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Abstract. In this paper an exact series solution for homogeneous parabolic coupled systems is constructed
using a projection method. An illustrative example is given.

1. Introduction and notation

Coupled partial differential systems with coupled boundary-value conditions are frequent in different
areas of science and technology as in scattering problems in quantum mechanics [1, 9, 14], in chemical
physics [6, 8, 11], coupled diffusion problems [3, 10, 17], thermo-elastoplastic Modelling [5], etc.

Recently, [15, 16], an exact series solution for the homogeneous initial-value problem

ut(x, t) = Auxx(x, t) , 0 < x < 1 , t > 0 (1)
A1u(0, t) + B1ux(0, t) = 0 , t > 0 (2)
A2u(1, t) + B2ux(1, t) = 0 , t > 0 (3)

u(x, 0) = f (x) , 0 ≤ x ≤ 1 , (4)

where u = (u1,u2, . . . ,um)T and f (x) =
(

f1(x), f2(x), . . . , fm(x)
)T are m−dimensional vectors, was con-

structed under the following hypotheses and notation:

• The matrix coefficient A is a matrix which satisfies the following condition

Re(z) > 0 , ∀z ∈ σ(A), (5)

where σ(C) denotes the set of all the eigenvalues of a matrix C in Cm×m and Re(z) denotes the real part
of z ∈ C.
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•Matrices Ai,Bi, i = 1, 2, are m ×m complex matrices, and we assume that the block matrix(
A1 B1
A2 B2

)
is regular , (6)

and also that the matrix pencil

A1 + ρB1 is regular, (7)

i.e. condition (7) involves the existence of some ρ0 ∈ C, so that matrix A1 + ρ0B1 is invertible, see [2].

• Using condition (7) we can define the following matrices Ã1 and B̃1 by

Ã1 =
(
A1 + ρ0B1

)−1 A1 , B̃1 =
(
A1 + ρ0B1

)−1 B1, (8)

which satisfy the condition:

Ã1 + ρ0B̃1 = I, (9)

where matrix I denotes, as usual, the identity matrix. Under hypothesis (6), is it easy to show that
matrix B2 −

(
A2 + ρ0B2

)
B̃1 is regular (see [12] for details) and we can introduce matrices Ã2 and B̃2

defined by

Ã2 =
[
B2 −

(
A2 + ρ0B2

)
B̃1

]−1
A2 , B̃2 =

[
B2 −

(
A2 + ρ0B2

)
B̃1

]−1
B2, (10)

which satisfy the following conditions:

B̃2 −
(
Ã2 + ρ0B̃2

)
B̃1 = I, B̃2Ã1 − Ã2B̃1 = I. (11)

• Under the assumptions (5), (6), (7), and considering the following essential hypothesis:

exist b1 ∈ σ
(
B̃1

)
− {0} , b2 ∈ σ

(
B̃2

)
, and v ∈ Cm

− {0},
such that

(
B̃1 − b1I

)
v =

(
B̃2 − b2I

)
v = 0 ,

(12)

then, if the vector valued function f (x) satisfies hypotheses

f ∈ C2 ([0, 1])(
1 − ρ0b1

)
f (0) + b1 f ′(0) = 0

−

(
1 − b2 + ρ0b1b2

b1

)
f (1) + b2 f ′(1) = 0


, (13)

under the additional hypothesis:

f (x) ∈ Ker
(
B̃1 − b1I

)⋂
Ker

(
B̃2 − b2I

)
, 0 ≤ x ≤ 1

and
Ker

(
B̃1 − b1I

)⋂
Ker

(
B̃2 − b2I

)
is an invariant subspace with respect to matrix A,

(14)

where a subspace E ofCm is invariant by the matrix A ∈ Cm×m, if A(E) ⊂ E, then an exact series solution
u(x, t) of homogeneous problem (1)–(4) is constructed in Ref. [15].
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• Under the above assumptions (5), (6), (7), and replacing the condition (12) by the following hypothesis

0 ∈ σ
(
B̃1

)
, a2 ∈ σ

(
Ã2

)
, and we have w ∈ Cm

− {0},
so that B̃1w =

(
Ã2 − a2I

)
w = 0 .

(15)

if the vector valued function f (x) satisfies the new hypotheses

f ∈ C2 ([0, 1])

f (0) = 0

a2 f (1) + f ′(1) = 0


, (16)

and

f (x) ∈ Ker
(
B̃1

)
∩ Ker

(
Ã2 − a2I

)
, 0 ≤ x ≤ 1

and
Ker

(
B̃1

)
∩ Ker

(
Ã2 − a2I

)
is an invariant subspace respect to matrix A,

(17)

then an exact series solution u(x, t) of homogeneous problem (1)–(4) is constructed in Ref. [16].

As appear in [15] and [16], the valued vector function f (x) obligatorily have to satisfy, from (14) or (17), one of
the following conditions:

f (x) ∈ Ker
(
B̃1 − b1I

)
∩ Ker

(
B̃2 − b2I

)
, if b1 , 0

or
f (x) ∈ Ker

(
B̃1

)
∩ Ker

(
Ã2 − a2I

)
, if b1 = 0. (18)

This paper deals with the construction of the exact series solution of the problem (1)–(4) with less re-
strictive conditions on the valued vector function f (x) that given in (18), i.e. for more general vector valued
functions f (x). To obtain this objective, we will get adapted the technique given in reference [7, p.281].

Throughout this paper we will assume the results and nomenclature given in [15, 16]. We denote by Θ
the null matrix, and by I or In×n the identity matrix of dimension n. The kernel and the image of a matrix B
are denoted by Ker(B) and Im(B), respectively. If B is a matrix in Cn×m, we denote by B† its Moore-Penrose
pseudoinverse [2]. A collection of examples, properties and applications of this concept may be found in
[13], and B† can be efficiently computed with the Matlab and Mathematica computer algebra systems. We
will need to use two well known properties of the Moore-Penrose pseudoinverse:

Lemma 1.1 ([2]). Let be B a matrix in Cs×s, then,

Ker(B) = Im
(
I − B†B

)
, Im(B) = Ker

(
I − BB†

)
, (19)

Lemma 1.2 ([7]). Let be P,Q and R matrices in Cs×s so that R = Q(I − P†P), then,

Ker(P) ∩ Ker(Q) = Im
[
(I − P†P)(I − R†R)

]
.

and a new property which we will demonstrate:

Lemma 1.3. Let be A,B two matrices in Cs×s, then:

(i) If
(
I − BB†

)
AB = Θ, then Im(B) is an invariant subspace for matrix A.
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(ii) If BA
(
I − B†B

)
= Θ then Ker(B) is an invariant subspace for matrix A.

Proof: (i) Let be x ∈ Im(B), then using lemma 1.1 one gets that x ∈ Ker
(
I−BB†

)
, then

(
I−BB†

)
x = 0 =⇒

BB†x = x. Furthermore, taking into account the hypothesis
(
I − BB†

)
AB = Θ, then AB = BB†AB, thus by

right multiplying the latter equality by B†x one gets

A(BB†x) = BB†A(BB†x) =⇒ (I − BB†)Ax = 0 ,

then
Ax ∈ Ker(I − BB†),

and using lemma 1.1 again one gets Ax ∈ Im(B), which indicates that Im(B) is an invariant subspace for
matrix A.

(ii) The second implication is shown analogously to (i), taking into account relation Ker(B) = Im(I−B†B)
given in lemma 1.1. �

This paper is organized as follows: In section 2 the solution of (1)–(4) is obtained using a projection
method. In section 3 we will introduce an algorithm and give an significative example.

2. Projections

As conditions (14) and (17) involving kernel intersections, to become to be more operational, we will
express these intersections in terms of images, taking into account the property given in lemma 1.2:

Ker(M) ∩ Ker(N) = Im(H), (20)

where matrix H is given by

H =
(
I −M†M

) (
I −

[
N

(
I −M†M

)]† (
N

(
I −M†M

)))
. (21)

We introduce the following sets:

G1 = {b1(1), . . . , b1(s1)}

G2 = {b2(1), . . . , b2(s2)}

G3 = {a2(1), . . . , a2(s3)}


(22)

with the different eigenvalues of matrices B̃1, B̃2 and Ã2 respectively. We denote by

H
(
b1(i), b2( j)

)
, if b1(i) , 0, 1 ≤ i ≤ k , i ≤ s1 , j ≤ s2 (23)

the matrix defined by (21) where matrices M and N take the values

M =
(
B̃1 − b1(i)I

)
and N =

(
B̃2 − b2( j)I

)
, (24)

and we denote by

H (0, a2(k)) , i f 0 ∈ G1 , 1 ≤ k ≤ s3, (25)

the matrix defined by (21) where matrices M and N take the values

M = B̃1 and N =
(
Ã2 − a2(k)I

)
. (26)
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By lemma 1.2, condition

Ker
(
B̃1 − b1(i)I

)
∩ Ker

(
B̃2 − b2( j)I

)
, {0} , b1(i) , 0

is equivalent to condition
H

(
b1(i), b2( j)

)
, Θ ,

and also condition
Ker

(
B̃1

)
∩ Ker

(
Ã2 − a2(k)I

)
, {0} if 0 ∈ G1

is equivalent to condition
H (0, a2(k)) , Θ .

We consider the subsets of G1 × G2 or G1 × G3 given by

S2 =
{(

b1(il), b2( jl)
)
∈ G1 × G2 : b1(il) , 0 , H

(
b1(il), b2( jl)

)
, Θ , 1 ≤ l ≤ q ≤ s1s2

}
(27)

or

S3 =
{
(0, a2(kl′ )) ∈ G1 × G3 : 0 ∈ G1 , H (0, a2(kl′ )) , Θ , 1 ≤ l′ ≤ r ≤ s3

}
(28)

and the block matrix defined by

H =
[
H

(
b1(i1), b2( j1)

)
. . .H

(
b1(iq), b2( jq)

) ]
if 0 < G1 (29)

or

H =
[
H

(
b1(i1), b2( j1)

)
. . .H

(
b1(iq), b2( jq)

)
H (0, a2(k1)) . . .H (0, a2(kr))

]
if 0 ∈ G1 . (30)

Suppose that the vector valued function f (x) satisfies f ∈ C2 ([0, 1]) and f (x) ∈ Im (H), i.e.:(
I −HH†

)
f (x) = 0 , 0 ≤ x ≤ 1 (31)

and also satisfies that[
0 . . . 0 H

(
b1(il), b2( jl)

)
0 . . . 0

]
H
†
((

1 − ρ0b1 (il)
)

f (0) + b1 (il) f ′(0)
)

= 0

[
0 . . . 0 H

(
b1(il), b2( jl)

)
0 . . . 0

]
H
†

(
−

(
1−b2( jl) + ρ0b1 (il) b2( jl)

b1 (il)

)
f (1)+b2( jl) f ′(1)

)
=0

1 ≤ l ≤ q , if 0 < G1


(32)

and also satisfies that[
0 . . . 0 H (0, a2(kl′ )) 0 . . . 0

]
H
† f (0) = 0[

0 . . . 0 H (0, a2(kl′ )) 0 . . . 0
]
H
†
(
a2(kl′ ) f (1) + f ′(1)

)
= 0

1 ≤ l′ ≤ r , if 0 ∈ G1


(33)

From (23) and (25) and lemma 1.2 one gets that

ImH
(
b1(i1), b2( j1)

)
= Ker

(
B̃1 − b1(il)I

)
∩ Ker

(
B̃2 − b2( jl)I

)
and

ImH (0, a2(kl′ )) = Ker
(
B̃1

)
∩ Ker

(
Ã2 − a2(kl′ )I

)
. (34)
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Thus, ImH is the direct sum of subspaces Hl and Hl′ given by

Hl = ImH
(
b1(il), b2( jl)

)
, 1 ≤ l ≤ q , Hl′ = ImH (0, a2(kl′ )) , 1 ≤ l′ ≤ r (35)

and the projection fl(x) of vector valued function f (x) on subspace Hl is given by

fl(x) =
[
0 . . . 0 H

(
b1(il), b2( jl)

)
0 . . . 0

]
H
† f (x) , 1 ≤ l ≤ q , 0 ≤ x ≤ 1 (36)

or

fl′ (x) =
[
0 . . . 0 H (0, a2(kl′ ) 0 . . . 0

]
H
† f (x) , 1 ≤ l′ ≤ r , 0 ≤ x ≤ 1. (37)

If we assume that projection fl′ (x) = 0 when 0 < G1, from (31) one gets

f (x) =

r∑
l′=1

fl′ (x) +

q∑
l=1

fl(x) = HH† f (x) , 0 ≤ x ≤ 1 .

Under these hypotheses on f (x), one gets that fl(x) and fl′ (x) are twice continuously differentiable on
[0, 1], and by (32) and (33) it follows that

(1 − ρ0b1 (il)) fl(0) + b1 (il) f ′l (0) = 0

−

(
1 − b2( jl) + ρ0b1 (il) b2( jl)

b1 (il)

)
fl(1) + b2( jl) f ′l (1) = 0

 (38)

and

fl′ (0) = 0

a2(k0) fl′ (1) + f ′l′ (1) = 0

 (39)

If subspaces ImH
(
b1(il), b2( jl)

)
with 1 ≤ l ≤ q and ImH (0, a2(kl′ )) with 1 ≤ l′ ≤ r, are invariant with

respect the matrix A, i.e., that is, if

[
I −H

(
b1(i1), b2( j1)

) (
H

(
b1(i1), b2( j1)

))†] AH
(
b1(i1), b2( j1)

)
= 0 , 1 ≤ l ≤ q (40)

and[
I −H (0, a2(kl′ )) (H (0, a2(kl′ )))

†
]

AH (0, a2(kl′ )) = 0 , 0 ∈ G1 1 ≤ l′ ≤ r (41)

from (29), (30), (40) and (41), taking into account Theorem 2 of Ref. [15] and Theorem 4 of [16], one gets
that the series

u(x, t, l) =

=



∑
λmn∈F (l)

e−λ
2
mn(l)At ((1−ρ0b1(il

)
sin (λn(l)x)−b1(il)λn(il) cos (λn(l)x)

)
Cλmn(l), if 0 < F (l)

(
1 − ρ0b1(il)

)
x − b1(il)C0(l)+

+
∑

λmn∈F (l′)

e−λ
2
mn(l)At ((1−ρ0b1(il

)
sin (λn(l)x)−b1(il)λn(il) cos (λn(l)x)

)
Cλmn(l), if 0 ∈ F (l)

(42)



E. Defez et al. / Filomat 33:3 (2019), 897–915 903

and

u(x, t, l′) =



∑
λmn∈F (l′)

e−λ
2
mn(l′)At sin (λn(l′)x) C0(l′) , if a2(kl′ ) , −1

x C0(l′) +
∑

λmn∈F (l′)

e−λ
2
mn(l′)At sin (λn(l′)x)Cλmn(l) , if a2(kl′ ) = −1

(43)

if 0 ∈ G1, where F (l), λn(l) and Cλmn(l), are given by Theorem 2 of Ref. [15], are solutions of problem
(1)–(3) with the initial conditions

u(x, 0, l) = fl(x)

u(x, 0, l′) = fl′ (x)

 , 0 ≤ x ≤ 1. (44)

Thus

u(x, t) =

q∑
l=1

u(x, t, l) +

r∑
l′=1

u(x, t, l′) (45)

considering u(x, t, l′) = 0 if 0< G1, is an exact solution of problem (1)–(4).

Summarizing, the following result has been established:

Theorem 2.1. Let be A ∈ Cm×m, satisfying condition (5). Let B̃1, B̃2 and Ã2 be matrices defined by (8) and (11). We
assume that conditions (12) and (15) holds. Let be S2, S3 and matrixH defined by (27), (28) and (29)–(30) respectively,
and let be f (x) a vector valued function twice continuously differentiable on [0, 1] which satisfies conditions (31)-(32)
and (38)-(39). Under these hypotheses, vector valued function u(x, t) defined by (45), where u(x, t, l) and u(x, t, l′) are
defined by (42) and (43) respectively, is an exact solution of problem (1)–(4).

3. Algorithm and Example

We can summarize the process to calculate the solution of the homogeneous problem with homogeneous
conditions (1)–(4) in Algorithm 1.
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Algorithm 1 Solution of homogeneous problem (1)–(4)
1: Check that matrix A satisfies (5).

2: Check that the block matrix
(

A1 B1
A2 B2

)
is regular.

3: Determine a number ρ0 ∈ R so that the matrix pencil A1 + ρ0B1 is regular.
4: Determine matrices Ã1, B̃1, defined by (8), and determine matrices Ã2, B̃2 defined by (11).
5: Determine σ(B̃1), σ(B̃1), σ(B̃1) and Gi, i = 1, 2, 3, defined by (22).
6: Build matrices H

(
b1(i), b2( j)

)
defined by (23), and if 0 ∈ G1, build matrices H (0, a2(k)) defined by (25).

Discard the null matrices.
7: Select matrices H

(
b1(i), b2( j)

)
which are invariant by matrix A, i.e., satisfy condition (40). Let q be the

number of these matrices. If 0 ∈ G1, select matrices H (0, a2(k)) which are invariant by matrix A, i.e.,
satisfy condition (41). Let r be the number of these matrices.

8: Build matrixH defined by (29) if 0 < G1 and by (30) if 0 ∈ G1.
9: Check that f ∈ C2 ([0, 1]) and satisfies condition (31).

10: Check that for each non null matrices H
(
b1(i), b2( j)

)
invariant by matrix A, conditions (32) holds, and if

0 ∈ G1, that matrices H (0, a2(k)) satisfy conditions (33).
11: For each non null matrices H

(
b1(i), b2( j)

)
invariant by matrix A, build projection fl(x) of f (x) on subspace

ImH
(
b1(i), b2( j)

)
defined by (36). Check that these projections satisfy condicions (38).

12: If 0 ∈ G1, for each non null matrices H (0, a2(k)) invariant by matrix A, build projection fl′ (x) of f (x) on
subspace ImH (0, a2(k)) defined by (37). Check that these projections satisfy condicions (39).
If these conditions are not satisfied, algorithm stops because it is not possible find the solution of
problem (1)–(4) for the given data. Otherwise, we have two possibilities:

Option A: If 0 < G1, go to algorithm 2.

Option B: If 0 ∈ G1, go to algorithm 3.
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Algorithm 2 Algorithm for the option A of algorithm 1. For each non null matrices H
(
b1(i), b2( j)

)
invariant

by matrix A, we obtain the solution of the problem
ut(x, t, l) = Auxx(x, t, l) , 0 < x < 1 , t > 0

A1u(0, t, l) + B1ux(0, t, l) = 0 , t > 0

A2u(1, t, l) + B2ux(1, t, l) = 0 , t > 0

u(x, 0) = fl(x) , 0 ≤ x ≤ 1
1: For each non null matrices H

(
b1(i), b2( j)

)
invariant by matrix A, take b1 = b1(i), b2 = b2( j).

2: Determine the positive solutions of the equation (16) of Ref. [15] and determine the set F given by (27)
of Ref. [15]

3: Determine degree p of minimal polynomial of matrix A.
4: Build block matrix Gλ(ρ0) defined by (31) of Ref. [15].
5: Determine λ ∈ F so that Rank

(
Gλ(ρ0)

)
< m.

6: Include the eigenvalue λ = 0 if 1 ∈ σ
(
−Ã2Ã1

)
.

7: Determine α given by (44) of Ref. [15].
8: Determine vectors Cλn defined by (47) of Ref. [15].
9: Determine functions Xλn defined by (41) of Ref. [15].

10: Determine solution u(x, t, l) given by (42). Return to start the procedure from step 1 taking a different
matrix H

(
b1(i), b2( j)

)
. This cycle will be repeated until maximum of q times.

11: Determine solution of (1)–(4) in the form given by u(x, t) =

q∑
l=1

u(x, t, l) defined by (45).

Algorithm 3 Algorithm for the option B of algorithm 1 (0 ∈ G1). Furthermore the solutions u(x, t, l) obtained
by the algorithm 2, for each non null matrices H (0, a2(k)) invariant by matrix A, we obtain the solution of
the problem
ut(x, t, l′) = Auxx(x, t, l′) , 0 < x < 1 , t > 0

A1u(0, t, l′) + B1ux(0, t, l′) = 0 , t > 0

A2u(1, t, l′) + B2ux(1, t, l′) = 0 , t > 0

u(x, 0) = fl′ (x) , 0 ≤ x ≤ 1
1: Determine, using algorithm 2, each solution u(x, t, l) asociated to the non null matrices H

(
b1(i), b2( j)

)
invariant by matrix A. Avoid step 11 in this algorithm 2, and continue the algorithm 3 in step 2.

2: For each non null matrices H (0, a2(k)) invariant by matrix A, take a2 = a2(k).
3: Determine the positive solutions of (2.5) of Ref. [16] and determine set F , denoted F?, given by (2.8) of

Ref. [16].
4: Build the block matrix Gλ(ρ0) defined by (2.12) of Ref. [16].
5: Determine λ ∈ F? so that Rank

(
Gλ(ρ0)

)
< m.

6: Include the eigenvalue λ = 0 if 1 ∈ σ
(
−Ã2Ã1

)
.

7: Determine α given by (3.6) of Ref. [16].
8: Determine vectors Cλn defined by (3.9) of Ref. [16].
9: Determine solution u(x, t, l′) given by (43). Return to start the procedure from step 2 taking a different

matrix H (0, a2(k)). This cycle will be repeated until maximum of r times.
10: Determine solution u(x, t) defined by (45).
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Example 3.1. We will consider the homogeneous parabolic problem with homogeneous conditions (1)–(4), where
matrix A ∈ C4×4 is chosen as

A =


2 0 0 −1
1 1 0 −2
−1 0 2 1

0 0 0 1

 , (46)

and the 4 × 4 matrices Ai,Bi, i ∈ {1, 2} are

A1 =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 , A2 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 0 0


B1 =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 , B2 =


1 0 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 , (47)

We will follow the Algorithm 1 step by step.

1. Matrix A satisfies condition (5) because σ(A) = {1, 2}.

2. The block matrix

(
A1 B1
A2 B2

)
=



0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 1 0 0 1 0 0 0
1 0 0 0 1 0 0 0
0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 1


is regular.

3.Note that although A1 is singular, taking ρ0 = 1 ∈ R the matrix pencil A1 + ρ0B1 = I4×4 is regular. Therefore, we
take ρ0 = 1.

4. Matrices Ã1 and B̃1 are given by

Ã1 =
(
A1 + ρ0B1

)−1 A1 = A1 , B̃1 =
(
A1 + ρ0B1

)−1 B1 = B1 , (48)

Matrices Ã2 and B̃2 are given by

Ã2 =
(
B2 −

(
A2 + ρ0B2

)
B̃1

)−1
A2 =


−1 0 0 0

0 −1 0 0
0 0 0 1
0 0 0 0


B̃2 =

(
B2 −

(
A2 + ρ0B2

)
B̃1

)−1
B2 =


−1 0 0 0
−1 0 0 0

0 0 1 0
0 0 0 1




(49)
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5. We have

σ
(
B̃1

)
= {0, 1} , σ

(
B̃2

)
= {0,−1, 1} , σ

(
Ã2

)
= {0,−1}

By (22) we define

G1 = {b1(1) = 0, b1(2) = 1} , s1 = 2

G2 = {b2(1) = 0, b2(2) = −1, b2(3) = 1} , s2 = 3

G3 = {a2(1) = 0, a2(2) = −1} , s3 = 2.


6. We have to consider matrices H(1, 0),H(1,−1), H(1, 1) defined by (23) and, as 0 ∈ G1, we have also to consider

matrices H(0, 0),H(0,−1) defined by (25):

H(1, 0) =


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 , H(1,−1) =


1/2 1/2 0 0
1/2 1/2 0 0
0 0 0 0
0 0 0 0


H(1, 1) =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , H(0, 0) =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0


H(0,−1) =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .

We discard null matrices H(1, 1) and H(0,−1).

7. We check if subspaces ImH(1, 0), ImH(1,−1) are invariant by matrix A, i.e., matrices H(1, 0),H(1,−1) satisfy
condition (40) and if subspace ImH(0, 0) is invariant by matrix A, i.e., matrix H(0, 0) satisfies condition (41).

[
I −H(1, 0) (H(1, 0))†

]
AH(1, 0) =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


thus ImH(1, 0) is invariant by matrix A.

[
I −H(1,−1) (H(1, 0))†

]
AH(1,−1) =


0 0 0 0
0 0 0 0
−1/2 −1/2 0 0

0 0 0 0


thus ImH(1,−1) is not invariant by matrix A. Then q = 1.

[
I −H(0, 0) (H(0, 0))†

]
AH(0, 0) =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


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thus ImH(0, 0) is invariant by matrix A. Then r = 1.

8. Taking into account that 0 ∈ G1, we build the block matrixH defined by (30):

H = [H(1, 0) H(0, 0)] =


0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0

 .
9. Let f (x) =

(
f1(x), f2(x), f3(x), f4(x)

)T be a vector valued function which verifies f ∈ C2 ([0, 1]) and f (x) ∈ Im (H),
i.e., f (x) satisfies (31):

(
I −HH†

)
f (x) =


f1(x)

0
0

f4(x)

 , 0 ≤ x ≤ 1

so then f (x) ∈ Im (H) only if f (x) =
(
0, f2(x), f3(x), 0

)t.

10. As we have only a non null matrix of the form H
(
b1(i), b2( j)

)
invariant by matrix A, H(1, 0), we have to check

condition (32) for values b1 = 1, b2 = 0. Condition (32) takes the form

[H (1, 0) Θ]H†
((

1 − ρ0b1
)

f (0) + b1 f ′(0)
)

=


0

f ′2(0)
0
0


then, we have to take f ′2(0) = 0.

Furthermore, the second identity of (32) take the form

[H (1, 0) Θ]H†
(
−

(
1 − b2 + ρ0b1b2

b1

)
f (1) + b2 f ′(1)

)
=


0
0
0
0


which does not impose any new restriction on function f (x). As we have only a non null matrix of the form
H (0, a2(k)) invariant by matrix A, H(0, 0), we have to check condition (33) for the value a2 = 0, i.e.:

[Θ H (0, 0)]H† f (0) =


0
0

f3(0)
0

 ,
then, we have to take f3(0) = 0. Also, condition (33) takes the form

[Θ ,H (0, 0)]H†
(
a2 f (1) + f ′(1)

)
=


0
0

f ′3(1)
0

 ,
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thus we have to take f ′3(1) = 0. Then, vector valued function f (x) have to satisfy the following conditions:

f (x) =
(
0, f2(x), f3(x), 0

)T , f ′2(0) = f3(0) = f ′3(1) = 0. (50)

11 − 12. Projection fl(x) of f (x) on subspace ImH (1, 0), by (36), is given by

fl(x) = [H (1, 0) 04×4]H† f (x) =


0

f2(x)
0
0

 ,
and projection fl′ (x) of f (x) on subspace ImH (0, 0), by (37), is given by

fl′ (x) = [04×4 H (0, 0)]H† f (x) =


0
0

f3(x)
0

 ,
trivially fulfilled f (x) = fl(x) + fl′ (x). Each projection have to satisfy conditions (38) and (39) respectively. For
fl(x), condition (38) indicates that, taking ρ0 = 1, b1 = 1, b2 = 0, one gets

(1 − ρ0b1) fl(0) + b1 f ′l (0) =


0

f ′2(0)
0
0


−

(
1 − b2 + ρ0b1b2)

b1

)
fl(1) + b2 f ′l (1) =


0

− f2(1)
0
0




which means that at the conditions given in (50) we must to add that f2(1) = 0, i.e., f (x) have to verify the
following conditions:

f (x) =


0

f2(x)
f3(x)

0

 , f2(1) = f ′2(0) = f3(0) = f ′3(1) = 0. (51)

For fl′ (x), condition (39) indicates that, taking ρ0 = 1, a2 = 0, one gets

fl′ (0) =


0
0

f3(0)
0


a2(k0) fl′ (1) + f ′l′ (1) =


0
0

f ′3(1)
0







E. Defez et al. / Filomat 33:3 (2019), 897–915 910

which does not add any new restrictions on function f (x).

We consider, for example, the vector valued function

f (x) =


0

x2(x − 1)3

x2
− 2x
0

 , (52)

which satisfy all the conditions given in (51).

As 0 ∈ G1, we are in the option B of algorithm 1, and we have to go to algorithm 3.

We continue with the algorithm 3.

1.We must to determine, using algorithm 2, each solution u(x, t, l) associated with non null matrices H
(
b1(i), b2( j)

)
)

invariant by matrix A. In this example we have only one matrix, given by H(1, 0), then we continue with
algorithm 2.

We continue with the algorithm 2.

1. We take b1 = 1, b2 = 0 and fl(x) given by fl(x) =


0

x2(x − 1)3

0
0

 .
2. Equation (16) of Ref. [15] take the form

λ cot (λ) = 0 . (53)

It is easy to show that for each k ≥ 1, there exists an exact solution of (53) given by λk = π
2 +kπ ∈ ]kπ, (k + 1)π[,

with an additional solution λ0 = π
2 ∈ ] 0, π [ because

(
1 − b2 + ρ0b1b2

) (
1 − ρ0b1

)
b1

= 0 < 1.

Thus, we have a numerable family of solutions of (53), F , given by formula (27) of Ref. [15]:

F =
{
λk =

π
2

+ kπ;λk ∈ (kπ, (k + 1)π) , k ≥ 1
}
∪ F0 , F0 =

{
λ0 =

π
2

}
. (54)

3. The minimal polynomial of matrix A is given by

p(x) = (x − 2)2(x − 1)2,

then p = 4.
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4. If λ is a positive solution of (53), the block matrix Gλ(ρ0) defined by (31) of Ref. [15] takes the form:

Gλ(1) =



0 0 0 −1
0 0 0 −2
1 0 0 0
0 0 0 0
0 0 0 −3
0 0 0 −5
4 0 0 0
0 0 0 0
0 0 0 −7
0 0 0 −10

12 0 0 0
0 0 0 0

−λ2 0 0 0
−λ2 0 0 0

0 0 0 1
0 0 0 0

−2λ2 0 0 λ2

−2λ2 0 0 λ2

0 0 0 1
0 0 0 0

−4λ2 0 0 3λ2

−4λ2 0 0 3λ2

0 0 0 1
0 0 0 0

−8λ2 0 0 7λ2

−8λ2 0 0 7λ2

0 0 0 1
0 0 0 0


5. Since the second and third columns of Gλ(1) are zero,we have that Rank (Gλ(1)) < 4. Thus, each one of the positive

solutions given by (54) is an eigenvalue, see Ref. [15].

6. It is trivial to check that 1 < σ
(
−Ã2Ã1

)
, because

−Ã2Ã1 =


0 0 0 0
0 0 0 0
0 0 0 −1
0 0 0 0

 , σ
(
−Ã2Ã1

)
= {0} ,

Then we do not include 0 as an eigenvalue.

7. Taking into account that
(
1 − b2 + ρ0b1b2

) (
1 − ρ0b1

)
b1

= 0 < 1, one gets α = 0.

8. Vectors Cλn defined by (47) of Ref. [15] take the values

Cλn =
384

(
80 − 16(−1)n(2n + 1)π − 3(π + 2nπ)2

)
π7(2k + 1)7


0
1
0
0

 . (55)
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9. Eigenfunctions asociates to eigenvalues λn > 0, are given by:

Xλn =
(
sin (λnx)

(
1 − ρ0b1

)
− λn cos (λnx)b1

)
Cλn . (56)

Using the minimal theorem [4, p.571], one gets that

eAu =


e2u 0 0 −eu (−1 + eu)

eu (−1 + eu) eu 0 −eu (−1 + eu + u)
−e2uu 0 e2u e2uu

0 0 0 eu

 , (57)

Next, by considering (57) with u = −
(
π
2 + nπ

)2
t and simplifying, we obtain the value of e−(

π
2 +nπ)2

At.

10.Replacing Cλn given by (55) in (56), multiplying by the matrix e−(
π
2 +nπ)2

At, we finally obtain the solution u(x, t, l)
given by

u(x, t, l)=
∑
n≥0

192e−
1
4(π+2nπ)2t(−80+(2n+1)π(16(−1)n+(3+6n)π)) cos

(
1
2 (2n+1)πx

)
π6(2n + 1)6


0
1
0
0

 .
We avoid the step 11 of Algorithm 2.

We continue with the step 2 of the algorithm 3.

2. We must to determine, using algorithm 3, each solution u(x, t, l′) associated with non null matrices H (0, a2(k))
invariant by matrix A. In this example we have only one, given by H (0, 0), then we define

a2 = 0.

3. Equation (2.5) given in Ref. [16] is the same equation (53) and have the same positive solutions λk = π
2 + kπ ∈

(kπ, (k + 1)π), with an additional solution λ0 = π
2 ∈ ] 0, π [ because −a2 = 0 < 1. Thus, set F defined by (2.8)

of Ref. [16], and denoted F?, is given by:

F? =
{
λk =

π
2

+ kπ;λk ∈ (kπ, (k + 1)π) , k ≥ 1
}
∪ F0 (58)

where

F0 =
{
λ0 =

π
2

}
.

4. If λ is a positive solution of (53) and p = 4, matrix Gλ(ρ0) defined by (2.12) of Ref. [16] take the form:
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Gλ(1) =



0 0 0 −1
0 0 0 −2
1 0 0 0
0 0 0 0
0 0 0 −3
0 0 0 −5
4 0 0 0
0 0 0 0
0 0 0 −7
0 0 0 −10

12 0 0 0
0 0 0 0

−λ2 0 0 0
−λ2 0 0 0

0 0 0 1
0 0 0 0

−2λ2 0 0 −λ2

−2λ2 0 0 −λ2

0 0 0 1
0 0 0 0

−4λ2 0 0 3λ2

−4λ2 0 0 3λ2

0 0 0 1
0 0 0 0

−8λ2 0 0 7λ2

−8λ2 0 0 7λ2

0 0 0 1
0 0 0 0


5. Since the second and third columns of Gλ(1) are zero, we have that Rank (Gλ(1)) < 4. Thus, each one of the

positive solutions given by (58) is an eigenvalue, see Ref. [16].

6. As shown as 1 < σ
(
−Ã2Ã1

)
, eigenvalue 0 is not added.

7. Taking into account that 0 < F?, one gets that α given by (3.6) of Ref. [16] takes the value α = 0.

8. Vectors Cλn defined by (3.9) of Ref. [16] take the value:

Cλn = −
32

π3(2k + 1)3


0
0
1
0

 . (59)

9. Eigenfunctions Xλn asociates to eigenvalues λn > 0, are given by:

Xλn = sin (λnx). (60)
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Matrix eAu has already been calculated in (57), the taking in (57) the value u = −
(
π
2 + nπ

)2
t and simplifying,

we obtain the value of e−(
π
2 +nπ)2

At. Replacing values of Cλn given by (59) in (60), multiplying by the matrix

e−(
π
2 +nπ)2

At and simplifying, we finally obtain the solution u(x, t, l′) given by

u(x, t, l′) =
∑
n≥0

−

32e−
1
2 (π+2nπ)2t sin

(
1
2 (1 + 2n)πx

)
π3(2n + 1)3


0
0
1
0

 . (61)

10. By (45), after simplification, we finally obtain the solution of problem (1)–(4) which is given by

u(x, t) = u(x, t, l) + u(x, t, l′)

=
∑
n≥0



0

192e−
1
4 (π+2nπ)2t (−80+(2n+1)π(16(−1)n+(3+6n)π)) cos

(
1
2 (2n + 1)πx

)
π6(2n + 1)6

−

32e−
1
2 (π+2nπ)2t sin

(
1
2 (2n + 1)πx

)
π3(2n + 1)3

0


.

It is not difficult to show that the problem (1)–(4) with matrix A and matrices Ai,Bi, i ∈ {1, 2} defined by (46) and
(47) respectively, for vector valued function f (x) defined by (52) can not be solved using the algorithms given in
references [15] and [16]. In effect, to apply the proposed method in [15], condition (14), with b1 = 1, b2 = 0, have to
be satisfied. In this case one gets

Ker
(
B̃1 − I

)
∩ Ker

(
B̃2

)
=

〈
0
1
0
0


〉

then f (x) < Ker
(
B̃1 − I

)
∩ Ker

(
B̃2

)
. In the same form, to apply the proposed method in [16] condition (17) with

a2 = 0, have to be satisfied. But in this case one gets

Ker
(
B̃1

)
∩ Ker

(
Ã2

)
=

〈
0
0
1
0


〉

then f (x) < Ker
(
B̃1

)
∩ Ker

(
Ã2

)
. Thus, we have achieved our objective to build the exact series solution

of the problem (1)–(4) for more general vector valued functions f (x) that the method proposed in references
[15] and [16].
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