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Abstract. Main goal of this paper is to establish various basic formulas for the generalized integral
transform involving the generalized convolution product. In order to establish these formulas, we use
the translation operator which was introduced in [9]. It was not easy to establish basic formulas for the
generalized integral transforms because the generalized Brownian motion process used in this paper has
the nonzero mean function. In this paper, we can easily establish various basic formulas for the generalized
integral transform involving the generalized convolution product via the translation operator.

1. Introduction

In the mathematical field of functional analysis, the isomorphism properties are very important subjects.
Also, these properties have been studying in various paper. That is to say, let T be the transform on an
abstract space. The following basic formulas are meaningful subjects to many mathematicians;

T−1T(F) = F = TT−1(F)

as well as basic formulas

T(F ∗ G) = T(F)T(G) and T(F) ∗ T(G) = T(FG)

where T−1 is the inverse transform and ∗ is the convolution product with respect to the transform T.
The function space Ca,b[0,T] induced by a generalized Brownian motion was introduced by J. Yeh in

[21] and was used extensively in [4–6, 8, 9, 11, 19]. The theory of the generalized integral transform Fγ,β
on function space was studied and developed in various papers [5, 6, 8, 9, 11]. In particular, the authors
gave a necessary and sufficient condition that a functional F in L2(Ca,b[0,T]) has an integral transform
Fγ,β(F) also belonging to L2(Ca,b[0,T]), see [6]. Previous researches have attempted to establish various basic
formulas with respect to the generalized integral transform, the generalized convolution product and the
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inverse transform. But, there are some difficulties to establish these basic formulas because the generalized
Brownian motion used in this paper has the nonzero mean function a(t). In [8], the authors established the
inverse integral transform and a basic formula as follows;

F
−1
γ,β = F−iγ,1 ◦ Fiγ,1 ◦ F− γβ ,

1
β

and

Fγ,β(F ∗ G)γ(y) = Fγ,β(F ∗ 1)γ(y)Fγ,β(1 ∗ G)γ(y)

for functionals on function space Ca,b[0,T], where ◦ is the composition of transforms. But, these formulas are
very complicated, namely, the inverse integral transform is obtained the composition of three generalized
integral transforms and the basic formula is obtained by the concept of generalized convolution product.
Recently, the authors improved the inverse integral transform by using the translation operator Tc as
follows;

F
−1
γ,β = Fi γβ ,

1
β
◦ Tc

where Tc(F)(x) = F(x + ca) and c = −
γ
β (1 + i), see [9]. However, various basic formulas with respect to the

generalized integral transform and the generalized convolution product are not improved.
In this paper, we introduce the class A which is a dense set in L2(Ca,b[0,T]). We then establish various

improved basic formulas for the generalized integral transform(GIT) and the generalized convolution
product(GCP). Finally, we give some extended formulas for the GIT. However, when a(t) ≡ 0 and b(t) = t
on [0,T], the general function space Ca,b[0,T] reduces to the Wiener space C0[0,T] and so most of the results
in [7, 10, 12, 14–16, 20] follow immediately from the results in this paper.

The Wiener process used in [1–3, 7, 10, 12, 14–17] is stationary in time and is free of drift while the
stochastic process used in this paper as well as in [4–6, 8, 9, 11, 19], is nonstationary in time, is subject to
a drift a(t), and can be used to explain the position of the Ornstein-Uhlenbeck process in an external force
field [18].

2. Preliminaries

Let a(t) be an absolutely continuous real-valued function on [0,T] with a(0) = 0, a′(t) ∈ L2[0,T], and
let b(t) be a strictly increasing, continuously differentiable real-valued function with b(0) = 0 and b′(t) > 0
for each t ∈ [0,T]. The generalized Brownian motion process Y determined by a(t) and b(t) is a Gaussian
process with mean function a(t) and covariance function r(s, t) = min{b(s), b(t)}. By Theorem 14.2 in [22],
the probability measure µ induced by Y, taking a separable version, is supported by Ca,b[0,T] (which is
equivalent to the Banach space of continuous functions x on [0,T] with x(0) = 0 under the sup norm). Hence,
(Ca,b[0,T],B(Ca,b[0,T]), µ) is the function space induced by Y where B(Ca,b[0,T]) is the Borel σ-algebra of
Ca,b[0,T]. We then complete this function space to obtain (Ca,b[0,T],W(Ca,b[0,T]), µ) whereW(Ca,b[0,T]) is
the set of all Wiener measurable subsets of Ca,b[0,T].

A subset E of Ca,b[0,T] is said to be scale-invariant measurable provided ρE ∈ W(Ca,b[0,T]) for all ρ > 0,
and a scale-invariant measurable set N is said to be a scale-invariant null set provided µ(ρN) = 0 for all
ρ > 0. A property that holds except on a scale-invariant null set is said to hold scale-invariant almost
everywhere [13].

Let

L2
a,b[0,T] =

{
v :

∫ T

0
|v2(s)|db(s) < ∞ and

∫ T

0
|v2(s)|d|a|(s) < ∞

}
where |a|(t) denotes the total variation of the function a on the interval [0, t]. Then (L2

a,b[0,T], ‖ · ‖a,b) is a

separable Hilbert space with the norm ‖u‖a,b =
√

(u,u)a,b and (u, v)a,b =
∫ T

0 u(t)v(t)d[b(t) + |a|(t)].
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For u, v ∈ L2
a,b[0,T], let

(u, v)a,b =

∫ T

0
u(t)v(t)d[b(t) + |a|(t)].

Then (·, ·)a,b is an inner product on L2
a,b[0,T] and ‖u‖a,b =

√
(u,u)a,b is a norm on L2

a,b[0,T]. In particular note
that ‖u‖a,b = 0 if and only if u(t) = 0 a.e. on [0,T]. Furthermore (L2

a,b[0,T], ‖ · ‖a,b) is a separable Hilbert space.
Note that all functions of bounded variation on [0,T] are elements of L2

a,b[0,T]. Also note that if a(t) ≡ 0 and
b(t) = t on [0,T], then L2

a,b[0,T] = L2[0,T]. In fact,

(L2
a,b[0,T], ‖ · ‖a,b) ⊂ (L2

0,b[0,T], ‖ · ‖0,b) = (L2[0,T], ‖ · ‖2)

since the two norms ‖ · ‖0,b and ‖ · ‖2 are equivalent.
For each v ∈ L2

a,b[0,T], let 〈v, x〉 denote the Paley-Wiener-Zygmund(PWZ) stochastic integral. Note that
the properties of the PWZ integral studied several times in many papers. For more details see, [5, 6, 8, 11].

In this paper, let Ka,b[0,T] be the set of all complex-valued continuous functions x(t) defined on [0,T]
which vanish at t = 0 and whose real and imaginary parts are elements of Ca,b[0,T]; namely,

Ka,b[0,T] = {x : [0,T]→ C | x(0) = 0, Re(x) ∈ Ca,b[0,T] and Im(x) ∈ Ca,b[0,T]}.

Thus clearly Ca,b[0,T] is a subspace of Ka,b[0,T].
Throughout this paper we will assume that each functional F : Ca,b[0,T] → C we consider is scale-

invariant measurable and that∫
Ca,b[0,T]

|F(ρx)|dµ(x) < ∞

for each ρ > 0.
We are now ready to state the definition of the GIT Fγ,β and the GCP (F ∗ G)γ used in [6, 8, 9].

Definition 2.1. Let F and G be functionals defined on Ka,b[0,T]. For each pair of nonzero complex numbers γ and
β, the GIT Fγ,βF of F, and the GCP (F ∗ G)γ of F and G are defined by

Fγ,βF(y) ≡ Fγ,β(F)(y) =

∫
Ca,b[0,T]

F(γx + βy)dµ(x), (1)

for y ∈ Ka,b[0,T] and

(F ∗ G)γ(y) =

∫
Ca,b[0,T]

F
( y + γx
√

2

)
G
( y − γx
√

2

)
dµ(x), (2)

for y ∈ Ka,b[0,T] if they exist.

Remark 2.2. (i) When a(t) ≡ 0 and b(t) = t on [0,T], Fγ,β is the integral transform used by Kim and Skoug [15]. In
particular, F1,i is the Fourier-Wiener transform introduced by Cameron in [1] and used by Cameron and Martin in
[2]. Also F√2,i is the modified Fourier-Wiener transform used by Cameron and Martin in [3].

(ii) When γ =
√

2 and β = i, Fγ,β is the generalized Fourier-Wiener function space transform introduced in [5].

Throughout this paper, in order to ensure that various integrals exist, we will assume that β = c + id is a
nonzero complex number satisfying the inequality

Re(1 − β2) = 1 + d2
− c2 > 0 (3)
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with γ2 + β2 = 1. Note that β = c + id satisfies equality (3) if and only if (c, d) ∈ R2 lies in the open region
determined by the hyperbola c2

− d2 = 1 containing the d-axis. Next, let

γ =
√

1 − β2, −π/4 < ar1(γ) < π/4

and note that γ2 + β2 = 1 and Re(γ2) = Re(1 − β2) > 0.
We shall analyze the condition introduced in [6, 15] to obtain some basic formulas for the GITs and the

GCPs. In one-parameter Wiener space C0[0,T] (i.e., where a(t) ≡ 0 and b(t) = t on [0,T] for this study), the
existence of the integral transform depends on the size of β (see [15]). However, on function space, the
existence of the integral transform depends on the pairs of (γ, β), for more detailed see [6, Theorem 7].

Now we introduce a classA of functionals which is used in this paper. In order to do this, let

G = {(γ, β) ∈ C × C : Fγ,β(F) ∈ L2(Ca,b[0,T]), F ∈ L2(Ca,b[0,T])}.

Also, for fixed positive integer m, let E(m)
0 be the class of functionals of the form

F(x) = f (〈α1, x〉, · · · , 〈αm, x〉) = f (〈~α, x〉)

where {α1, · · · , αm} is an orthonormal set in L2
a,b[0,T] and f is an entire function on Cm and

| f (~u)| ≤ LF exp
{
KF

m∑
j=1

|u j|

}
for some positive real numbers LF and KF. One can easily check that for all nonzero complex numbers γ
and β (and hence (γ, β) ∈ G), the integral transform Fγ,β(F) exists and is an element of E(m)

0 , for more details
see [8]. Also, E(m)

0 ⊂ L2(Ca,b[0,T]) for all m = 1, 2, · · · . From now on, we list some results and definitions
from [5, 6]. Let {α1, α2, · · · } be any complete orthonormal set of functions in the separable Hilbert space
(L2

a,b[0,T], ‖ · ‖a,b), and for each j = 1, 2, · · · , let

A j ≡

∫ T

0
α j(t)da(t) and B j ≡

∫ T

0
α2

j (t)db(t).

We note that for each j = 1, 2, · · · ,

0 < B j =

∫ T

0
α2

j (t)db(t) ≤
∫ T

0
α2

j (t)d[b(t) + |a|(t)] = ‖α j‖
2
a,b = 1,

while A j may be positive, negative or zero. If a(t) ≡ 0 on [0,T], then A j = 0 and B j = 1 for all j = 1, 2, · · · .
For each m = 0, 1, 2, · · · and for each j = 1, 2, · · · , let H j

m(u) denote the generalized Hermite polynomial

H j
m(u) ≡ (−1)m(m!)−

1
2 (B j)

m
2 exp

{ (u − A j)2

2B j

} dm

dum

(
exp

{
−

(u − A j)2

2B j

})
. (4)

Then the set, for each j = 1, 2, · · · ,{
(2πB j)−

1
4 H j

m(u) exp
{
−

(u − A j)2

4B j

}
: m = 0, 1, · · ·

}
is a complete orthonormal set in L2(R). Now we define

φ(m,k)(x) ≡ Hk
m(〈αk, x〉), m = 0, 1, 2, · · · , k = 1, 2, · · · ,
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and

Φ(m1,··· ,mk)(x) ≡ φ(m1,1)(x)φ(m2,2)(x) · · ·φ(mk ,k)(x) =

k∏
j=1

H j
m j

(〈α j, x〉). (5)

The functionals in (5) are called the generalized Fourier-Hermite functionals. The authors showed that the
generalized Fourier-Hermite functionals forms a complete orthonormal set in L2(Ca,b[0,T]). That is to say,
let F be any functionals on Ca,b[0,T] with∫

Ca,b[0,T]
|F(x)|2dµ(x) < ∞,

and for N = 1, 2, · · · , let

FN(x) =

N∑
m1,··· ,mN=0

AF
(m1,··· ,mN)Φ(m1,··· ,mN)(x) (6)

where AF
(m1,··· ,mN) is the generalized Fourier-Hermite coefficient,

AF
(m1,··· ,mN) ≡

∫
Ca,b[0,T]

F(x)Φ(m1,··· ,mN)(x)dµ(x). (7)

Then ∫
Ca,b[0,T]

|FN(x) − F(x)|2dµ(x)→ 0

as N→∞ and

F(x) = l.i.m.N→∞FN(x) = l.i.m.N→∞
N∑

m1,··· ,mN=0

AF
(m1,··· ,mN)Φ(m1,··· ,mN)(x) (8)

is called the generalized Fourier-Hermite series expansion of F. Next, the generalized Fourier-Hermite
functional Φ(m1,··· ,mN) satisfies all definitions of the class E(N)

0 for each N = 1, 2, · · · and likewise that the
functional FN(x) also belong to ∪∞N=1E

(N)
0 . LetA = ∪∞N=1E

(N)
0 . Then the classA is dense in L2(Ca,b[0,T]) since

the fact thatM ≡ {Φ(m1,··· ,mN)}
∞

N=1 is an orthonormal set in L2(Ca,b[0,T]) [6]. Hence by using general theories
in vector space, we could extend all results and formulas of the spaceA to the L2(Ca,b[0,T]).

We close this section by stating some results and formulas which are used in this paper.
The following lemma was established in [11].

Lemma 2.3. Let the function a = a(t) be a function which satisfies the following condition∫ T

0
|a′(t)|2d|a|(t) < ∞.

Then the mean function a can be written like as a(t) =
∫ t

0 z(s)db(s) where z(s) =
a′(s)
b′(s) ∈ L2

a,b[0,T]. Let F be a
µ-integrable functional defined on Ka,b[0,T]. Then for nonzero complex number c, F(x + ca) is µ-integrable and∫

Ca,b[0,T]
F(x + ca)dµ(x) = exp

{
−

c2 + 2c
2

(
a′

b′
, a′)

}∫
Ca,b[0,T]

F(x) exp{c〈
a′

b′
, x〉}dµ(x)

where (z, a′) =
∫ T

0 z(s)da(s) for some z ∈ L2
a,b[0,T].
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The formula (9) below is called the Fubini theorem with respect to the function space integrals, see [11].

Lemma 2.4. Let F be µ-integrable defined on Ka,b[0,T]. Then for all complex numbers γ and β,∫
C2

a,b[0,T]
F(γx + βy)d(µ × µ)(x, y) =

∫
Ca,b[0,T]

F(
√
γ2 + β2w + ca)dµ(w) (9)

where c = γ + β −
√
γ2 + β2.

3. Some formulas for the GIT and the GCP

As mentioned in Section 1 above, establishing basic formulas for GITs and GCPs has proven to be difficult
for functionals on function space. Hereafter, the operator Tc(which is called the translation operator) is
defined as specified below, to solve these difficulties. We then establish basic formulas with respect to the
GITs and the GCPs. Define an operator Tc fromA intoA by

Tc(F)(x) = F(x + ca) (10)

for x ∈ Ca,b[0,T] and complex number c. We have the following properties for Tc as follows;
(i) The operator Tc is well-defined for all complex number c from Lemma 2.3. Also, for all nonzero

complex numbers (γ, β) ∈ G, and F ∈ A, Fγ,β(Tc(F)) and Tc(Fγ,β(F)) are well-defined.
(ii) The operator Tc is a bounded linear operator onA and it has an inverse operator T−c for all complex

number c.
(iii) When a(t) ≡ 0 on [0,T], the operator Tc is the identity operator for all complex number c.

In order to establish the first main result in this paper, we need the following lemma which plays a key
role finding various basic formulas for the GITs and the GCPs.

Lemma 3.1. Let F be an element ofA. Let c1 = −γ(1 −
√

2) and let c2 = −γ. Then for all (γ, β) ∈ G,

Fγ,β(Tc1 (F))(y/
√

2) =

∫
Ca,b[0,T]

F
( βy
√

2
+ γx − γ(1 −

√

2)a
)
dµ(x) (11)

and

Fγ,β(Tc2 (F))(y/
√

2) =

∫
Ca,b[0,T]

F
( βy
√

2
+ γx − γa

)
dµ(x) (12)

for y ∈ Ca,b[0,T]. Furthermore, Fγ,β(Tc1 (F)) and Fγ,β(Tc2 (F)) are elements ofA because (γ, β) ∈ G.

Proof. Using equations (1) and (10), we can easily obtain equations (11) and (12) as desired. Also, for all
complex number c and (γ, β) ∈ G, we see that Fγ,β(F) and Tc(F) are elements of A for all F ∈ A and hence
we have the desired results.

Let F and G be elements ofA and hence we let F ∈ E(n)
0 and G ∈ E(m)

0 . If n = m, then (F ∗G)γ always exists
and is an element of E(m)

0 . And so it is an element ofA. Otherwise, if n , m, then by using some properties
of the space E(N)

0 , we can consider that F,G ∈ E(m0)
0 for some m0. For example, let

F(x) = f (〈α1, x〉, 〈α2, x〉) ∈ E(2)
0

and let

G(x) = 1(〈α1, x〉, 〈α3, x〉, 〈α4, x〉) ∈ E(3)
0 .

Then we can express F and G as elements of E(4)
0 by choosing r(u1,u2,u3,u4) = f (u1,u2) and s(u1,u2,u3,u4) =

1(u1,u3,u4). Hence the GCP (F ∗ G)γ always exists and it is an element ofA.
The following theorem is one of the main results in this paper. This theorem tells us that the integral

transform of the convolution product is the product of their transforms.
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Theorem 3.2. Let F and G be elements ofA. Then for all (γ, β) ∈ G,

Fγ,β(F ∗ G)γ(y) = Fγ,β(Tc1 (F))(y/
√

2)Fγ,β(Tc2 (G))(y/
√

2) (13)

for y ∈ Ca,b[0,T], where c1 and c2 are as in Lemma 3.1 above. Furthermore, Fγ,β(F ∗ G)γ is an element ofA.

Proof. Since (F ∗ G)γ is an element ofA and (γ, β) ∈ G, the right-hand side of equation (13) exists and is an
element ofA. Now using equations (1) and (2), it follows that for y ∈ Ca,b[0,T],

Fγ,β(F ∗ G)γ(y)

=

∫
Ca,b[0,T]

(F ∗ G)γ(γx + βy)dµ(x)

=

∫
Ca,b[0,T]

∫
Ca,b[0,T]

F
(γx + βy + γz

√
2

)
G
(γx + βy − γz

√
2

)
dµ(z)dµ(x)

=

∫
Ca,b[0,T]

∫
Ca,b[0,T]

F
( βy
√

2
+ γ

(x + z
√

2

))
G
( βy
√

2
+ γ

(x − z
√

2

))
dµ(z)dµ(x).

But w1 = x+z
√

2
+ (1 −

√
2)a and w2 = x−z

√
2

+ a are independent generalized Brownian motion processes and
hence we have

Fγ,β(F ∗ G)γ(y)

=

∫
Ca,b[0,T]

∫
Ca,b[0,T]

F
( βy
√

2
+ γw1 − γ(1 −

√

2)a
)
G
( βy
√

2
+ γw2 − γa

)
dµ(w1)dµ(w2)

=

∫
Ca,b[0,T]

F
( βy
√

2
+ γw1 − γ(1 −

√

2)a
)
dµ(w1)

∫
Ca,b[0,T]

G
( βy
√

2
+ γw2 − γa

)
dµ(w2)

(14)

for y ∈ Ca,b[0,T]. Using equations (11) and (12) in Lemma 3.1, the last expression in equation (14) yields
equation (13) as desired.

The Fourier-Wiener function space transform introduced in [5] is a special case of our integral transform.
We can apply our main results to the Fourier-Wiener function space transform as follows.

Corollary 3.3. Let F√2,i be the generalized Fourier-Wiener function space transform introduced in [5]. Let F and G
be elements ofA. Assume that (

√
2, i) ∈ G. Then

F√2,i(F ∗ G)√2(y) = F√2,i(Tc3 (F))(y/
√

2)F√2,i(Tc4 (G))(y/
√

2) (15)

for y ∈ Ca,b[0,T], where c3 = 2−
√

2 and c4 = −
√

2. Furthermore, the following equations immediately follows from
equations (13) and (15) by letting G(y) = F(y) on Ca,b[0,T]. Let F ∈ A. Then for all (γ, β) ∈ G,

Fγ,β(F ∗ F)γ(y) = Fγ,β(Tc1 (F))(y/
√

2)Fγ,β(Tc2 (F))(y/
√

2)

for y ∈ Ca,b[0,T], where c1 and c2 are as in Lemma 3.1 above. In particular, if (
√

2, i) ∈ G, then

F√2,i(F ∗ F)√2(y) = F√2,i(Tc3 (F))(y/
√

2)F√2,i(Tc4 (F))(y/
√

2)

for y ∈ Ca,b[0,T].

We can obtain the another formula without the concept of translation operator Tc by using the following
Lemma 3.4. The proof of Lemma 3.4 was established in [9].
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Lemma 3.4. Let F ∈ A. Then for all (γ, β) ∈ G and for all complex number c,

Fγ,β(Tc(F))(y) = exp
{
−

c2 + 2cγ
2γ2 (

a′

b′
, a′) −

cβ
γ2 〈

a′

b′
, y〉

}
Fγ,β(F∗c/γ2 )(y) (16)

for y ∈ Ca,b[0,T], where F∗c(x) = F(x) exp{c〈 a′
b′ , x〉}.

In Theorem 3.2, we established a basic formula by using the translation operator Tc. In our next Theorem
3.5, we obtain another basic formula without the concept of translation operator Tc with exponential
weighed.

Theorem 3.5. Let F ∈ A. Then for all (γ, β) ∈ G,

Fγ,β(F ∗ G)γ(y) = exp
{ β
γ

(
√

2 − 1)〈
a′

b′
, y〉

}
Fγ,β(F∗(√2−1)/γ

)(y/
√

2)Fγ,β(G∗−1/γ)(y/
√

2) (17)

for y ∈ Ca,b[0,T], where F∗
(
√

2−1)/γ
and G∗

−1/γ are as in Lemma 3.4 above.

Proof. From Lemma 3.4, we can calculate as follows;

Fγ,β(Tc1 (F))(y/
√

2)

= exp
{
−

1
2

(
a′

b′
, a′) +

β

γ
(1 −

√

2)〈
a′

b′
,

y
√

2
〉

}
Fγ,β(F∗(√2−1)/γ

)(y/
√

2)

with c by replacing −γ(1 −
√

2), and

Fγ,β(Tc2 (G))(y/
√

2) = exp
{1

2
(
a′

b′
, a′) +

β

γ
〈

a′

b′
,

y
√

2
〉

}
Fγ,β(G∗−1/γ)(y/

√

2)

with c by replacing −γ. Hence by applying Theorem 3.2, we obtain equation (17) as desired.

4. Some formulas for the GITs and the GCPs via the inverse GIT

In this section, we use the inverse integral transform to establish various formulas involving the GCPs.
The following Theorem 4.1 was established in [9].

Theorem 4.1. Let F be an element of A and let c = −
γ
β (1 + i) for nonzero complex numbers γ and β. Then for all

(γ, β) ∈ G with (iγβ ,
1
β ) ∈ G,

Fi γβ ,
1
β
(Tc(Fγ,βF))(y) = F(y) = Fγ,β(Fi γβ ,

1
β
(TcF))(y) (18)

for y ∈ Ca,b[0,T]. This tells us that the inverse integral transform F −1
γ,β of generalized integral transform Fγ,β is given

by

F
−1
γ,β = Fi γβ ,

1
β
◦ Tc.

Now we are ready to draw conclusions about the convolution product (F ∗ G)γ.

Theorem 4.2. Let c1 and c2 be as in Theorem 3.2, and let c be as in Theorem 4.1. Let F and G be elements ofA. Then
for all (γ, β) as in Theorem 4.1,

(F ∗ G)γ(y) = F −1
γ,β (Fγ,β(Tc1 (F))(·/

√

2)Fγ,β(Tc2 (G))(·/
√

2))(y) (19)

for y ∈ Ca,b[0,T].
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Proof. Using equations (13) and (18), we can easily obtain equation (19) as desired.

The following corollary follows from Theorem 4.2 by letting G(y) = F(y) or by letting G(y) is identically
one on Ca,b[0,T].

Corollary 4.3. Let c1, c2 and c be as in Theorem 4.2. Let F ∈ A. Then for all (γ, β) as in Theorem 4.1,

(F ∗ F)γ(y) = F −1
γ,β (Fγ,β(Tc1 (F))(·/

√

2)Fγ,β(Tc2 (F)))(·/
√

2))(y),

(F ∗ 1)γ(y) = F −1
γ,β (Fγ,β(Tc1 (F))(·/

√

2))(y) = Tc1 (F)(y/
√

2)

and

(1 ∗ F)γ(y) = F −1
γ,β (Fγ,β(Tc2 (F))(·/

√

2))(y) = Tc2 (F)(y/
√

2)

for y ∈ Ca,b[0,T].

In our next theorem, we obtain a basic formula for the GCP with respect to the GITs.

Theorem 4.4. Let c be as in Theorem 4.1. Let F and G be elements ofA. Then for all (γ, β) as in Theorem 4.1,

(Fγ,βF ∗ Fγ,βG)γ(y) = Fγ,β(Tc1 (F)(·/
√

2)Tc2 (G)(·/
√

2))(y) (20)

for y ∈ Ca,b[0,T], where c1 and c2 are as in Lemma 3.1 above.

Proof. Using equations (13) and (18) it follows that for y ∈ Ca,b[0,T],

F
−1
γ,β (Fγ,βF ∗ Fγ,βG)γ(y)

= F −1
γ,β (Fγ,βTc1 (F))(y/

√

2)F −1
γ,β (Fγ,βTc2 (G))(y/

√

2)

= Tc1 (F)(y/
√

2)Tc2 (G)(y/
√

2).

(21)

Now taking the integral transform Fγ,β of each side of equation (21), we can obtain equation (20) as
desired.

From Theorem 4.4, we can obtain the following corollary by replacing Fγ,β with F −1
γ,β .

Corollary 4.5. Let c be as in Theorem 4.1. Let F and G be elements ofA. Then for all (γ, β) as in Theorem 4.1,

(F −1
γ,βF ∗ F −1

γ,βG)γ(y) = F −1
γ,β (Tc1 (F)(·/

√

2)Tc2 (G)(·/
√

2))(y)

for y ∈ Ca,b[0,T], where c1 and c2 are as in Lemma 3.1 above.

Remark 4.6. In previous papers, all formulas and results from Theorem 3.2 to Theorem 4.4 were not established.
They only expressed all results and formulas by the concept of GCPs (F ∗1)γ and (1 ∗G)γ. But, we used the translation
operator Tc to obtain more simple expressions without the concept of GCP. However, we have

Fγ,β(Tc1 (F))(y/
√

2) = Fγ,β(F ∗ 1)γ(y),

and

Fγ,β(Tc2 (F))(y/
√

2) = Fγ,β(1 ∗ F)γ(y)

for y ∈ Ca,b[0,T], where c1 = −γ(1 −
√

2) and c2 = −γ form Corollary 4.3. This means that all formulas and results
in previous papers are also obtained easily as corollaries. Hence our formulas and results in this paper are more
generalized.

Remark 4.7. In one-parameter Wiener space C0[0,T] (i.e., where a(t) ≡ 0 and b(t) = t on [0,T] for this study),
Tc(F)(x) = F(x) for all complex number c and hence we have

Fγ,β(F ∗ G)γ(y) = Fγ,β(F)(y/
√

2)Fγ,β(G)(y/
√

2),

and

(Fγ,βF ∗ Fγ,βG)γ(y) = Fγ,β(F(·/
√

2)G(·/
√

2))(y).
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5. More formulas for the GITs

In this section, we give some formulas for the GITs by use of the translation operator Tc. To simplify the
expressions, we use following notations. Let {(γn, βn)}∞n=1 be a sequence in G. For each n = 1, 2, · · · , let

γ̃n =

√√√ n∑
k=1

γ2
k

k∏
i=1

β2
i−1

and

β̃n =

n∏
k=1

βk

where β0 = 1. Note that γ̃1 = γ1 and β̃1 = β1. Furthermore, (γ̃n, β̃n) ∈ G for all n = 1, 2, · · · . For n ≥ 2, define
a function Hn : Cn

→ C by

Hn(z1, · · · , zn) =

n∑
j=1

z j −

( n∑
j=1

z2
j

) 1
2

. (22)

Note that Hn is a symmetric function for all n = 2, 3, · · · .
In our next theorem, we establish the Fubini theorem for GITs.

Theorem 5.1. Let F be as in Theorem 4.1. Assume that for (γ1, β1) and (γ2, β2) ∈ G,

(1 − β1)γ2 = (1 − β2)γ1.

Then

Fγ2,β2 (Fγ1,β1 F)(y) = Fγ1,β1 (Fγ2,β2 F)(y). (23)

Furthermore, both of the expressions in (23) are given by the expression

Fγ̃2,β̃2
(Tcm2

(F))(y) (24)

for y ∈ Ca,b[0,T], where cm2 = H2(γ1, β1γ2).

Proof. Using equations (1), (9) and (22) it follows that for y ∈ Ca,b[0,T],

Fγ2,β2 (Fγ1,β1 F)(y)

=

∫
Ca,b[0,T]

∫
Ca,b[0,T]

F(γ1z + β1γ2x + β1β2y)dµ(z)dµ(x)

=

∫
Ca,b[0,T]

F(
√
γ2

1 + β2
1γ

2
2w + β1β2y + H2(γ1, β1γ2)a)dµ(w).

On the other hand, equations (1), (9) and (22) again it follows that for y ∈ Ca,b[0,T],

Fγ1,β1 (Fγ2,β2 F)(y)

=

∫
Ca,b[0,T]

∫
Ca,b[0,T]

F(γ2z + β2γ1x + β1β2y)dµ(z)dµ(x)

=

∫
Ca,b[0,T]

F(
√
γ2

2 + β2
2γ

2
1w + β1β2y + H2(γ2, β2γ1)a)dµ(w).

Note that γ2
1 + β2

1γ
2
2 = γ2

2 + β2
2γ

2
1 and using equation (22), we have

H2(γ1, β1γ2) = H2(γ2, β2γ1),

which establish equation (23) as desired. Furthermore, equation (24) follows from equations (1) and (10)
easily.
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In the last theorem in this paper, we give the n-dimensional version of Theorem 5.1. The proof of
Theorem 5.2 immediately follows from Theorem 5.1 and the mathematical induction.

Theorem 5.2. Let F be as in Theorem 5.1. Assume that for (γn, βn) ∈ G,

γ̃n−1(1 − βn) = (1 − β̃n−1)γn.

Then

Fγn,βn (· · · (Fγ1,β1 F))(y) = Fγ1,β1 (· · · (Fγn,βn F))(y) (25)

for y ∈ Ca,b[0,T]. Furthermore, both of the expressions in (25) are given by the expression

Fγ̃n,β̃n
(Tcmn

(F))(y) (26)

for y ∈ Ca,b[0,T], where cmn = Hn(γ1, β1γ2, β̃2γ3, · · · , β̃n−1γn).

We close this paper by stating some observations with respect to the GIT as remarks. As possible, we
adopt the definitions and notations of [6, 7, 10, 12, 14, 15] for the integral transforms.

Remark 5.3. In [6, 7, 10, 12, 14, 15], the authors obtained the existence of the integral transform Fα,β for several
large classes of functionals F on Wiener space C0[0,T]. In particular, they showed that

F
−1
α,β = Fiγ/β,1/β,

Fα,β(F ∗ G)α(y) = Fα,β(F)(y/
√

2)Fα,β(G)(y/
√

2),

and

(Fα,β(F) ∗ Fα,β(G))α(y) = Fα,β(F(·/
√

2)G(·/
√

2))(y).

A major goal of the authors of [6, 8, 9, 11] was to generalize the concepts of the integral transform of the functionals
of paths for the generalized Brownian motion process. However, as mentioned in Section 1, it is not easy to verify the
existence of the inverse GIT and to establish some basic formulas because the generalized Brownian motion process
has a drift term a(t). Recently [9], the authors obtained that

F
−1
γ,β = Fiγ/β,1/β ◦ Tc

for some complex number c where Tc is the translation operator. But some basic formulas were not established yet.
However, by use of the translation operator Tc and the inverse integral transform, we could obtain those basic formulas,
see equations (13) and (20) above.

Remark 5.4. In [9], the authors asked some questions with respect to the GITs as follows;
(A) Is there a pair (γ, β) so that

Fγ2,β2 (Fγ1,β1 F)(y) = Fγ,β(F)(y)

for y ∈ Ca,b[0,T]?
(B) Is there a pair (γ, β) and complex number c so that

Fγ2,β2 (Fγ1,β1 F)(y) = Fγ,β(Tc(F))(y)

for y ∈ Ca,b[0,T]?
(C) Are there pairs (γ1, β1) and (γ2, β2) so that

Fγ2,β2 (Fγ1,β1 F)(y) = Fγ1,β1 (Fγ2,β2 F)(y)

for y ∈ Ca,b[0,T]?
They said that the answer to questions (A) and (C) was negative. While the answer to question (B) was positive.

But, we gave positive answers to questions (A) and (C) by using the translation operator Tc, see Section 5.
In views of these, the translation operator Tc is a key role to establish various basic formulas and it will be used to

obtain various other relationships.
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