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Abstract. This paper mainly studies whether the almost sure exponential stability of stochastic differential
delay equations (SDDEs) is shared with that of the stochastic theta method. We show that under the global
Lipschitz condition the SDDE is pth moment exponentially stable (for p € (0,1)) if and only if the stochastic
theta method of the SDDE is pth moment exponentially stable and pth moment exponential stability of
the SDDE or the stochastic theta method implies the almost sure exponential stability of the SDDE or the
stochastic theta method, respectively. We then replace the global Lipschitz condition with a finite-time
convergence condition and establish the same results. Hence, our new theory enables us to consider the
almost sure exponential stability of the SDDEs using the stochastic theta method, instead of the method of
Lyapunov functions. That is, we can now perform careful numerical simulations using the stochastic theta
method with a sufficiently small step size At. If the stochastic theta method is pth moment exponentially
stable for a sufficiently small p € (0,1), we can then deduce that the underlying SDDE is almost sure
exponentially stable. Our new theory also enables us to show the pth moment exponential stability of the
stochastic theta method to reproduce the almost sure exponential stability of the SDDEs.

1. Introduction.

The importance of stochastic differential delay equations (SDDEs) derives from the fact that many of
phenomena witnessed around us do not have an immediate effect from the moment of their occurrence.
SDDESs have been increasingly used to model the effect of noise and time delay types of complex systems,
such as control problems ([1],[2]) and the dynamics of noisy bistable systems with delay ([3]). Stability
theory of numerical solutions is one of the central problems in numerical analysis. Stability analysis of
numerical methods for stochastic differential equations (SDEs) as well as SDDEs has recently received a lot
of attention. This paper avoids using the method of Lyapunov functions.

Explicit solution can hardly be obtained for the SDDEs. There is a quite substantial work that has been
done concerning approximate schemes for SDEs and we mention Higham et al.[7] and Mao([4],[6]). But
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this is not the case for SDDEs as it has been pointed out in [5]. There is an extensive literature on stochastic
stability, for example Mao( [9], [10]), Rodkinaa and Schurz[8].

We are then left two questions:

(P1) If the SDDE is pth moment exponentially stable (almost sure exponentially stable), will the numerical
method be pth moment exponentially stable (almost sure exponentially stable) on the SDDE?

(P2) If the numerical method is pth moment exponentially stable (almost sure exponentially stable) of
the SDDE, will the SDDE be pth moment exponentially stable (almost sure exponentially stable)?

Our aim is to give positive answers to both (P1) and (P2). This paper divides naturally into two parts,
the first concerning almost sure exponential stability of the SDDE under global Lipschitz condition , the
second part concerning the generalized results of the SDDE.

2. Almost sure exponential stability of stochastic differential delay equations under global Lipschitz
condition.

Throughout this paper, we let (QQ,% (¥ }t0, P) be a complete probability space with a filtration {¥}i>0
satisfying the usual conditions (i.e, it is right continuous and increasing while ¥ contains all P-null sets).
Letw(t) = (w1 (), wa(t), - -, wu(t))"T be an m-dimensional Brownian motion defined on the probability space.
Let | - | denote both Euclidean norm in R” and the trace norm in R, Let C([—1, 0], R")(t > 0) denote the
family of all continuous functions from [—7, 0] to R". Let L% ([-7,0], R") denote the family of F;-measurable,
C([-1,0], R")-valued random variables ¢ = {¢(r) : r € [—7,0]} such that SUP,[_ ] Elp(r)? < co. C([u —
7, u], R")-valued random variablen, = {n(r) : r € [u—7, u]} € L%([u—’c, u], R") satisfies SUP, e[yl Eln(r)]* < oo.
If x(t) is a continuous R"-valued stochastic process on t € [-7, ), x; = {x(t + r),r € [-7,0]} is regarded as
a C([-r,0], R")-valued stochastic process. For a,b € R, we use a vV b and a A b for max{a, b} and min{a, b} ,
respectively. Let Z* be {0,1,2,---}.

Consider an n-dimensional stochastic differential delay equation (SDDE).

dy(t) = f(y(0), y(t = 1)t + g(y(#), y(t = 1))dw(t) 1)

on f € [0, 00) with initial data yo = & € L?FO([—T, 0], R"),where f : R” X R" — R" and g : R" X R" — R™".
Throughout this paper, unless otherwise specified, we impose the following hypothesis as standing
hypothesis:
(H1) Both f and g satisfy the global Lipschitz condition.That is, there is a positive constant K such that

1f,y) = f& DI V19, y) — g& DIF < K(x = 2 + |y = 9F) )

forx,y,%,% € R".

Moreover, f(0,0) = 0 and g(0,0) = 0.

We should point out that the reason we assume that f(0,0) = 0 and ¢(0,0) = 0 is because this paper
is concerned with the stochastic stability of the trivial solution y(t) = 0. It is also easy to see that this
hypothesis implies this condition

fx, PV gCe, )P < K(xP +1yP) Vx,y € R™. 3)

2.1. The pth moment stability of the SDDE

As we know, under (H1) for any initial data yo = £ € L% ([-7,0], R") the SDDE (1) has a unique global
solution y(t) on t > —1, see [4]. We shall denote the solution by y(t;0,£). So we immediately get this
following lemma.

Lemma 2.1. Let (H1) hold. Let p € (0,1) and T > 0, then

sup Ely(t;0,&)F < H(T,p,K) sup EIE(r)l. 4)
te[-1,T] re[—1,0]



Wei Zhang, M. H. Song, M. Z. Liu / Filomat 33:3 (2019), 789-814 791

In particularly, if y;, = & € L;.[O([—T,O], R"), we have

sup  Ely(t;to, i)l < H(T,p,K) sup En(rlF,t > to, 5)

te[to—,t0+T] reltooto]
where
H(T,p,K) = 351+ K(T + 1)T]§e3pK(T+1)T'

Proof. We write y(t) = y(t;0, &) It is straightforward to show that

f t
y(t) = y(0) + fo F(), yls — D)ds + fo 9y(6), ¥(s — e ().

We get

t t
(O < 3IEO)F +3 fo ), (s — o)st + 3] fo J(E), (s — D))

Hence
EWG)F SEOF +36 [ F(y(8), s - )P + 38 | 909,465 — O
<3EIE(0) + 3K(t + 1) fo t Ely(s)PPds + 3K(t + 1) fo t Ely(s — 7)[*ds
=3E|E(0)] + 3K(t + 1) fo tEIy(s)lzds +3K(t+1) [ Z_TEly(s)Izds

t
<[3 + 3K(t + 1)7] sup E[E(r)* + 6K(t + 1) f Ely(s)|ds.
re[—1,0] 0

This, by the Gronwall inequality, yields

Ely(H)* < [3+3K(t + 1)t] sup E|&E(r)[2etKED, (6)
re[-1,0]

Hence, when p € (0,1),

Ely()P < (Ely(®)F)? < 35[1 + K(t + 1)7]2e¥<ED sup EIE(r)P.

re[-1,0]
In other words, we have

H(t,p, K) = 35[1 + K(t + 1)7] 267K 5 € (0, 1). 7)
Thus

Ely®)F < H(t,p,K) sup E[E()F V> 0.
re[—1,0]

In this paper we often need to introduce the solution to the SDDE (1) for initial data vy, = 1, € L2T ([to —
fo

T,t0], R"). We shall denote this solution by y(t; ¢y, n¢,). Moreover, for any ¢, > 0, we can denote y(t) =
y(t; to, 1t,) as the solution of the SDDE (1) on t > ty — 7 with the initial data y,, we hence get

t t
Y = y(to) + ft F(5), (s — O)ds + f 9y(s), (s — D)dans).



Wei Zhang, M. H. Song, M. Z. Liu / Filomat 33:3 (2019), 789-814 792

We get

t t
|y(t)|2 < 3|y(t0)|2 + 3| f fy(s), y(s — T))dS|2 + 3|f g(y(s), y(s — T))dw(s)lz.
to to
We obtain
t t
EWOF <3EW + 321 [ 06, (s = NsP + 381 [ g(u(5 s = Dte)P
<BE|y(to)]* + 3K(t — to + 1) f Ely(s)[ds + 3K(t — to + 1) f Ely(s — 7)lds
to fo
t t—1
=3E|y(to)* + 3K(t — to + 1) f Ely(s)*ds + 3K(t — to + 1) f Ely(s)|ds
to to—T
t
<[3+3K(t —ty + 1)r] sup Eln(r)P* + 6K(t -ty +1) f Ely(s)[*ds.
to

relto—1,to]

This, by the Gronwall inequality, yields

Ely(t)> < [3+3K(t — to + 1)1] sup E[n(r)[etKt-torDit=to),

re[to—1,to]

Hence, whenp € (0,1),

Ely()P < (Ely()F)% < 35[1 + K(t — to + 1)r] 7K1 DE0)  gup Eln(r)P.

relto—t,to]
In other words, we have
H(t — to, p, K) = 35[1 + K(t — to + 1)7]2KEot D) 4 € (0, 1).
Thus

Ely(t)P < H(t —to,p,K) sup Eln(m)lF, t= to.

re[to—1,to]
The proof is hence complete. [
In this section we consider the pth moment exponential stability of the origin, which we define as follows.

Definition 2.2. Let p > 0. The SDDE (1) is said to be exponentially stable in the pth moment if there is a pair of
positive constants A, M such that, for initial data £ € LZ%([—T, 0], R™),

Ely(t;0,&)F <M sup ElE(rPe™™, t>0. (8)
re[—1,0]

We refer to A as a rate constant and M as a growth constant.
In this paper we often need to introduce the solution to the SDDE (1) for initial data y, = £ € LZT([—T, 0], R™).

Hypotheses (H1) guarantee the existence and uniqueness of this solution which is denoted by y(t;r, y,). 1t is easy to
observe that the solutions to the SDDE (1) have the following flow property:

y(:0,8) =yt nyy), tzrz0.
Moreover, due to the autonomous property of the SDDE (1), the exponential stability in pth moment (8) implies

Ely(t;r, ) <M sup ElE(s)Pe™™, t>r>0. 9)
se[—1,0]
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2.2. The pth moment stability of the theta method.
Given a free parameter 0 € [0, 1], the numerical solutions by the stochastic theta method are defined by

x((k + 1)AE) =x(kAF) + (1 — 0) fF(x(kAE), x((k — N)AE)At

+ 0F(x((k + 1AL, x((k + 1 — N)AB)AE + g(x(kAt), x((k — N)AL)) Awy, (10)

with initial data & € Lzﬁ([—T, 0], R"), where x(kAt) = x(kAt;0,&), k € Z*, Awy = w((k + 1)At) — w(kAt), At = £.
Let us introduce two continuous-time step process, define z1(f) = z1(t;0, &), z(t) = z2(£; 0, &),

o) o)

2(t) = Y (kA g eenn (), 2208 = Y x((k + DA ear sy (),
k=—-N k=—-N

with 1¢ denoting the indicator function for the set G. In our analysis we find it convenient to work with
continuous-time approximate and hence we find

g, te[-1,0],

t t
x(t) = x(0)+ (1 - 9)f0 f(z1(s),z1(s — T))ds + Gfo f(z2(s), z2(s — 71))ds

¢
+ f 9(z1(s), z1(s — 1))dw(s), £>0,

where x(t) = x(£; 0, &).
As for the exact solution y(t;0, &), the numerical solutions by the stochastic theta method have the
following flow property too:

x(t0,8) =xt;r,x) 0<r<t<oo

provided r is the multiple of At.

Lemma 2.3. Let (H1) hold. Let p € (0,1) and let At be sufficiently small for K(OAt)? < 11—0. Then the discrete process
{x(kAt; 0, E)}kez+ defined by the stochastic theta method (10) satisfies

sup  Elx(kAt;0,8)F < H(T,p,K) sup EI&(r)P, (11)

—1<kAt<t+T re[-1,0]
and the discrete process {x(kAt; u, n,)}kez+ defined by the stochastic theta method (10) satisfies

sup Elx(kAt;u,r]u)I”SI:I(T,p,K) sup Eln(rlF, (12)

u—1<kAt<u+t+T relu—t,ul

VYT > 0, where

4
2

H(T, p,K) = {[13 + 10K(T + 1)7][13 + 10K(7 + 1)7]}2 sup E|&(r)Pe!PKE+TlpKI+IT,

re[—1,0]

Proof. For convenience, we write x(kAt) = x(kAt;0,&). It is easy to see that z1(kAt) = zp((k — 1)Af) = x(kAt).
We divided the whole proof into two steps.
Step 1. For any 0 < kAt < (k + 1)At < 7, it is easily shown that

(k+1)At
x((k+ 1A =£(0) + f (1~ 6)f(z1(5), 21(5 — D))ds
0

(k+1)At (k+1)At
o R N e )
0 0
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Noting that

KA (k+1)At

F(zals), zals — D) + f F(z2(5), (s — )ds

kAt

(k+1)At
f f(z2(s), z2(s — 1))ds =
0

(k+1)At
= f f(z1(s), z1(s — ))ds + f(x((k + )AL, x((k + 1 — N)At))At,
A

t
we get

x((k + 1)Af) =&(0) — OF(E(0), E(=T))At + OF(x((k + 1AL, x((k + 1 — N)AD)A

(k+1)At (k+1)At
+ fo F(zas), 215 — D)ds + fo 9(21(6), 215 - )dan(s).

Hence

((k + DA <5{IEO)F + (OALIF(£(0), £(=D)

(k+1)At
+ (OAPIF((k + DAD, x((k + 1~ N)AD)P +| f f(za(6), 21(5 — 0)dsP
0

(k+1)At
N fo 9(z1(8), 2165 — D s)P)

By the condition (3) as well as the Holder inequality and the property of the It6 isometry, we can show
Elx((k + 1A
<5{ EIE(0) + K(OAD?EIEO)F + K(OAHEIE(-T)P
+ K(OAL?Elx((k + 1)A)* + K(OAH*E)x((k + 1 — N)A)]?

(k+1)At

(k+1)At
+ K((k+1)At +1) f Elzi(s)Pds + K((k + 1)At + 1) f Elzi(s — 7)|*ds}
0 0

<5{ EIE(0)]* + K(OAt)*EIE(0)* + K(OAL*EIE(—T)

+ K(OAD2E|x((k + 1)AD> + K(OAD?E|x((k + 1 — N)AH)?

(k+1)At (k+1)At—1

Elz1(s)[ds + K((k + 1At + 1) f E|z:1(s)[*ds) .

T

+ K((k + 1)At + 1)f
0

This, together with the condition K(OAt)? < 1l0' yields

Elx((k + 1)At)[> <11E|E0)? + EIE(—7)P* + EJE((k + 1 — N)AD)

(k+1)At 0
+20K((k + 1At + 1) f Elzi(s)[Pds + 10K((k + 1)At + 1) f Elzi(s)[ds
0 —

T

k
<[13 + 10K(t + 1)7] sup EJ&(r)I* + 20K (T + 1)At Z Elx(jAL).
VE[—T,O] ]':0

By the discrete Gronwall inequality, we hence obtain
sup  Elx((k + 1)Af)* < [13 + 10K(t + 1)7] sup E|&(r)Pe2KDT,
0<(k+1)At<t re[—1,0]
Step 2. For any 7 < kAt < (k + 1)At < 7 + T, it is easily shown that
(k+1)At
x((k + 1)At) =x(7) + f (1 -0)f(z1(s),z1(s — 7))ds

(k+1)At (k+1)At
+ f 01 (z2(s), z2(s — 7))ds + f g(z1(s), z1(s — 1))dw(s).
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Noting that

kAt (k+1)At

F(zals), zals — D) + f F(z2(5), (s - )ds

kAt

(k+1)At
f f(z2(5), z2(s — 1))ds =

T

(k+1)At
= f f(z1(s), z1(s — 1))ds + f(x((k + 1)AL), x((k + 1 — N)At))At,
A

t+T

we get

x((k + 1)At) =x(t) — Of(x(t), E(0)Af + Of (x((k + 1)At), x((k + 1 — N)Af)At
(k+1)At (k+1)At
+ f f(zi1(s),z1(s — 7))ds + f 9(z1(s), z1(s — 7))dw(s).

Hence
(k+1)At
lx((k + DAB? <5 [x(1)* + (OAL?| f(x(7), EQO))* + | f 9(z1(8), z1(s — 7))dw(s)
‘ (k+1)At
+ (OA?[f(x((k + 1A, x((k + 1 = N)AE)P + | f f(z1(5), z1(s — T)ds[*).

By the condition (3) as well as the Holder inequality and the property of the It6 isometry, we can show

Elx((k + 1)At)[> <5{ E|x(7)|* + K(OAt)?Elx(7)* + K(OAH*E|E(0)?
+ K(OAD2E|x((k + 1)AD)> + K(OAD?E|x((k + 1 — N)AH)?

(k+1)At
+K((k+ DAt -7 +1) f Elzi(s)*ds

(k+1)At
+K((k+ DAt -7 +1) f Elzi(s — 7)*ds).

Case 1: If 0 < (k+ 1 — N)At < 1, we have

Elx((k + 1 - N)At)* < sup Elx(r).
rel0,7]

Case 2: If T < (k+ 1 — N)At < kAt, we get
k
K(OAD?Elx((k + 1 — N)AD]> < K(T + 1)At Z Elx(jAb)P.
=0
Combining Case 1 and 2, we obtain

Elx((k + 1)At)[> <5{ Elx(t)[* + K(OAt)*Elx(7)* + K(OAt)*EIE(0)* + K(OA)? sup Elx(r)]?
re[0,7]

k
+ K(OADE|x((k + 1D)AD> + K(T + 1)At Z Elx(jAt)P
j=0

(k+1)At
+2K((k + DAt — T +1) f Elz1(s)[ds

+K((k+1DAt—1+1) fT Elz1(s — 7)[*ds).
0

795
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According to K(6At)? < &, we have

k
Elx((k + DAL <11E[x(7)? + EJE(0)]* + 10K(T + 1)At Z Elx(jAt)P
j=0
(k+1)At
+ sup Elx(r)* + 20K((k + 1)At — T + 1) f El|z1(s)[ds
rel0,7] T
+10K((k + DAt — T + 1) f Elz1(s)|*ds
0

<11EJx(7)]* + E[E(0)]* + [10K(T + 1) + 1] sup Elx(r)[*

rel0,7]

k
+30K(T + 1At Z Elx(AR)P.
j=0

By the discrete Gronwall inequality, we hence obtain

sup E|x((k + 1)At)|2 <[13+ 10K(T + 1),[] sup Elx(r)lze?’OK(T“)T
T<(k+1)At<t+T rel0,7]

< Cp sup Elcf(r)lz.

re[—1,0]
where
Co = [13 + 10K(T + 1)7][13 + 10K (7 + 1)7]e?K(t+D7 S0KT+DT

Finally, we have

sup  El((k+1DADP <[ sup Elx((k+ 1ABP] 2

t<(k+1)At<t+T 0<(k+1)At<t
<H(T,p,K) sup EIE(r)P.
re[0,7]
where

4
2

H(T, p,K) = {[13 + 10K(T + 1)7][13 + 10K(7 + 1)7]}2 sup E|E(r)Pe!PKE+TlpKI+IT,

re[—1,0]

Together with step 1 and 2, we get (11). Similarly, we can prove (12).
The proof is hence complete. []

Lemma 2.4. Let (H1) hold. Let p € (0,1). Then the continuous process {x(t; 0, &)} defined by the stochastic theta
method (10) satisfies

sup Elx(t;0,&)P < H(T,p,K) sup EI&(r)P (13)
—1<t<T re[-,0]
and
sup  Elx(t;u,n,)F < H(T,p,K) sup Eln(r)P, (14)
u—t<t<u+T relu—t,ul

where T = mAt, m=0,1,2,--- ,and

H(T,P,K) = 2°[1 + K(T + 1)2T + 1) + 3KT7]2(Cp)?.
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Proof. Write x(t) = x(t; 0, £). By the condition (3) as well as the Holder inequality and the property of the It6
isometry, we can show

f
Elx(OP <4{ EIEO)P + (1 - 0)°Kt f [Elz1 (&) + Elz1(s — D) ds
0

t

t
+ O%Kt f [Elza(s)* + Elza(s — 7)*1ds + K f [Elz1(s)P? + Elza(s — 7)*1ds
0 0

t
<4{ EIE(0)]* + 2K(t + 1) f Elz1(s)Pds + K(t + 1)tCo sup EIE(r)
0

re[—1,0]
[41at
+ 2KtA Z Elx(jADP + KttCy sup EIEWP])
=0 re[—1,0]

where [x] denotes the ceiling function(the smallest integer greater than or equal to x) By (11), we hence
obtain

sup Elx(t)? < Cj, sup EIE(r)2], (15)
0<t<T re[—1,0]
where

Cy =4[1+ K(T + 1)(2T + 1) + 3KT7]Co.
Finally, we have

sup Elx()F < [ sup Elx(t)2 12 < H(T,p,K) sup EIE@)
0<t<T 0<t<T re[-1,0]

as required, where

=

A(T,P,K) = 2°[1 + K(T + 1)(2T + 7) + 3KT1]:C.

Moreover, for any t > u > 0, we write x(f) = x(t; u, ,) as the theta approximate solution of the SDDE (1) on
t > u — 7 with the initial data 1, = {n(r) : ¥ € [u — 7, u]}. By the condition (3) as well as the Holder inequality
and the property of the It6 isometry, we can show

Elx(t)? <4{ Eln(u) + (1 - 0)°K(t - u)f [Elz1(s) + Elz1(s — 7 1ds

u

t t
+ O°K(t - u)f [Elza(s) + Elza(s — 1) ]ds + Kf [Elz1(s) + Elz1(s — 1) ]ds)

t
<4{ EJEO) +2K(t —u + 1) f Elz1(s)Pds + Kt(t — u + 1)tCy sup E|E(r)P
0

re[-1,0]
[ 1At
+ 2K(t — u)At Z Elx(jAt)I2 + K(t —u)tCy sup E|E(r)P]).
=Tt re[-1,0]

By (12), we hence obtain
sup Elx(t)* <4[1 + K(T + 1)2T + 7) + 3KT7]Cy sup Eln(r)PeSKT+IT,

ut<u+T re[—t,u]
Finally, we have
sup Elx()f < [ sup Elx()P]% <H(T,p,K) sup Eln(r)p

u<t<u+T u<t<u+T relu—r,u]
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as required.
The proof is therefore complete. [

Definition 2.5. Let p > 0. For a given step size At > 0, the numerical method is said to be exponentially stable
in the pth moment on the SDDE (1) if there is a pair of positive constants y and Q such that with initial data
E € L%([_T/ O]/ Rn)

Elx(t;0, &) < Q sup ElE(r)lPe™, t>0. (16)

re[—1,0]
We see that (16) is equivalent to

Elx(t; 1, E)P < Q sup E[E(s)Pe?"™, t>r>0. (17)
se[—1,0]

Lemma 2.6. Let (H1) hold. Let At be sufficiently small for 2KAt < 1. Then the solution of the SDDE (1) has the
property

Ely(t;0,) - y(kAL0, )P V Ely(5:0, &) — y((k + 1AL 0, ) <CrAt sup EIE(r)P,
re[—1,0]
Ely(t;u, nu) = y(eAt;w, 1)V Ely(t u,n4) = y((k + DAL u,n,)P < CrAt sup Eln(r)?

relu—t,ul

(18)

forall 0 < kAt <t < (k+1)At < T,u > 0, where
Cr = 6(2K + D[1 + K(T + 1)7](T + 1)e®KT+DT,
Proof. Write y(t) = y(t;0, &), y(kAt) = y(kAt; 0, £). Noting
t t
v =y = [ e yts = s+ [ g(u(9) s - D))
t t

kA

we can show easily that
t t
Ely(t) — y(kAt)* <2K(At + 1) f Ely(s)[ds + 2K(At + 1) f Ely(s — 7)I*ds
kAt kAt

t
<2(2K +1) f sup Ely(r)ds.
k.

At kAt—T<r<s

By (6), we then have

Ely(t) — y(kADP? <(2K + 1)At - 3[1 + K(t + 1)7]e® V! sup E|E(r))
re[—1,0]
<6(2K + 1)[1 + K(t + 1)t]Ate® T DT sup E|E(r)P,
re[-1,0]
where Cr = 6(2K + 1)[1 + K(T + 1)7]etKT+1T
Similarly, we can show

Ely(t) — y((k + DA < 62K + D)[1 + K(t + 1)7]Ate’KT DT sup E|E(r).

re[-1,0]

Similarly, we can prove

Ely(t 1, 1) — y(kAt u,0)P V Ely(E 1, 10) — y((k + DAL u,0,) < CrAt sup  Eln(r)l.

relu—t,ul

The proof of this lemma is complete. [
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Lemma 2.7. Let (H1) hold. Let At be sufficiently small for 3KAt < 1. Then the solution of the SDDE (1) has the
property
Elx(£;0,&) = z1(£0, )P V Elx(£;0, &) — 22(£0, ) <CrAt sup EIE(r)P,
, , . re[-1,0] ) (19)
Elx(t; u, nu) — z1(t;u, nu)I” V Elx(t;u,mu) — z2(6 u, mu)l” < CrAt sup  Eln(r)]
relu—tu]

forall 0 < kAt <t < (k+1)At < T, where T =mAt,m=0,1,2,--- ,and

Cr =12(1 + 3K)[1 + K(T + 1)2T + 7) + 3KT7][13 + 10K(T + 1)7]?e*KT+DT,

Proof. Write x(t) = x(t;0, &), z1(t) = z1(£; 0, &), z2(t) = 22(t; 0, &). Noting
t
x(t) —z1() =1-0) | f(z1(s),z1(5 — 7))ds
kAt

t t
#0 [ flen9,zals = s+ [ g(an(9, 216 - Ot
kAt kAt

By (15), we can show easily that

t t
Elx(t) — z1(t)]* <3K[(1 — 6)*’At +1] | Elzi(s)]ds + 3K[(1 — 0)*At + 1] | Elzi(s — 7)]*ds
kAt kAt

t

t
+ 3K6O>At f Elzo(s)[*ds + 3KO*At f
k

Elzo(s — 7)[ds
At kAt

(k+1)At
<6K[(1 — 0)*At + 6*At +1]C}y sup E[&(r)]* f ds
re[-1,0] kAt

+3K[(1 - 0)*At + 0At + 1]AtC) sup EIE(r)]
re[-1,0]

<9K[(1 — 0)*At + 6*At + 1]AtC) sup EIE(r))
re[—1,0]

<CrAt sup E|&(r)f%,
re[—1,0]

where
Cr = 3(1 + 3K)Cy.
Similarly, we can show

Elx(t) — zo(t)* < CrAt sup EIE(r))?
re[—1,0]

and

Elx(t; u, 1) — z2(t; u, )P V Elx(t; u, 1) — z2(tu, 1u)* < CrAt sup  Eln(r).

relu—tu]
The proof of this lemma is complete. [
Lemma 2.8. Let (H1) hold. Let p € (0,1) and let At be sufficiently small for

(6 V 3K)At < 1. (20)
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Then the stochastic theta method (10) and the solution of the SDDE (1) satisfy

sup Elx(kAL0, &) — y(kAL 0, &)F < Cr(AD® sup EIEMF, YT >0 1)
—1<kAt<T re[-1,0]

and forall T > 0,

sup Elx(kAt; kAL, 1pp) — (kAL AL pp)lP < CH(AD?  sup  Elp(r)lF, (22)
kAtT—<kAt<kAt+T re[kAt—T,kAt]

where
C} = (144K (2K + 1)[1 + K(T + 1)T] T + 1)T(T + 1)}2 2K,

. . . 2
which is independent of At and & € L7 ([-7,0], R").

Proof. Write x(kAt) = x(kAt; 0, &), y(kAt) = y(kAt; 0, &). It follows from (1) and (10) that for any 0 < (k+ 1)Af <
T,

(+1)AE
x(k + 1)AH) — y((k + AR = f (1= O)f(z1(8), 21(5 — 7)) — F((E), (s — 7))}
’ (+1)AL
+ fo Bl f(22(5), 22(5 — 1)) — F(¥(S), y(s — V)]s
(k+1)AL
+ fo [9(z1(5), 215 = ) — (), ¥(s — D Idao(s).

Define

[

) =Y YA T areran(®),
=N (23)

y2(t) = Z y((k + DAL kar e 1)an (B)-

k=—-N

Then
(k+1)AE
x((k+ DAH - y((k + 1)AH = fo (1= O)f1(8), 21(5 — 1) — FW1(6), yas — )]s
(+1)AL
v fo (1= O)LF((s), ya(s — 1)) — Fl(s), y(s — 1)}
(+1)At
+ fo O (22(5), 22(5 — ) = F(¥a(5), ya(s — V)]s
(k+1)AE (24)
+ fo BLF(12(6), vals — ) — F((s), (s — T)lds
(+1)At
+ fo [9(1(5), 2165 — ) — 931 (6), Y s — ) ]do(s)

(k+1)At
+ fo [9(y1(s), ya(s — 1)) — g(y(s), y(s — 1)) ldw(s).
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But

(k+1)At
fo [F(z2(6), 2205 — 1) — F(ya(s), yals — O)lds

(k+1)At

KAt
= f [f(z2(s), z2(s — 1)) = f(y2(5), ya(s — 1)))ds + f [f(z2(), z2(s — 1)) = f(y2(5), ya(s — 1))]ds
0 kAt (25)

(e+1)At
_ fA [Fz1(8), 2165 = 1)) = F(1(5), (s — ) 1ds

t

+ [f(x((k + DA, x((k + 1 — N)A) — f(y((k + 1AL, y((k + 1 — N)At)]At.
Hence

x((k + 1)AD) — y((k + 1)Af)
=0 F(x((k + 1AD), x((k + 1 = N)AB) — F(y((k + DAL, y((k + 1 — N)AD]A

(k+1)At

" fo [Fz1(8), 2165 = 1)) — F(a(8), v s — )]s
(+1)At

v fo (1= O)LF((s), ya(s — 1)) — Fl(s), y(s — 1))} »

k+1)At

+ fo O oL (ya(6) yals = ) — (5, (s = D)l
(k+1)AL

+ fo [9(21(5), 2165 = ) = 931 (6), ya s — D) ]dw(s)

(k+1)At
+ fo [9(y1(s), y1(s — 7)) = g(y(s), y(s — 7)) ldw(s).

This, together with Lemma 2.4, implies

Elx((k + 1)At) — y((k + 1)At)]?

(k+1)At
<6K(OAE|(x((k + 1)At) — y((k + DA + 6K(T + 1) f Ely1(s) — y(s)Ids
’ (k+1)At
+ 6K(OAE|(x((k + 1 = N)At) — y((k + 1 — N)A#)* + 6K(T + 1) f Elz1(s) — y1(s)P°ds
(k+1)At (k+1)At ’

+6K(T+1) f Elzi(s — 7) — y1(s — 7)|*ds + 6KT f Elya(s) — y(s)|ds

0(k+1)At ’
+6K(T +1) f Elyi(s — 7) — y(s — 7)l*ds

0

(k+1)At
+ 6KTf Elya(s = 1) — y(s - 7)*ds
0
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<6K(OA?Elx((k + 1)At) — y((k + 1AL + 6K(OAL*Elx(lk + 1 — NIAt) — y(lk + 1 — N|A#)?

+ 6K(OADEIE(—lk + 1 — N|A) — E(—lk + 1 — N|AH?

k+1)At 0

Elz1(5) — ya(s)/2ds + 6K(T +1) f Elz1(5) - 12(6)P

T

(
+ 12K(T + 1)f
0

0
+12KQ2T + 1)CrAt sup E|&(r)*ds + 6KT f Elya(s) — y(s)/?
re[—1,0] -1

(k+1)At
<6K(OALElx((k + 1)At) — y((k + 1)At)* + 6K(T + 1) f Elz1(s) — y1(s)PPds
0
k+1)At

— (
+12K(Q2T + 1)CrAt sup E[&(r)[*ds + 12K(T + 1) f Elzi(s) — y1(s)[°ds.
re[-1,0] 0

However, by (20), it is easy to see

6K(OAL)? < 2(BKANAL < 2At < %
So

Elx((k + 1)A) — y((k + 1)AB? <24K(Q2T + 1)CrAt sup E|E(r)]
re[-,0]

k
+36K(T + 1)At Z Elx(jAt) — y(GADP.
j=0

This, by the discrete Gronwall inequality, yields

Elx((k + 1)At) — y((k + 1)At)[> <24KQ2T + 1)CrAte36KT+DT sup EIE(r)P

re[-1,0]

SETAt sup E|&(r)2.
re[—1,0]

where

Cr = 24K(Q2T + 1)CrAte¥KT+T
¥V 0 < ti41 < T. Finally, the required assertion (21) follows as

Elx((k + 1)At) — y((k + DAL < (Elx((k + 1)At) — y((k + DAL :,
Similarly, we can prove for all T > 0,

sup  ER(kALRAL ngy) — y(AERAL iy )P < CR(ADE  sup  Eln(r)P’.
kAt<kAt<kAt+T re[kAt—t,kAt]

This proof is hence complete. [J
Lemma 2.9. Let (H1) hold. Let p € (0,1) and let At be sufficiently small for
(6 V3K)At < 1.

Then the stochastic theta method (10) and the solution of the SDDE (1) satisfy

sup Elx(£;0,&) - y(t;0, )P < Cr(At): sup EIE(MIF,VT >0,

—1<t<T re[-1,0]

802

(27)

(28)

(29)

(30)
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sup  Elx(t;u,m,) — y(t;u, )P < Cr(AD® sup Eln(r)l!,VT > 0, (31)
P n Yy n P n

u—t<t<u+T re[u—t,ul

where
Cr =[3(Cr + Cr + C)l?,
which is independent of At and & € L2¢0 ([-7, 0], R").

Proof. Write x(t) = x(t;0,&), y(t) = y(t;0,&), z1(t) = x(kAt) = x(kAt; 0, &), y(kAt) = y(kAt;0,&). It is easily to
show

Elx(t) — y(t)I* <3Elx(t) — x(kAB* + 3E|y(t) — y(kAL)* + 3E|x(kAt) — y(kAt)|?

<3(Cr + Cr + Cr))At sup EIE()P.
re[—1,0]

Similarly, we can prove

sup Elx(t;u,1,) — y(tu, n,)P < CT(Ai‘)g sup Eln(rlF, ¥T > 0.

ust<u+T relu—,u)
where

Cr = [3(Cr + Cr + Cp)]=.
This proof is hence complete. [J

Remark 2.10. It is useful to point out that condition (20) implies K(OAt)? < 5, which is the condition required of

Lemma 2.3. In fact, if 6 > 3K, namely, 2 > K, then (29) means 6At < 1. Hence
10K(OA)? < 20(At)* < 1.

But if 2 < K, then (20) means 3KAt < 1. Thus
10K(6A? < 18K(AH)? < 9K (A)? < 1.

This is, we always have K(OAt)* < 1 if (20) holds.

2.3. The theta method shares the pth moment stability with the SDDE.
The following theorem gives a positive answer to question (P1) from section 1.

Theorem 2.11. Under (H1), assume that the SDDE (1) is pth moment exponentially stable. Then there exists a
At* > 0 such that for every 0 < At < At* the theta method is pth moment exponentially stable on the SDDE (1) with

rate constant y = 3 A and growth constant Q = H(T + 1, p, K)e2 ™9, where T = [87 + w] and H(T + t,p, K)
is given by Lemma 2.3.

(Please note that both y and Q are independent of At.)

Proof. Without any loss of generality, we let At < 1. We divide the whole proof into 2 steps.
Step 1. By the definition of T, we observe that

P MeMT-20) < o=3AT, (32)
By the elementary inequality

@+bY < Q@ Vb)Y <2@ V) <@ + V) Ya,b>0, (33)
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in particular, for t > 7, write x(t) = x(t; 7, x;) and y(t) = y(t; T, x;), we have
Elx(®)l < 2°(Elx() — y(5)F + Ely(5)FF) Vi=z T (34)
Using conditions (17) and (8),

Ely()FF < Me ™" sup Elx(r),t > 1
rel0,7]

and

sup  Elx(t) -y < sup Elx(t) = y(OF < Carac(AD)? sup Ex(r)F,
te[T-1,2T—1] te[1,2T—1] rel0,7]

we then have

sup  Elx(HPP < sup Elx(r)'2(Cor—oe(Af)? + Me ™ (T-29), (35)
te[T-1,2T-1] rel0,7]

This, together with (32), yields

sup  El(t)l < sup Elx(n)l(2'Car—ac(AD)? +e 317,
te[T-7,2T—1] rel0,7]

Choose At* € (0, 1) sufficiently small for
ZPCQT_ZT(At*)g + e_%” < E_%AT.
Then, for every 0 < At < At*,

sup Elx(t)P < sup Elx(r)lpe_%” < sup Elx(r)lpe_%”. (36)
te[T-1,2T-1] rel0,7] re[—t,T+1]

Moreover, by condition (11),

Elx()P < H(T + 7,p,K) sup E[E(F, -1 <t<T+r (37)
re[—1,0]
Hence
Elx()P < Q sup Elg(lPe M, -1 <t<T+71, (38)
re[-1,0]

where Q = A(T + 1, p, K)e2M(T+9),

Step 2. Let us now consider the approximate solutions on t > T + 7, we write x(t) = x(t; T + T, x7.¢). The
process {x(t; T + T, x7+)} can be regarded as the process which is produced by the theta method applied
to the SDDE (1) on t > T + 7 with the initial data x7., = {x(r),r € [T,T + t]}. On the other hand, let
y(t) = y(t; T + 7, x711) be the unique solution of the SDDE (1) with the initial data x7... The condition (31)
implies that

sup  Elx(®) -y <  sup Elx(t) - y(®)FP < Cor—r sup Elx(r)lp(At)g. (39)
2T-1<t<3T-1 T+1<t<3T-1 re[T, T+1]

Moreover, by (8) (more precisely, by its equivalent form (11)), we have

Elg)f <M sup Elx(r)fe T, (40)
re[T,T+1]
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Using (39), (40), we can show, in the same way as we did in Step 1, that

sup Elx()FP < sup Elx(r)fPe 2T

2T—-t<t<3T-1 re[T, T+1]
—1AT (41)
< sup Ex(r)fPe 2
re[T—1,2T-1]
and
p o3 AT
sup Elx()f < sup Elx(r)ffe 2
2T—1<t<3T-1 re[T-1,2T—-1]
< sup Elx(t)l”e‘%AzT
—T<I<T
B o (42)
<H(T +7,p,K) sup E|E(r)fe 2"
re[—1,0]
<Q sup Elé(r)lpe_%M.
re[—1,0]
where Q = A(T + 1, p, K)e2M(T+9),
Repeating this procedure, we can show that for any nonnegative integer i,
sup  Ex(P < sup  Ex(nfe . (43)
re[iT-,(i+1)T-1] re[(i-1)T—-r,iT-1]
Consequently,
p =3 AT
sup Elx(r)lf < sup Elx(r)lPe2
reliT-1,(i+1)T-1] rel(i-1)T—1,iT—1]
-3AiT - IAT (44)
<< sup  Elx(r)fe 2™ < sup Elx(r)le2
re[—1,T-1] re[—1,T+1]
and then
sup  Elx()P <H(T +1,p,K) sup E|&(r)Pe M7
te[iT—1,(i+1)T—1] re[-1,0]
<Q sup E[E(r)Pe M.
re[—1,0]

This is, the numerical method is exponentially stable in the pth moment on the SDDE (1) with rate constant

y = A and growth constant

Q=H(T+1,p, K)ezMT+0),
The proof is hence complete. []

The next theorem gives a positive answer to question (P2) from section 1.

Theorem 2.12. Under (H1), assume that for a step size At > 0, the theta method is pth moment exponentially stable
with rate constant y and growth constant Q. If At satisfies

2PCorae(AD)E + e 1T < o277, (45)

where T = kAt and k is the smallest integer which is no less than 8N + %, then the SDDE (1) is pth moment

exponentially stable with rate constant A = %y and growth constant M = H(T + 7,p, K)e%”(T”), where H(T, p,K) is
given in (7).
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Proof. 1t is easy to see from 8N + 41og(2Q)/(yAt) < k that

2er—y(l_<At—2T) < e—%ymt,
namely,

2°Qe 120 < o= )T, (46)
AsT =kAt, fort € [T—1,2T—7]and T — 7 > 7, write y(t) = y(t; T, y7) and x(t) = x(t; 7, y;). By the elementary
inequality (33), we have

Ely®)F < 2°(Elx(t) - y() + Elx(DP). (47)
Using (30) and (16), we obtain

sup  Ely(t) —x()V < sup Ely(t) — x() < Cor_ae(AB)? sup Ely(r)F,
te[T-1,2T—-1] te[1,2T-1] re[0,7]

Elx(t)lP < Q sup Ely(r)ffe7"9,t > 1,
rel0,7]

we then have

sup  Ely(H)Ff <29 sup Ely(r)P[Car—e(AD? + Q™77
te[T-1,2T—-1] re[0,7]

<2” sup EIy(r)|P[C2T,2T(At)§ + Qe 7297,

rel0,7]

Choose At* € (0, 1) sufficiently small for
2PCor_pe(AP*)? + Qe 1T < e 207,
Then, for every 0 < At < At*, this, together with (46) and (45), yields

sup  Ely()F < sup Ely(r)e 27
te[T-1,2T—1] re[0,7]

< sup Ely(r)lpe_%ﬂ (48)

re[—1,T-1]

< sup Ely(rpPe 7,
re[—t,T+1]

Moreover, it follows from (5) that

sup Ely®)F < H(T +t,p,K) sup EIE(r)P.

te[—t,T+1] re[-7,0]
Hence
sup Ely()P < sup Ely()F <M sup E|E(R)Pe ", (49)
te[-1,T-1] te[—-1,T+1] re[-1,0]

where M = H(T + 1, p, K)e27(T+0),

Let us now consider the solution y(t) = y(t; T + 7, yr+:) on t > T + 7. As explained before, this can be
regarded as the solution of the SDDE (1) with the initial data yr... Moreover, let {¥(t; T + 7, yr+.)} be the
process which is produced by the theta method applied to the SDDE (1) on t > T with the initial data y7...
By (18),

sup  EIX(H) - y(t)P < sup  EIX(H) - y(F < Corae sup Ely(r)P(AD*. (50)
2T-1<t<3T-1 T+1<t<3T-1 re[T, T+1]
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Also, (31) implies

Ex(t)P <M sup Ely@)fe Tt >T+1 (51)
re[T,T+1]

Using (50) and (51), we can show, in the same way that (35) and (36) were obtained, that

sup  Ely(f)f < sup E|y(r)|”e_%7TS sup Ely(r)lpe_%ﬂ. (52)
2T-1<t<3T-1 re[T,T+1] re[T-1,2T-1]

Repeating the procedure,we can show that for any nonnegative integer i,

sup  Ely®P < sup  Ely(nPe 7. (53)
iT—1<t<(i+1)T-1 rel(i-1)T—1,iT—1]
Consequently,

sup Ely(t)lF < sup Ely(r)lpe‘%ﬂ
re[iT—,(i+1)T—1] re[(i-1)T-1,iT-7]

<---< sup Ely(rPe 2" < sup Ely(r)lPe 2"
re[—1,T—1] re[—1,T+1]

and then
sup Ely(t)lP <H(T + t,p,K) sup Ely(;’)lpe_%yiT
reliT—,(i+1)T-1] re[—1,0]
<H(T +1,p, K)e%V(T”)e’%[V(”l)T”] sup E[E(r)F
re[—1,0]

<M sup E[E(rlPe ",

re[-7,0]
where
M = H(T + 1, p, K)e2?T*0.
The proof is completed. O
Theorem 2.11 and 2.12 lead to the following theorem.

Theorem 2.13. The SDDE (1) is exponentially stable in the pth moment if and only if the theta method is exponentially
stablg in the pth moment with ‘rate constant y, growth constant Q, step size At, and global error constant Cr for
T = kAt satisfying (32), where k is the smallest integer which is no less than 8N + 41og(2°Q)/(yAt).

Proof. The ”if” part of the theorem follows from Theorem 2.12 directly. To prove the “only if” part,
suppose the SDDE (1) is exponentially stable in the pth moment with rate constant A and growth constant
M. Theorem 2.11 shows that there is a At* > 0, the theta method is exponentially stable in the pth moment
with rate constant y = 11 and growth constant Q = 2°(Car—2, +M)e2MT+0) where T = 87 + (Mog;ﬂ. Noting
that both of these constants are independent of At, it follows that we may reduce At if necessary until (45)
becomes satisfied. O

Corollary 2.14. Assume that the SDDE (1) is pth moment exponentially stable and satisfies (8). Let € € (0,1). Then
the theta method is pth moment exponentially stable on the SDDE (1) with rate constant y = (1 — €)A and growth
constant Q = 2P(Car—ar + M)el=9MT+D where T = 210g(2PM)/(eA) +(2 — €)/e.

(Please note that both y and Q are independent of At.)
The proof is similar to that of Theorem 2.11 and so is omitted. O
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Corollary 2.15. Let € € (0,1). Assume that for a step size At > 0,the theta method is pth moment exponentially
stable with rate constant y, growth constant Q. If At satisfies

2PCor_ne(A)E + ¢ 1705NT < o=(-enT (55)

where T = t and k is the smallest integer which is not less than 8N + 212%,(2:@, then the SDDE (1) is the pth moment

exponentially stable with rate constant y and growth constant M = H(T + 1, p, K)e'="T*9 where H(T + 7, p, K) is
given in (7).

The proof is similar to that of Theorem 2.12 and so is omitted. O

2.4. Almost sure exponential stability

Definition 2.16. The trivial solution of the SDDE (1) is said to be almost surely exponentially stable if there exists
a constant o > 0 such that

. 1
lim sup —

t—o0 t

log(ly(t;0,8)) < —a as.

for any initial data & € LZ_([-7,0], R").

Definition 2.17. The numerical solution {x(t;0, &)} is said to be almost surely exponentially stable if there exists a
constant « > 0 such that
1
lim sup n log(lx(t;0,&)) < —a  as.
t—o00
for any initial data & € L%([—T, 0], R™).

Our paper is mainly concerned with the almost sure exponential stability of both exact and numerical
approximations with the objective of finding positive answers to problems (P1) and (P2) in the section 1. It
is therefore time to relate the pth moment exponential stability to the almost sure exponential stability.

Theorem 2.18. Assume that (H1) holds and At satisfies 2(2[(); [(AtY + Cp(At)g] < 1. Letp € (0,1). Assume that
the SDDE (1) is pth moment exponentially stable and satisfies (8). Then the solution of the SDDE (1) satisfies

lim ¢ og(y(0,E)) < =5 s (56)

for any initial data & € L;_O([—T, 0], R™). That is, the SDDE (1) is also almost surely exponentially stable.
Proof. We write y(t) = y(t;0,&). Let e € (0,4) be arbitrary, we have

Ely(t)lP <M sup EJE(r)Pe 9", t>0. (57)

re[—1,0]
Noting that for any a,b,¢,> 0,
@+b+cf <Blavbve)l =3P@ v vcl)<3@ +b+ch),

we have

t
EVOF <VE(k- DA +E] [ fy(o) v - s
t (k=1)At (58)

+37E| g(y(s), y(s — ))dw(s)I’
(k=1)At



Wei Zhang, M. H. Song, M. Z. Liu / Filomat 33:3 (2019), 789-814 809

for all (k — 1)At < t < kAt.
It is easy to see that

Ely((k = 1)AHP <M sup E|&(r)PeA-Ok=DAL (59)

re[-1,0]

By Holder inequality and (H1), we have
¢ ¢
E|f f(y(s), y(s — 0))dsl” <(E| f FO), v - D)dsP)?
(k=1)At (k=1)At

f
<[t - (k- DA L | EV6) 46~

t

<[AHZK3[ (Ely(s)P + Ely(s — 1)P)ds]
(k-1)At (60)
<[AHZKZ25(( Ely(s)Pds)? + ( f Ely(s — 0)/ds)?]
(k=1)At (k=1)At

<2[AH]PKZ2:[At]:  sup  Ely(n)l
re[(k—1)At—1,t]

<2QK)I[Af'M sup E|&(r)Pe ol
re[—1,0]

By Ito isometry, the Burkholder-Davis-Gundy inequality and (H1), we have

t t

E| 9(y(s), y(s — D)dw(s)lP =E( f(k 9(y(s), y(s = V)dw(s)P)

(k=1)At ~1)At

4
2

f
<C( f Elg(y(s), y(s — D)Pds)*
(=1)At

t
<C,K2[ f( (Ely(s)P + Ely(s — 1)P)ds]

k=T)At (61)
t t
<C,K225%[( f Ely(s)l2ds)? + ( Ely(s — 7)l*ds)?]
(k=1)At (k=1)At

SZCng 2% [At]g sup  Ely(r)l
re[(k—-1)At—1,t]

<2C,(2K)?[Af]:M sup EI&(r)Pe -olb-Dai]
re[-1,0]

where C, is a positive constant dependent of p only. Let At satisfies 2(21()g [(AtY + CP(At)g] < %
Substituting (59)-(61) into (58), yields that

Ely(t)lP < LM sup E|&(r)Pe~-9k-DAL
re[—1,0]

where L = 37{1 + ¢'\7}.
Hence, by Chebyshev inequality, we have

LM sup E|&(r)Pe-(A-ak-Dat
Z(A=2e) (k=D)AL rel-1.0]

Plw:ly®>e 7+ } <

—(A=2¢)(k=1)At
e 4

<LM sup E|&(r)Pec®-DAL,
re[—1,0]
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In view of the well-know Borel Cantelli lemma, we see that for almost all w € Q

—(A=2¢)(k=1)At

lyt) <e” » (62)

hold for all but finitely many k. Hence there exists a ky(w), for all w € Q excluding a P-null set, for which
(62) holds whenever k > ky(w). Consequently, for almost all w € Q

—(A=26)(k= DAt _ —(A=2¢)(k—=1)
pt - pk ’

1
n log |y(t)| <

if (k — 1)At <t < kAt and k > ko(w). Therefore

tlim % log ly(t)l < -

and the required (56) follows by letting ¢ — 0. The proof is completed. [

The following theorem is an analogue for the numerical solutions.

Theorem 2.19. Assume that the theta method is pth moment exponentially stable satisfies (16) and At satisfies
2Q2K){[(1 - 0)7 + 0%](AHF + Cp(At)g} < 1. Then the theta method satisfies

limsup % log(|x(£;0,&)]) < —% a.s. (63)

t—oo

for any initial data & € L;.O([—T, 01, R™). That is, the theta method is also almost surely exponentially stable.
Proof. We write x(t) = x(£;0,&). Let € € (0, )5') be arbitrary, we have

Elx()F < Q sup E|&(r)Fe 9, ¢ > 0. (64)
re[—1,0]

Noting that for any a,b,¢,> 0,

@+b+c+df <[AaVbVvceVvd) =@ VIV E V) <P@ + 1+ +d),

we have
t
Elx(®)|P <4”Elx((k — 1A + 47E| (1 -06)f(zi(s), z1(s — 7))dsl
(k=1)At (65)
t t
+ 47E| 0f(z2(s), z2(s — 1))dsl’ + 47E| 9(z1(8), z1(s — 1))dw(s)l
(k=1)At (k=1)At
for all (k — 1)At <t < kAt
It is obvious that
Elx((k = DABP < Q sup E[E(r)lPe”r-0k=DAL (66)

re[-7,0]
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By Holder inequality and (H1), we have

t
E| (1= 0)f(21(5), 21(s — 1))dsl?
(k=1)At
t
<(1-6):(E| F(21(5), 21(s — 1))ds)?
(k=1)At
< (1-6)2[t - (k- 1)At]5( Elf(21(5), 21 (s — 7))2ds)?
(k=1)At
t
< (1- O [MEKE f (Elz1()? + El21(s — DP)ds] (67)
(k=1)At
t f
< [2K(1 - OAHE( f En@Pds)t + ([ Elzas - Pds)}]
(k=1)At (k=1)At
<22K1-O)3[AtP  sup  Ex(r)l
re[(k-1)At—1,t]

< 2[2K(1 - O)]3[AtPM sup E|&(r)[Pe0-olk=DAI=T],

re[-7,0]
t t
E| (1= 6)f(z1(s), 21(s — 1))dsP < 6% (E| F(z2(5), z2(s — T))ds[?)?
(k=1)At (k=1)At
t
< 0%t — (k- DA Elf(z2(5), 22(s — 1)) Pds)*
(k=1)At

t

< [KOAHE f (Elza()F + Elza(s — 1)R)ds ]’

(k=1)At (68)
t t

< [2KOAH] [( Elzy(s)Pds)* + ( f Elza(s — 7)Pds)?]

(k=1)At (k=1)At

< 2[2K6]§[At]’” sup E|x(r)]P
re[(k—1)At—T,kAt]
< 2[2KO)7[AtPM sup E|&(r)fe0-olt-DAl,

re[-1,0]
By Itd isometry, the Burkholder-Davis-Gundy inequality and (H1), we have

t f
E| 9(z1(8), 21(s — 0)dw(s)l’ =E( 9(z1(s), 21(s — 1))ds?)*
(k=1)At (k=1)At
t
<Cy( ( Elg(z1(s), z1 (s — 7)) Pds)

k-1)At
4 t 2 2 14
<GK2[ (Elz1(S)I” + Elz1(s — 1)|)ds]>
(k=D)At (69)
PP t 2 4 ! 2 14
<C,K222[( Elz1(s)I"ds)> + ( Elzi(s — 1)I*ds)?]
(k=1)At (k=1)At

<2C,K323[Af]?  sup  Ex(r)
re[(k-1)At—1,t]

<2C,[2KAHZM sup E|&(r)Pe 0okt

re[—1,0]

where C, is a positive constant dependent of p only. Let At satisfies 2(2K)§ {[(1- 9)5 +0% (AP + Cp(At)% } < %
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Substituting (66)-(69) into (65), yields that

Elx(t)l’ < LM sup E|&(r)Pe-(r—ak=Dat,
re[—1,0]

where L = 4°{1 + ¢'\7}.
Hence, by Chebyshev inequality, we have

LM sup E|&(r)Pe0-ak-Dat
Z(r-2e)(k-1)At < re[-1,0]

Plw : |x(t) >e 7

—(y=2¢)(k=1)At
e »

<LM sup EJE(r)Peé®-DAY,
re[-1,0]

In view of the well-know Borel Cantelli lemma, we see that for almost all w € Q

—(y=2¢)(k=1)At

(Ol <e 7 (70)

hold for all but finitely many k. Hence there exists a ko(w), for all w € Q excluding a P-null set, for which
(70) holds whenever k > ko(w). Consequently, for almost all w € Q)

P —(y —2¢&)(k—1)At - —(y —2¢&)(k—-1)
> pt = pk 7
if (k — 1)At <t < kAt and k > ko(w). Therefore

% log |x(t)

Yy —2¢

1
tlim n log |x(#)| < - a.s.

and the required (63) follows by letting ¢ — 0. The proof is completed. [

2.5. Conclusions
In this paper, we show that, under the standing (H1),

(A) = (B) & (C) = (D),

where

(A) denote the almost sure exponential stability of the SDDE (1) under global Lipschitz condition,

(B) denote the pth moment exponential stability of the SDDE (1) (p € (0,1) is sufficient small) under
global Lipschitz condition,

(C) denote the pth moment exponential stability of the stochastic theta method for a sufficient small step
size under global Lipschitz condition,

(D) denote the almost sure exponential stability of the stochastic theta method for a sufficient small step
size under global Lipschitz condition.

3. Improved result.

3.1. pth moment stability.

In this section we shall replace the global Lipschitz condition with a more general condition. As a
standing Hypothesis we assume that the coefficients f and g of the SDDE (1) are sufficiently smooth so
that it has the unique solution y(t; 0, &) for any initial data £ € Lzﬁ ([-7, 0], R"). Moreover, we will write the
numerical approximate as x(t; 0, ).

As pointed out in the previous section, we recall that the proof of Theorem 2.11 uses only properties
Lemma 2.4 and Lemma 2.9 rather than hypothesis (H1) itself while the proof of Theorem 2.12 makes use of
Lemma 2.1 and Lemma 2.9. This leads to the following definition then a improved result.
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Assumption 3.1. Letp € (0,1). For all sufficiently small At the SDDE (1) and the corresponding numerical method
with initial data & € L%([—T, 0], R") satisfies

sup Ely(t;0,&)F <h(T,p,K) sup EIE(r)P (71)
—1<t<T re[—1,0]

and
sup Elx(t;0,&)PP < i(T,p,K) sup EIE(r)P YT >0, (72)
—T<t<T re[—1,0]

where h(t,p, K), h(T, p, K) are independent of At.

Assumption 3.2. The numerical method (10) and the solution of the SDDE (1) satisfy

sup Elx(t;0,&) — y(t;0,E)PP < crp(At) sup E|E(r)F (73)
—1<t<T re[—1,0]
and
sup  Elx(t;KAL ngar) = y(ERAL qa)P < crf(At)  sup  Eln(n)P (74)
kAt—t<t<kAt+T re[kAt—1,kAt]

for T > 0, where cr depends on T but not on initial data and At and B : R* — R is a strictly increasing continuous
function with B(0) = 0.

Theorem 3.3. Suppose that the numerical method satisfied Assumption 3.1 and 3.2. Then the SDDE (1) is expo-
nentially stable in the pth moment if and only if the numerical method is exponentially stable in the pth moment with
rate constant y, growth constant Q, step size At, and global error constant cr for T = kAt satisfying (45), where k is
the smallest integer which is no less than 8N + 410g(2PQ)/(yAt).

The proof is similar to Theorem 2.13. O

3.2. Almost sure exponential stability.

Theorem 3.4. Let Assumption (71) hold. Let p € (0,1). Assume that the SDDE (1) is pth moment exponentially
stable, then the solution of the SDDE (1) satisfies

tlim % log(ly(t;0,&))) < —% a.s.

for any initial data & € L;.O([—T, 0], R™). That is, the SDDE (1) is also almost surely exponentially stable.

The proof is similar to Theorem 2.18. O
The following theorem is an analogue for the numerical solutions.

Theorem 3.5. Let Assumption (72) hold. Let p € (0,1). Assume that the numerical method is pth moment
exponentially stable, then the theta method satisfies

lim sup 1 log(lx(t;0,&)]) < —%a.s. (75)

t—o00 £
for any initial data & € L%([—T, 01, R™). That is, the numerical method is also almost surely exponentially stable.

The proof is similar to Theorem 2.19. O
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3.3. Conclusions.
In this paper, we show that, under the standing Assumption (71) and (72) hold,

(A) = (B) & (C) = (D),

where
(A) denote the almost sure exponential stability of the SDDE (1),
(B) denote the pth moment exponential stability of the SDDE (1) (p € (0, 1) is sufficient small),
(C) denote the pth moment exponential stability of the numerical method for a sufficient small step size,
(D) denote the almost sure exponential stability of the numerical method for a sufficient small step size.
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