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Some Generalized Gronwall-Bellman-Bihari Type Integral Inequalities
with Application to Fractional Stochastic Differential Equation

Sabir Hussain?, Halima Sadia?®, Sidra Aslam?®

“Department of Mathematics, University of Engineering and Technology, Lahore, Pakistan

Abstract. In this paper some new Gronwall-Bellman-Bihari type integral inequalities with singular as well
as non-singular kernels have been discussed, generalizing some already existing results. As an application
of the derived results, the behaviour of solution of the fractional stochastic differential equation has been
discussed.

1. Introduction

Integral inequalities play a vital role in the discussion of the quantitative as well as qualitative behaviour
of solutions of differential equations. Among others Gronwall-Bellman and Bihari have gained a significant
attention to analyze the behaviour of solutions of the certain differential equations, fractional differential
equations, fractional stochastic differential equations. Due to the richness such inequalities have gained
alot of attention of researchers, mathematicians and scientists. These inequalities are either generalized,
modified, and extended in various directions using different techniques [1-6, 8]. Our aim, in this paper,
is to discuss some qualitative properties of the solution of the fractional stochastic differential equation.
For this purpose we are needed for an inequality involving singular as well as non-singular kernel(both)
such an idea is floated by Qiong Wu [7]. Inspired by the idea of Qiong Wu, we have tried to develop
Gronwall-Bellman-Bihari type inequalities involving singular as well as non singular kernels. This paper
is organized in such a way that, after this Introduction in Section 2 we formulate the main results and
some related consequences. And in Section 3 we give the application of the derived result to discuss the
behaviour of solution of a certain fractional stochastic differential equation(SDE).

2. Main Results

Lemma 2.1. [4] Assume thata > 0,p > q > 0, with p # 0. Then, for an A > 0, we have

ar < %/\%p + p—_q/\%.
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Theorem 2.2. Let a(t), b(t), g(t) and u(t) be non-negative functions on I = [0,T), T < +oo, a € (0, 1). Moreover,
if a(t), u(t) are locally summable on 1. If b(t) and g(t) are non-decreasing continuous functions on I bounded by a
constant M > 0; let p > q > 0 and A > 0 such that:

uP(t) < a(t) + b(t) ft ul(s)ds + g(t) ft(t —5)" 1 ul(s)ds, (1)
0 0

then we have the following explicitly bound for u

q—r k . . %
o & B|gAT | PO T@®) ~
u) < fan+y Y | pk]r(m 3 fo (- 9" Ts)ds |, @)

provided that
q
(p — @AY [atb(t) + t*g(1)]
ap
Proof. On letting the right hand side of (1) by v(t), we have

at) ==a(t) +

uP () < o(t) (3)

Application of Lemma 2.1 yields:
¢ ¢
o) < a(t)+ b(t) f o7 (s)ds + g(t) f (t — )" Lo7 (s)ds
0 0

LA — A
a(t)+b(t)f qA v(s);(p DA
0

AT U (A
- ds.
+g(t) fo . (t o) 1ds

IA

ot Zh)
_ a(t)+%(mb(ﬂ+t‘{q(t))+‘VL bet) f o(s)ds
0

p
AT (1
— fo (t — s)* o(s)ds

o t o ¢
= at)+ gA 7 b(t) f v(s)ds + 92 9¢) f (t = s)* 1o(s)ds
p 0 14 0

For locally summable function ®

o ¢ o t
BO(t) := gA 7 b(t) f @(s)ds+M f (t — 5)°"1d(s)ds.
p 0 p 0

Equivalently,

o(t) <alt) + Bo(t).
Iterating the inequality for some 1, one has

n—-1

o(t) < ) WAL + B'o(t) (4)

k=0
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One should prove that:

w (i [T %]
gy < 3 O ) |17
i=0

t
f (t — )= 1+1y(s)ds. (5)
0

p'I'(ia +n —i)

The proof follows the induction criteria on n. For n = 1 the result trivially holds. Suppose it holds for some
n = k. Furthermore, if b(t), g(t) are non-negative and nondecreasing therefore for n = k + 1, one has

Bl = BB ()
. Ola o] [aren o]
= IZ(; PT(ia + k — i)
{‘M LY f f (s — 1)1 Pp(r)drds+
gA *’pg(t) fo fo (t— S)a—l(s _ T)ia—(i+l—k)v(,r)d,tds}
= G(t) + 6(b), (6)
£ O [q)\'%”b(t)]k_m qF(a Y5a g(t)
o ! ia—(i+1-k)
Ct) := L T+ k=) f f(s T) o(t)dtds

p k—i = i+1 ;
oo Eé(bhApbaﬂ |12 900) [Ha”Lfif?&—ﬂ“*”kba—sf*thnk
0 0

Pl (i + k — i)

i=0

By solving €(t) and () we acquire inequality (5).
Change of integration order yields the following:

- k—i+1
w>=i®wﬂﬂ Pwmpﬂff 210 () drds

P (i + k — )

i=0
—i+1

k(%) [q)\?b(t)] [qr(a))\ P g(t)] ft ft(s_T)ia_(i+l—k)v(r[)d5d7
0 Jr

k+1I’(za +k—1)

> I

k+1 '
o) [qub(t) L Opno [ 7] g

_ k
T TRkt 1) f (F=7yomdr + ; T+ k—i+1)

Xf(t—’c)i“_”kv(’c)d’f )
0
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Similarly
'+

i(’;)[qﬂb“’] [Wg(t) a)]lf [ =0t -y totoyeas

P (i + k — )

®(t)
i=0

[ i m i
£ () [‘7/\ ' b(t)] [q/\ g (t)] o fo j; (t=9)* (s = )" o(v)dsdr

pIT (o + k — )

i g

4-p k+1
Ol Fg0] @

(t _ T)ka+a—1v(T)dT

P (ka + a) 0
(LY DT (@)g ()] q)\ 2
" Z‘ Pl +k—i+1) f (t =) o(nde ®
Combining (7) and (8), then (6) has the form
k+1
. Ol k
B o(t) < "+1F(k ) f (t - ©)*v(t)dt
k+1
: (5 + O] O @go) g1 7 i
" o pPHITGa+k—i+1) f - v(r)dr
Ol oo rert
T (ka + ) (t—1) o(t)dt
k+1
1 COM@g 1)1 7 |
— ia—i+k
B ; PTG +k—i+1) f (t=1) vz
This proves the validity of (5) forn =k + 1.
We claim that B"v(t) — 0 as n — oo. For
o OrOr@eer[n ] .
Sult) =) o fo (t = 5)* 71+ s)ds. 9)

i=0

Consider, x; = i@ + n — i then this sequence is decreasing on [0, n] for i € [0,n]. It may be easily seen that
maxx; = n; minx; = na and hence I'(na) = I'(minx;) < I'(x;); T(n) = T'(maxx;) > I'(x;) for i € [0,n]. In this
case equation (9) can be written as:

(e (Bg'(t) [gA 7 1ﬂ(Oé)
Hu(f) < Z "F(r[za) f(t s) ATy (s)ds. (10)

Similarly, as above, by considering y; = ia —i — 1 + n we can see that min y; = na — 1 and max y; = n — 1 for
sufficient large n. Furthermore, for an arbitrary T, we have

(t-s) < { A (1)

tmaxyi(= =1y, t e [1,7).
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In the light of (11), inequality (10) has the form

|27 r@| @)+ g

On(t) < L)

¢
max{t"1, 1 f v(s)ds.
0

819

(12)

But, b(t) and g(t) are both bounded by a constant M; v(s) is locally summable over [0, T) and I'(na) is growing

faster than [I'(a)]" for sufficient large 1, so

I'(na)

q-p "
2MgA v n !
Da(t) < [ Z) ' l (@] max{t”a‘l,t”‘l}f v(s)ds > 0 (asn — o),
0
that is, B"v(t) < 9,,(t) = 0 as n — oo and hence (4) is rewritten as:

G- [T(@)gt)] qA 2

o0 k
ia—i—1+
u(t) < kzz;‘; T f (t — s) @ 1k7s)ds.

ok () [T(@)gt)] qw
U+ — io—i—1+k
WP =Y, ) T P f (B — )" s,

k=0 =0
We claim that £(t; B) is convergent for ¢ € [0, T).

( )[q)\ v ] bi(t) [r(a)g(t)]iﬁia+k—i

Lp) = ;kZ‘ prGa +k—i)(ia +k—i—1)....(la + DI + 1)

o [qr(a)g(t)/\Tﬁ“ D (A4 r—1)(i+1) [qﬁ/\ z b(t)]
- — [(ia + 1)p! VZOA rip (i + r)(ia +r—1)...(la+1)

o [rr@ge2 7]« [apr o]
= ; I'(ia + 1)p! - rzz(; arrlp’
_ Ea(qf(a)g(t)mﬁ“ exp[qﬁmba)]

p pa
gMT@A 7 ) (aMpAT ) =

< Ea [#]exp[p—a] = Q(M,ﬁ)

; w1k
L OV g 17 |

s p o
“@ep = a0+ YV e [ 256 =,

k=1 i=0

k
£ (OMET@T |gA7 | s Ny
7t)+;z PT(ia + k [z+1)] L %(ﬁ—s)’“"*’(ﬂs)ds.

i=0

IA

)+ fo E(s%ﬂ@m; p)ds

(13)

(14)
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As the Mittag-Leffler function E,(8%) is an entire function in f* and the exponential function, exp(p), is
uniformly continuous in g, a(t) is summable function over t > 0 therefore £(@; t; ) < 0. A combination of
(3) and (13) yields the desired result (2). [
Corollary 2.3. Under the conditions of Theorem 2.2, furthermore, if a(t) is non-decreasing on [0, T), then

ut) < jﬁ?t)b"a [ql“(a)g(;)/\v fa ] exp [qt/\r;b(t)] (15)

Proof. Suppose a(t) is non-decreasing on [0, T) and hence so is a(t) on [0, T) therefore from inequality (2)

<, & O] wor-r@ser
ia—i—1+
7t)+Z{lZ TG TE ) fo (t — 5)@= " 1+a15)ds

o & (]gAT | pOFIT @90
anZi()[q [ wr-irast [l
k=0

uh(f)

IA

IA

k _
— e Pl (i + k — 1)

O[] wor-Ter@gor

= @)} Pl +k—i+1)

k=0 i=0

FHE, [qr(a)g(t)m te ] exp [qtm b(t)] .
P pa

IA

O

Remark 2.4. For p = g = 1 and b(t) = 0, Theorem 2.2 reduces to [3, Theorem 1]. For p = q = 1 and g(t) = 0,
Corollary 2.3 reduces to [3, Theorem Al. For p = g = 1 and b(t) = 0, g(t) = ¢, a constant, Theorem 2.2 reduces to [3,
Corollary 1]. For p = g = 1 and b(t) = 0, Corollary 2.3 reduces to [3, Corollary 2]

Theorem 2.5. Under the conditions of Theorem 1, furthermore, assume that p > 11is a constant, L € C(R%, R) with
0 < L(s,u) — L(s,v) < A(u — ) for u > v > 0, where A > 0 is a Lipschitz constant such that:

uP(t) <a(t) + b(t)f ul(s)ds + g(t) f (t = 5)*"LL(s, u?(s))ds, (16)
0 0

then we have the following explicit estimate of u

o & O] por-ar@emny '
u) < qal) +ZZ4 [ ]kl“ (i + k—1) f(t ST (17)

k=1 i=0

o (pm Al e [ A
at) :=a(t) + p +g(t)f0(t s) L{s, . ]ds

Proof. On letting the right hand side of (16) by w(t), we have

ub(t) < w(t) (18)
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Application of Lemma 2.1, inequality (18) yield:

A% ls) + (= !
w(t) < a(t)+b(t) f gAT W)+ PA”
0

p
¢ = N
+g(t)f0(t_5)a_1L[s, gA w(s);(p MDA ]ds
= a(t) +b(t)f qA”w(S);(P—q)Apds
0
t - ,
_ -1 E]/\ 4 ZU(S) + (p — q))\p
+g(t) fo (t-s) {L [S/ : J

" [S, (p— A7 ] ) L(s, (p— A7 ]} .
p p

t oy SE —\AE
a(t) + b(t) fo 94 w(s);(” DA 4

: G ot
+g(t) fo () {A—M ; w®) +L [s, p=9Ar :)A J} ds

AT ([ AAT g0 1
= a(t)+ , fow(s)ds+ p fo(t s)* w(s)ds (19)

Application of Theorem 2.2 to (19), yields the desired result (17). O

IA

Corollary 2.6. Under the conditions of Theorem 2.5, furthermore, if a(t) is non-decreasing on [0, T), then

(20)

u(t) < da%a =

qu"(a)gp(t)/\qnp fa } oxp [qt A7 b(t)]

Remark 2.7. For g = 1; b(t) = 0 and g(t) — M0 Theorem 2.5 reduces to [2, Theorem 2] and Corollary 2.6 reduces

T)’
to [2, Corollary 3].

3. Application

In this section we shall try to discuss the following Stochastic differential equation:

d(f(x())) = b(t, f(x(®))dt + o1(t, f(x(t)))dt" + oa(t, f(x(t)))dB; (21)
where 0 < a < 1 and B; is standrad Brownian motion.

Theorem 3.1. Let (Q, F, P) be a complete probability space with a filtration [Filio. Let B(t) := (B1(t), ..., Bm(t))T
be an m—dimensional Browanian motion defined on space R". Let 0 < t < T < oo and xo a random variable such
that Elxo> < oo; let b(.,.),01(.,.) : [0,T] Xx R* — R" and o, : [0,T] x R" — R™™ be measurable functions. Let
f:R" = R" be a continuous function such that the following linear Growth and Lipschitz conditions, respectively,
are satisfied

b(t, FOP V loa(t, FR)PV loalt, FE)E < K> (1+f(0)P) (22)
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Ib(t, f(x)) = b(t, f(YDIV loa(t, f(x)) = o1(t, fF V loa(t, f(x)) = aa(t, f())]
< Lif@x) = f(y)l (23)

for some constants K, L > 0. Then equation (21) has a t-continuous solution and

EUOT |f(x)|2dt] < 0.

Proof. The integral form of the stochastic differential equation (21) is
¢ t
fxe) = fe0+ [ b s +a [ (¢t fro)as

¢
+f0 o2(s, f(x(s)))dBs. (24)

By the method of Picard-Lindelof approximation, define x©(f) = xo and x®(t) = x®(t,w) inductively as
follows:

t t
FEEDE) = fro) + f b(s, FP())ds + a f (£ = 511015, FP(s))ds
0 0
t
L F(x®(s)))dBs.. 25
, fo 0265, FD(s)) (25)

Applications of the inequality, |x+y+z|* < 3|x[*> +3|y|* + 3|z|*>, Cauchy Schwartz inequality and It&’s Isometry
yield the following:

Elf ("D (1) - fFO®)P < 3TE fo t (b6, F9 () ~ bls, FED )] ds
wsarre [ (= 90165, ) — 0165, D))
+3E fo Toats, F&O)) = aals, F(*V(s))Pds. (26)
Repeating applications of (23) on each integral of the right hand side of (26) yield the following:
Elf (D 0) - fO@)P < 3L2A+T) fo t EIf(O0) - f* D (1)Pds + 3L2aT?
x fo - s)*EIF () - FeED()Pds. (27)
For summable function W(t) define an operator & defined by:
GW(t) :=3L*(1+ T) fo t W(s)ds + 3L%aT® fo t(t —5)*1W(s)ds. (28)
From (27) and (28) repeating iteration yields:

Elf(x*(t) — FP )P < GEIF P 1) - FE*D 1))
< < OFHEFEA 1) - FEDE)P) < GEIFEDE) - FEOEP).  (29)
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As, E[f(xV(t)) — f(xO(#))? is locally summable therefore in the light of (5), (12) and (29)

Elfx*D(p) - fO )P GFEIFED 1) - FOW)P)
[T(a)]F max{te1, <1 [3L2(1 + T + aT%)[*
I'(ka)

f
x f EIFGO(®) - FEO0)Pds. (30)
0

IA

Again, from (25) applications of the inequalities (22), |x + y + zI* < 3|x]* + 3|yI* + 3|zI>, Cauchy Schwartz
inequality, It6’s Isometry yield the following:

Elf(xV (1) = FO0)F < 3K3(1 + Elf(x)P)(1 + T)t + (Tt)]. (31)

A combination of (30) and (31) yield the following;:

kD a2~ MolT(@)]*
sup. E[f(x™7 () = (P ()] < —TEa)
xmax{TF1 TF1[3L2(1 + T + aTY)]F, (32)

provided that

T2 + T3 T2a+1
My := 3K*(1 + E|f (xo)? )( + a”),

Thus, for any m > n > 0

IFE0) = fFEO O, < le(xk*”(t»—f(xk)(t M)

k=n
m T

- Y [ Eratey - fatop
k=n 0

<M, Zm: [[(@)]* max{T**~!, T [BL2(1 + T + aT)}*

T(ka) —0

for sufficiently large m, n such that

3 4 Ba+1
M; = 3K3(1 + E|f(xo)P) (u T )

+ p
2 a+1

Doob’s maximal inequality for martingale yields:

2P [sup D) - fFO )] > ]

=1 0<t<T

< M, Z KA ()] max{T*1, T [3L2(1 + T + aTY) ]k

T(ka) < 400 (33)

From (33) by Borel-Cantelli lemma

r { sup | f(x(k”)(t)) - f(x(k)(t))l > 12 for infinitely many k} =
0<t<T k
it follows that:
P [ sup f(x(k“)(t)) - f(x(k)(t)) > e] =0 foreache >0,

0<t<T
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so there exist a random variable f(x(t)) which is, almost surely uniformly continuous on [0, T], such that

k-1
k—o0

FEO®) = FEO®) + Y (FEDE) - F1) =S Fexd)).
n=0
By the continuity of x®)(t) with respect to t, for any k, f(x(t)) is as well. Therefore,

f t
Fxo) + fo bGs, FP))s +a fo (= 91 or(s, FO(s)ds

k—o0

t
+ [ oxts s B =3 s
0
for a stochastic process x(t) satisfying (24). O

Theorem 3.2. Under the conditions of Theorem 3.1, equation (21) has at most one solution.

Proof. Let x1(t) and x,(f) be two solutions of (21) with the initial conditions xl(.o)(t) =y;, 1 <i< 2. Applications
of Cauchy-Schwartz inequality, the It6 Isometry, and Lipschitz condition yield:

t
Elf(a(t) - fa®)P < BE|f(y1) — f(y2)l +3L2(1 + T)j; E|f(x1(s) = f(xa(s))Pds

+3al2T? fo (£ — )" EIf(xi(s)) — fxa(s))Pds.

Application of (15) for a(t) = 3E|f(y1) — f(y2)l; b(t) — 3L*(1 + T) and g(t) — 3aL*T* yields
Elf(x1(t) — fra(t)P <3E|f(11) — f(12)|

XEo(3aL*(tT)*T () exp (

3L2(1 + T)t). 1)

24

Since, x1(f) and x»(f) are the solutions of (21) with the initial conditions xgo)(t) = vy;, 1 < i < 2, therefore
y1 = y2 and hence (34) yields
Elf(x1()) = f(xa(t) = 0 for all > 0,

which proves the uniqueness. [J
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