. It is known that A6

∈ Γ0(32p2)⇔ a+d , 3k (k ∈ Z)
and that B2

∈ Γ0(32p2). Hence, we have that

{I,A,A2,A3,A4,A5
} × {I,B} = {I,B,A, . . . ,AB, . . . ,A5B}

as cosets. So, we obtain that |H0 : Γ0(32p2)| = 12. Using the equation
|Nor(32p2) : Γ0(32p2)| = |Nor(32p2) : H0|.|H0 : Γ0(32p2)|, we have that|Nor(32p2) : H0| = 2 and that

Nor(32p2) = H0 ∪

(
a b/3

3p2c d

)
H0.
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As we observed in Theorem 2.8, the orbit Q̂(32p2) is divided into two blocks as the statement of the

theorem taking into account orbit
(
1
1

)
under the action of elements of H0.

2.4. Suborbital Graphs
In [16], Sims introduced the idea of the suborbital graphs of a permutation group G acting on a set ∆,

these are graphs with vertex-set ∆, on which G induces automorphisms. We summarize Sims’theory as
follows: Let (G,∆) be transitive permutation group. Then G acts on ∆ × ∆ by 1(α, β) = (1(α), 1(β)) for 1 ∈ G
and α, β ∈ ∆. The orbits of this action are called suborbitals of G. The orbit containing (α, β) is denoted by
O(α, β). From O(α, β) we can form a suborbital graph G(α, β) : its vertices are the elements of ∆, and there
is a directed edge from γ to δ if (γ, δ) ∈ O(α, β). A directed edge from γ to δ is denoted by (γ → δ). If
(γ, δ) ∈ O(α, β), then we will say that there exists an edge (γ→ δ) in G(α, β) and represent them as hyperbolic
geodesics in the upper half plane H := {z ∈ C : Im(z) > 0} .

If α = β, the corresponding suborbital graph G(α, α), called the trivial suborbital graph, is self-paired: it
consists of a loop based at each vertex α ∈ ∆. By a circuit of length m (or a closed edge path), we mean a
sequence ν1 → ν2 → · · · → νm → ν1 such that νi , ν j for i , j, where m ≥ 3. If m = 3 or 4 then the circuit is
called a triangle or rectangle.

In this study, G and ∆ will be the normalizer of Γ0(N) in PSL(2,R) and the extended rational Q̂ = Q∪{∞},
respectively. Since rational numbers are well ordered, we also used the notations γ >

−→ δ or γ <
−→ δ

according to the order of vertices.
Nor(32p2) acts transitively on Q̂(32p2), every suborbital O(α, β) contains a pair (∞,u/p2) for u/p2

∈ Q̂(32p2).
As Nor(32p2) permutes the blocks transitively, all subgraphs corresponding to blocks are isomorphic. There-
fore we will only consider the subgraph F(∞,u/p2) of G(∞,u/p2) whose vertices form the block [∞].

Theorem 2.9. (Edge condition) Let r/s and x/y be in the block [∞]. Then there is an edge r/s→ x/y in F(∞,u/p2)
if and only if

(i) If 32p2
‖ s, then x ≡ ±ur (mod p2), y ≡ ±us (mod p2), ry − sx = ±p2

(ii) If 3p2
‖ s, then x ≡ ±3ur (mod p2), y ≡ ±3us (mod p2), ry − sx = ±3p2

(iii) If p2
‖ s, then x ≡ ±9ur (mod p2), y ≡ ±9us (mod p2), ry − sx = ±p2,

(Plus and minus sign correspond to r/s > x/y and r/s < x/y, respectively).

Proof. Assume first that r/s >
−→ x/y is an edge in F(∞,u/p2). It means that there exists some T in the

normalizer Nor(32p2) such that T sends the pair (∞,u/p2) to the pair (r/s, x/y), that is T(∞) = r/s and
T(u/p2) = x/y.

Case 1. If 32p2
‖ s, taking into account that T =

(
a b/3

3p2c d

)
, suppose that 3 ∦ a and 3 ‖ b, c by the equation

ad − bcp2 = 1. T(∞) =
a

32p2c
=

r
s

gives that r = a and s = 32p2c0. T(u/p2) =
au + b0p2

32p2c0u + dp2 =
x
y

gives that

x ≡ ur (mod p2), y ≡ us (mod p2). Furthermore, we get ry − sx = p2 from the equation

(
a b/3

3p2c d

) (
1 u
0 p2

)
=

(
a au + bp2/3

3p2c 3p2cu + dp2

)
=

(
r s
x y

)
.

Case 2. If 3p2
‖ s, taking into account that T =

(
a b/3

3p2c d

)
, suppose that 3 ∦ a, b, c by the equation

ad − bcp2 = 1. T(∞) =
a

32p2c
=

r
s

gives that r = a and s = 3p2c. T(u/p2) =
au + bp2/3
3p2cu + dp2 =

3au + bp2

32p2cu + 3dp2 =
x
y

gives that x ≡ 3ur (mod p2), y ≡ 3us (mod p2). Furthermore, we get ry − sx = 3p2 from the equation
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a b/3

3p2c d

) (
1 u
0 p2

)
=

(
a au + bp2/3

3p2c 3p2cu + dp2

)
=

(
r x
s y

)
.

Case 3. If p2
‖ s, taking into account that T =

(
a b/3

3p2c d

)
, suppose that 3 ‖ a and 3 ∦ b, c by the equation

ad − bcp2 = 1. T(∞) =
a

3p2c
=

r
s

gives that r = a0 and s = p2c. T(u/p2) =
au + bp2/3
3p2cu + dp2 =

9a0u + bp2

9p2cu + 3dp2 =
x
y

gives that x ≡ 9ur (mod p2), y ≡ 9us (mod p2). Furthermore, we get ry − sx = p2 from the equation

(
a b/3

3p2c d

) (
1 u
0 p2

)
=

(
a au + bp2/3

3p2c 3p2cu + dp2

)
=

(
r x
s y

)
.

For the opposite direction, we assume that 32p2
‖ s and x ≡ ur (mod p2), y ≡ us (mod p2), ry − sx = p2.

In this case, there exist b, d ∈ Z such that x = ur + bp2 and y = us + dp2. If we put these equivalences in

ry − sx = p2, we obtain rd − bs = 1. So the element T0 =

(
r b
s d

)
is clearly in H0. For minus sign and another

conditions, similar calculations are done.

2.5. Circuit Condition

It is known that a graph which contains no circuit is called a forest. In introduction part, we also
mentioned that the trivial suborbital graphs are self-paired ones. In this section, we will be mainly interested
in the remaining non-trivial suborbital graphs.

Theorem 2.10. Let F(∞,u/p2) contains a triangle if and only if 9u2
± 3u + 1 ≡ 0 (mod p2).

Proof. We suppose that there is a triangle such as
k
l
→

m
n
→

x
y
→

k
l

in F(∞,u/p2). Since H0 permutes the

vertices transitively, we may suppose that the triangle has the form
1
0
→

r0

s0p2 →
x0

y0p2 →
1
0

. Furthermore,

without loss of generality, suppose
r0

s0p2 <
x0

y0p2 . From Theorem 2.9.(i), we have that r0 ≡ u (mod p2) and

s0 = 1 from the first edge. Hence, we get the second vertex as
u
p2 . Applying to Theorem 2.9.(iv) to second

edge, we obtain that x0 ≡ −9u2 (mod p2) and uy0 − x0 = −1. Taking into account x0 = uy0 + 1,

Case 1. If y0 = 1, then second edge will be of the form
u
p2 →

u + 1
p2 . By Theorem 2.9, we have that

u + 1 ≡ −9u2 (mod p2) and 9u2 + 9u + 1 ≡ 0 (mod p2) from second and third edge, respectively. These
equivalences gives a contradiction as u ≡ 0 (mod p2).

Case 2. If y0 = 2, then second edge will be of the form
u
p2 →

2u + 1
2p2 . In this case, the third edge

2u + 1
2p2 →

1
0

contradict to Theorem 2.9.

Case 3. If y0 = 3, then second edge will be of the form
u
p2 →

3u + 1
3p2 . In this case, we have that x0 ≡ −9u2

(mod p2) and 9u2 + 3u + 1 ≡ 0 (mod p2) by Theorem 2.9.

If the inequalities
r0

s0p2 >
x0

y0p2 hold then we conclude that 9u2
− 3u + 1 ≡ 0 (mod p2).

For the opposite direction, we assume that 9u2
± 3u + 1 ≡ 0 (mod p2). Using Theorem 2.9, it is clear that

1
0
→

u
p2 →

3u ± 1
3p2 →

1
0

is a triangle in F(∞,u/p2).
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Example 2.11. We can use easy number-theoretical techniques to calculate which suborbital graphs contains
a triangle. Suppose that p is equal to 13. Since 9u2 + 3u + 1 ≡ 0 (mod 132), then 9u2 + 3u + 1 ≡ 0 (mod 13),
giving u = 1 + 13k such that k ∈ Z. Hence, we have 9(1 + 13k)2 + 3(1 + 13k) + 1 ≡ 0 (mod 169), then
1521k2 + 273k + 13 ≡ 0 (mod 169). As 117k2 + 21k + 1 ≡ 0 (mod 13), we obtain k = 8 and u = 105. Since
9(105)2 + 3(105) + 1 ≡ 0 (mod 169), F(∞, 105/169) contains a triangle like as in F(∞, 6/49) for p = 7.

3. Conclusion

We know that every prime p , 3 has the form 3q + 1 or 3q + 2 for some integer q. We suppose that p ≡ 2
(mod 3). In this case 9u2 + 3u + 1 = 2 + 3t for some t ∈ Z. This equation gives a contradiction that 3 | 1. As
a consequence,

Corollary 3.1. The prime divisors p of 9u2
± 3u + 1, for any u ∈ Z, are of the form p ≡ 1 (mod 3).

Corollary 3.2. Let k/l→ m/n→ x/y→ k/l be a triangle in F(∞,u/p2). There exists an unique elliptic element Ψ
in H0 of order 3 such that Ψ(k/l) = m/n, Ψ(m/n) = x/y, Ψ(x/y) = k/l.

Proof. Because of the transitive action, there exists an element Ψ in H0 maps the triangle
k
l
→

m
n
→

x
y
→

k
l

to the ideal triangle
1
0
→

u
p2 →

3u ± 1
3p2 →

1
0

as follows

Ψ

(
1
0

)
=

(
u
p2

)
,Ψ

(
u
p2

)
=

(
3u ± 1

3p2

)
,Ψ

(
3u ± 1

3p2

)
=

(
1
0

)
.

By Theorem 2.10, this means that 9u2
± 3u + 1 ≡ 0 (mod p2). Hence,

Ψ :=
(
−32u (9u2

± 3u + 1)/p2

−32p2 32u + 3

)
is an elliptic element in H0 of order 3 and satisfies the desired conditions. Uniqueness is obvious.

Proof of Corollary 3.1. Let u be any integer and p a prime divisor of 9u2
± 3u + 1. Then, without any

difficulty, it can be easily seen that the normalizer Nor(32p), like Nor(32p2), has the elliptic element Ψ :=(
−32u (9u2

± 3u + 1)/p
−32p 32u + 3

)
of order 3. From [2], we get that p ≡ 1 (mod 3).
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