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Abstract. The equivalent relation is established here about the stability of stochastic differential equations
with piecewise continuous arguments(SDEPCAs) and that of the one-legθmethod applied to the SDEPCAs.
Firstly, the convergence of the one-legθmethod to SDEPCAs under the global Lipschitz condition is proved.
Secondly, it is proved that the SDEPCAs are pth(p ∈ (0, 1)) moment exponentially stable if and only if the
one-leg θ method is pth moment exponentially stable for some sufficiently small step-size. Thirdly, the
corollaries that the pth moment exponential stability of the SDEPCAs (the one-leg θ method) implies the
almost sure exponential stability of the SDEPCAs (the one-leg θ method) are given. Finally, numerical
simulations are provided to illustrate the theoretical results.

1. Introduction

In this paper, we consider the following SDEPCAs

dx(t) = µ(x(t), x([t]))dt + σ(x(t), x([t]))dB(t) (1)

on t ≥ 0, with initial value x(0) = ξ ∈ L2
F0

(Ω;Rd), B(t) is an r-dimensional Brownian motion. Here
x(t) = (x1(t), x2(t), ..., xd(t)) ∈ Rd, µ : Rd

× Rd
→ Rd and σ : Rd

× Rd
→ Rd×r, E|ξ|p < ∞ for all p > 0. [t]

denotes the integer part of t. The argument [t] has intervals of constancy. Since there is in general no explicit
solution to an SDEPCA, numerical solutions are required in practice. The motivation of this paper is to
establish the equivalent relation of the almost sure and the small-moment exponential stability between the
SDEPCAs and the one-leg θ method applied to SDEPCAs.

At present, there are some results on the equivalence of stability between the stochastic differential
equations(SDEs) and the numerical approximations. Higham et al. [3] proved that the mean square
exponential stability of the SDEs is equivalent to that of the numerical method under the finite-time
convergence condition, and the corresponding second-moment Lyapunov exponent bounds can be taken
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to be arbitrarily close. Afterwards, in [4], it was shown that the Euler method preserves both the almost
sure and the small moment exponential stability on the scalar-noise SDEs which are linear or satisfy the
linear growth condition. It is also proved that the backward Euler method maintains the almost sure
exponential stability under the one-sided Lipschitz condition. Instead of Lyapunov functions, Mao [9] used
the discrete approximation to investigate whether the almost sure exponential stability of the SDEs is shared
with that of a numerical method or not. There are also several works on the stability of stochastic delay
differential equations(SDDEs). Using continuous and discrete semimartingale convergence theorems, Wu
[17] presented that the Euler method preserved the almost sure exponential stability of SDDEs with the
local Lipschitz and the linear growth conditions, while it didn’t hold when the SDDEs satisfy the one-sided
Lipschitz condition. The author also showed that the backward Euler method preserves the almost sure
exponential stability of SDDEs with the local Lipschitz and the one-sided Lipschitz conditions in [17]. In
2011, conditions under which the Euler method shared the almost sure exponential stability of the exact
solution for SDDEs were given in [18], where the nonnegative semimartingale convergence theorem was
employed.

The deterministic differential equation with piecewise continuous arguments(EPCAs) is formulated asx′(t) = f (t, x(t), x(α(t))), t ∈ [0,T],
x(0) = x0,

(2)

where α(t) has intervals of constancy. The solutions of (2) are determined by a finite set of initial data, rather
than by an initial function, as in the case of general functional differential equations(FDEs). In fact, the
EPCAs have the structure of continuous dynamical systems within intervals of certain lengths. Therefore,
the EPCAs are with properties of both the differential and the difference equations. The theory of EPCAs
is firstly studied by Winner[15]. Subsequently, a number of works on EPCAs have been presented (see e.g.
[16],[1], [2],[7],[12],[13] and references therein).

In recent years, Song and Zhang et al. [14] considered the convergence in probability of the Euler-
Maruyama method for the SDEPCAs under Khasminskii-type condition. Subsequently, they presented
several conditions under which the Euler method is convergent to the SDEPCAs in mean square in [19]. In
2014, Li [6] devoted to the existence and exponential stability of the solutions for stochastic cellular neural
networks with piecewise constant argument, and some sufficient conditions were given for the existence
and uniqueness of the equilibrium point for the addressed neural networks. Recently, Milošević [10] studied
the convergence and stability of the Euler-Maruyama method for retarded SDEPCAs in mean square under
the global Lipschitz condition. However, there is so far no theory on the equivalent relation of the almost
sure and the small-moment exponential stability between SDEPCAs and their numerical methods. The aim
of this paper is to study whether the one-leg θmethod can preserve the stochastic stability (the pth moment
exponential stability or the almost sure exponential stability) of the SDEPCAs (1) or not.

Compared with [10], there are several differences to highlight in this paper. On the one hand, we use the
discrete solutions to obtain the results on stability, while [10] adopts the continuous-time approximation.
In general, only the discrete solutions are computed by the numerical methods but not the continuous-time
approximate solutions. Therefore, it is much more useful if the theory is based on the discrete solutions.
On the other hand, many inequalities used in [10] for the 2nd moment do not work for small-moment.
Hence, we develop this paper to deal with the small-moment case. Moreover, in [10], Milošević regards
the SDEPCAs as functional differential equations and employs the techniques in the functional differential
equations to get the lemmas and theorems. However, we resort to the constant intervals of [t], which reveals
the feature of the SDEPCAs, to develop the results in this paper.

An outline of this paper is as follows. Section 2 discusses some preliminary theory on the analytical
solution. Section 3 proves the convergence of the one-leg θmethod on SDEPCAs under the global-Lipschitz
condition. In Section 4, we show that the SDEPCAs is pth(p ∈ (0, 1)) moment exponentially stable if and only
if the one-leg θmethod is pth moment exponentially stable for some sufficiently small step-size, and the pth
moment exponential stability of both the SDEPCAs and the one-leg θ method can derive the almost sure
exponential stability of the SDEPCAs and the one-leg θ method. The mean-reverting Ornstein-Uhlenbeck
process is taken as an example to verify the theoretical analysis in Section 5.
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2. Preliminary notations

Let (Ω,F ,P) be a completed probability space with a filtration {Ft}t≥0 satisfying the usual conditions
and B(t) be an r-dimensional Brownian motion defined on this probability space. Throughout this paper,
we assume p ∈ (0, 1). We use the notation ‖x‖ := (x2

1 + x2
2 + . . . + x2

d)
1
2 for all x = (x1, x2, . . . , xd) ∈ Rd. For

a, b ∈ R, we use a ∨ b and a ∧ b for max(a, b) and min(a, b), respectively. Equation (1) is equivalent to the
following stochastic integral equation

x(t) = ξ +

∫ t

0
µ(x(s), x([s]))ds +

∫ t

0
σ(x(s), x([s]))dB(s), t ≥ 0. (3)

It is helpful for us to introduce an inequality used in the rest of this paper.

Lemma 2.1. ([5]) Suppose that ai(i = 1, 2, ..,n) are complex numbers, for any p > 0, then there exists Cp such that

( n∑
i=1

|ai|
)p
≤ Cp

n∑
i=1

|ai|
p, (4)

where Cp =

{
1, 0 < p ≤ 1,
np−1, p > 1.

Let us give the definition of the solution for Eq. (1).

Definition 2.2. [19] An Rd-valued stochastic process {x(t)}t≥0 is called a solution of SDEPCAs (1) on [0,∞), if it
has the following properties:

• {x(t)}t≥0 is continuous on [0,∞) and Ft adapted;

• {µ(x(t), x([t]))}t≥0 ∈ L
1([0,∞),Rd) and {σ(x(t), x([t]))}t≥0 ∈ L

2([0,∞),Rd×r);

• Equation (3) is satisfied on each interval [k, k + 1) ⊂ [0,∞) with integral end points almost surely.

A solution {x(t)}t≥0 is said to be unique if any other solution {x̄(t)}t≥0 is indistinguishable from {x(t)}t≥0, that is

P{x(t) = x̄(t), f or any t ∈ [0,∞)} = 1.

Remark 2.3. Denote the solution of equation (1) by x(t; 0, ξ). Note from (3) that for any integer k̄ ∈ [0,∞),

x(t) = x(k̄) +

∫ t

k̄
µ(x(s), x([s]))ds +

∫ t

k̄
σ(x(s), x([s]))dB(s), t ≥ k̄. (5)

This is an SDEPCA on [k̄,∞) with initial value x(k̄) = x(k̄; 0, ξ), whose solution is denoted by x(t; k̄, x(k̄; 0, ξ)).
Therefore, the solution of (1) has the following semigroup property

x(t; 0, ξ) = x(t; k̄, x(k̄; 0, ξ)), 0 ≤ k̄ ≤ t < ∞. (6)

In order to investigate whether the numerical solution solved by the one-leg θ method shares with the
almost sure exponential stability of (1) or not, we impose the global Lipschitz condition on the coefficients
of (1).

Assumption 2.4. Assume that there exists a positive constant K such that for any x1, y1, x2, y2 ∈ Rd, the coefficients
µ and σ satisfy

||µ(x1, y1) − µ(x2, y2)||2 ∨ ||σ(x1, y1) − σ(x2, y2)||2 ≤ K(||x1 − x2||
2 + ||y1 − y2||

2). (7)

Furthermore, assume µ(0, 0) = 0 and σ(0, 0) = 0.
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We should point out that equation (1) has the trivial solution x(t) ≡ 0 corresponding to the initial value
ξ = 0.

Remark 2.5. Assumption 2.4 implies that there exists a unique global solution x(t) to equation (1) on t ≥ 0(see [19]).

Lemma 2.6. Let Assumption 2.4 hold. For any p ∈ (0, 1), there exists H(t, p,K) dependent on t, p, K such that the
solution x(t) of SDEPCAs satisfies

E||x(t)||p ≤ H(t, p,K)E||ξ||p, t ≥ 0. (8)

Proof. Since the solution of equation (1) satisfies the integral equation (3), by conditional expectation and
(4), we have

E(||x(t)||2|ξ) ≤ 3E(||ξ||2|ξ) + 3E(||
∫ t

0
µ(x(s), x([s]))ds||2|ξ) + 3E(||

∫ t

0
σ(x(s), x([s]))dB(s)||2|ξ)

≤ 3||ξ||2 + 3t
∫ t

0
E(||µ(x(s), x([s]))||2|ξ)ds + 3

∫ t

0
E(||σ(x(s), x([s]))||2|ξ)ds

≤ 3||ξ||2 + 3(t + 1)K
∫ t

0
E
(
(||x(s)||2 + ||x([s])||2)|ξ

)
ds.

Hence

sup
0≤t≤t1

E(||x(t)||2|ξ) ≤ 3||ξ||2 + 6(t1 + 1)K
∫ t1

0
sup
0≤r≤s
E(||x(r)||2|ξ)ds. (9)

Using the Gronwall inequality, we obtain

sup
0≤t≤t1

E(||x(t)||2|ξ) ≤ 3e6Kt1(t1+1)
||ξ||2 (10)

for any t1 ≥ t. Therefore, for arbitrary t ≥ 0, x(t) yields

E||x(t)||2 = E
(
E(||x(t)||2|ξ)

)
≤ 3e6Kt(t+1)E||ξ||2. (11)

According to the Hölder inequality, for any p ∈ (0, 1), we have

E||x(t)||p = E
(
E(||x(t)||p|ξ)

)
≤ E

(
3

p
2 e3pKt(t+1)

||ξ||p
)

= H(t, p,K)E||ξ||p, (12)

where H(t, p,K) = 3
p
2 e3pKt(t+1). The lemma is proved.

For any integer k̄ ∈ [0,∞), if we regard {x(t)}t≥k̄ as the solution of (1) on t ≥ k̄ with initial value x(k̄) at
t = k̄, then, by time-homogeneity, x(t) satisfies

E||x(t)||p ≤ H(t − k̄, p,K)E||x(k̄)||p, t ≥ k̄. (13)

3. Convergence of the one-leg θmethod

In this section, we consider the one-leg θ method to (1) on [0,T]. The main result is to obtain the
convergence of the one-leg θ scheme under Assumption 2.4 on [0,T].

Let h = 1
m be given step-size with integer m > 1. Grid points tn are defined as tn = nh, n = 0, 1, · · · . For

simplicity, let T = Nh, N ∈N+. The one-leg θ method to (1) is defined as

yn+1 = yn + hµ(yh((n + θ)h), yh([(n + θ)h])) + σ(yn, y[nh]m)∆Bn, n = 0, 1, 2, ... (14)
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where y0 = x(0) = ξ, ∆Bn = B(tn+1) − B(tn), θ ∈ [0, 1], and yn is the approximation to x(tn) at tn. Moreover,
yh(t) with t ≥ 0 is defined by the linear interpolation, i.e.

yh(t) =
t − nh

h
yn+1 +

(n + 1)h − t
h

yn, nh ≤ t < (n + 1)h, n = 0, 1, 2, · · · .

As we know, for arbitrary n = 0, 1, 2, · · · , there exist k ∈ N and l = 0, 1, 2, · · · ,m − 1 such that n = km + l.
Hence (14) can be written as

ykm+l+1 = ykm+l + hµ(θykm+l+1 + (1 − θ)ykm+l, ykm) + σ(ykm+l, ykm)∆Bkm+l. (15)

Remark 3.1. If tn = nh ∈ [0,T], n = 0, 1, 2, · · · ,N, then nh = (km + l)h = k + lh, l = 0, 1, · · · ,m − 1. Because
lh < 1, hence k ≤ T.

Lemma 3.2. Under Assumption 2.4, if K
1
2θh < 1, then the one-leg θmethod (15) can be solved uniquely for ykm+l+1

with probability 1.

Proof. Writing (15) as F(ykm+l+1) = ykm+l+1, l = 0, 1, 2, · · · ,m − 1 and using (7), we have

||F(x) − F(y)|| = h||µ(θx + (1 − θ)a, b) − µ(θy + (1 − θ)a, b)||

≤ hK
1
2θ‖x − y‖.

Due to K
1
2θh < 1 and Banach contraction mapping theorem[11], the one-leg θ method has unique

solution.

In order to get the convergence theorem, several key lemmas are presented.

Lemma 3.3. Let Assumption 2.4 hold. If h satisfies 12Khθ2 < 1, then, for any p ∈ (0, 1), we have

sup
0≤tkm+l≤T

E||ykm+l||
p
≤ H̄(T, p,K)E||ξ||p f or any T > 0. (16)

where k ∈N, l = 0, 1, 2, · · · ,m − 1, H̄(T, p,K) = 6p(T+1)/2(1 + 2K)p(T+1)/2e9Kp(T+1).

Proof. For convenience, we let

z1(t) =

∞∑
km+l=0

ykm+l1[tkm+l,tkm+l+1)(t),

z2(t) =

∞∑
km+l=0

ykm+l+11[tkm+l,tkm+l+1)(t),

z3(t) =

∞∑
k=0

ykm1[tkm,t(k+1)m)(t)

for k ∈N, l = 0, 1, 2, · · · ,m − 1.
According to (15), we obtain

ykm+l+1 = ykm+l + hµ(θykm+l+1 + (1 − θ)ykm+l, ykm) + σ(ykm+l, ykm)∆Bkm+l

= ykm+l +

∫ tkm+l+1

tkm+l

µ(θz2(s) + (1 − θ)z1(s), z3(s))ds +

∫ tkm+l+1

tkm+l

σ(z1(s), z3(s))dB(s)

= ykm +

∫ tkm+l+1

tkm

µ(θz2(s) + (1 − θ)z1(s), z3(s))ds +

∫ tkm+l+1

tkm

σ(z1(s), z3(s))dB(s).

(17)
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Hence

E(||ykm+l+1||
2
|ξ) ≤3E(||ykm||

2
|ξ) + 3E

(
||

∫ tkm+l+1

tkm

σ(z1(s), z3(s))dB(s)||2|ξ
)

+ 3E
(
||

∫ tkm+l+1

tkm

µ(θz2(s) + (1 − θ)z1(s), z3(s))ds||2|ξ
)

≤3E(||ykm||
2
|ξ) + 3

∫ tkm+l+1

tkm

E
(
||σ(z1(s), z3(s))||2|ξ

)
ds

+ 3(l + 1)h
∫ tkm+l+1

tkm

E
(
||µ(θz2(s) + (1 − θ)z1(s), z3(s))||2|ξ

)
ds.

By Assumption 2.4 and (a + b)2
≤ 2(a2 + b2), it is easy to derive that

E
(
||ykm+l+1||

2
|ξ
)
≤3E(||ykm||

2
|ξ) + 3K

∫ tkm+l+1

tkm

E
(
(||z1(s)||2 + ||z3(s)||2)|ξ

)
ds

+ 3(l + 1)Kh
∫ tkm+l+1

tkm

E
((

2
(
θ2
||z2(s)||2 + (1 − θ)2

||z1(s)||2
)

+ ||z3(s)||2
)
|ξ
)
ds

=3E(||ykm||
2
|ξ) + 3K

(
2(1 − θ)2(l + 1)h + 1

) ∫ tkm+l+1

tkm

E(||z1(s)||2|ξ)ds

+ 6θ2K(l + 1)h
∫ tkm+l+1

tkm

E(||z2(s)||2|ξ)ds

+ 3K
(
1 + (l + 1)h

) ∫ tkm+l+1

tkm

E(||z3(s)||2|ξ)ds.

(18)

Because of z2(tkm+l) = z1(tkm+l+1), we have∫ tkm+l+1

tkm

||z2(s)||2ds =

∫ tkm+l+1

tkm+1

||z1(s)||2ds + h||ykm+l+1||
2.

According to (l + 1)h ≤ mh = 1 and θ2 + (1 − θ)2
≤ 1 (θ ∈ [0, 1]), (18) yields

E(||ykm+l+1||
2
|ξ) ≤3(1 + 2K)E(||ykm||

2
|ξ) + 6θ2KhE(||ykm+l+1||

2
|ξ)

+ 3K
(
1 + 2θ2 + 2(1 − θ)2

) ∫ tkm+l+1

tkm

E(||z1(s)||2|ξ)ds

≤3(1 + 2K)E(||ykm||
2
|ξ) + 6θ2KhE(||ykm+l+1||

2
|ξ) + 9Kh

l∑
j=0

E(||ykm+ j||
2
|ξ).

By 12θ2Kh < 1, for all l = 0, 1, · · · ,m − 1, we obtain

E(||ykm+l+1||
2
|ξ) ≤6(1 + 2K)E(||ykm||

2
|ξ) + 18Kh

l∑
j=0

E(||ykm+ j||
2
|ξ). (19)

According to the Gronwall inequality, we have

E(||ykm+l+1||
2
|ξ) ≤6(1 + 2K)e18KE(||ykm||

2
|ξ) l = 0, 1, · · · ,m − 1. (20)

If l = m − 1, then

E(||y(k+1)m||
2
|ξ) ≤6(1 + 2K)e18KE(||ykm||

2
|ξ). (21)
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Hence (20) satisfies that

E(||ykm+l+1||
2
|ξ) ≤6(1 + 2K)e18KE(||ykm||

2
|ξ)

≤62(1 + 2K)2e36KE(||y(k−1)m||
2
|ξ)

≤...

≤6k+1(1 + 2K)(k+1)e18K(k+1)E(||ξ||2|ξ)

≤6T+1(1 + 2K)T+1e18K(T+1)
||ξ||2.

(22)

For any p ∈ (0, 1), we have

E||ykm+l||
p = E

(
E(||ykm+l||

p
|ξ)

)
≤ E

(
E(||ykm+l||

2
|ξ)

) p
2

≤ 6p(T+1)/2(1 + 2K)p(T+1)/2e9Kp(T+1)E||ξ||p.
(23)

The proof is now complete.

Lemma 3.4. Under Assumption 2.4, if h is sufficiently small for 12Kh < 1, then the solution x(t) of SDEPCAs (1)
satisfies

E||x(t) − x(tkm+l)||2 ∨ E||x(t) − x(tkm+l+1)||2 ≤ C(K,T)hE||ξ||2 (24)

for any 0 ≤ tkm+l ≤ t < tkm+l+1 ≤ T, and C(K,T) = (1 + 12K)e6KT(T+1).

Proof. To prove this lemma, we only need to prove the first part, and the proof of the second part is similar
to that of the first part.

According to (3), for 0 ≤ tkm+l ≤ t < tkm+l+1 ≤ T, we have

x(t) − x(tkm+l) =

∫ t

tkm+l

µ(x(s), x([s]))ds +

∫ t

tkm+l

σ(x(s), x([s]))dB(s).

By Lemma 2.1, the Hölder inequality, and Assumption 2.4, it can be deduced

E(||x(t) − x(tkm+l)||2|ξ)

≤2E
(
||

∫ t

tkm+l

µ(x(s), x([s]))ds||2|ξ
)

+ 2E
(
||

∫ t

tkm+l

σ(x(s), x([s]))dB(s)||2|ξ
)

≤2(t − tkm+l)
∫ t

tkm+l

E(||µ(x(s), x([s]))||2|ξ)ds + 2
∫ t

tkm+l

E(||σ(x(s), x([s]))||2|ξ)ds

≤2(1 + t − tkm+l)K
∫ t

tkm+l

E
(
(||x(s)||2 + ||x([s])||2)|ξ

)
ds.

(25)

Using the Inequality (10), we obtain

E(||x(t) − x(tkm+l)||2|ξ) ≤ 12K(1 + h)e6KT(T+1)h||ξ||2

≤ (1 + 12K)e6KT(T+1)h||ξ||2.
(26)

Therefore
E||x(t) − x(tkm+l)||2 = E

(
E(||x(t) − x(tkm+l)||2|ξ)

)
≤ (1 + 12K)e6KT(T+1)hE||ξ||2.

Similarly, we obtain
E||x(t) − x(tkm+l+1)||2 ≤ (1 + 12K)e6KT(T+1)hE||ξ||2.

The proof is completed.
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Next, the convergence theorem of the one-leg θ method in the pth moment is given.

Theorem 3.5. Under Assumption 2.4, if p ∈ (0, 1) and h is sufficiently small with 24Kθ2h < 1, then the one-leg θ
method is convergent and satisfies

sup
0≤tkm+l≤T

E||x(tkm+l) − ykm+l||
p
≤ C̃(K, p,T)hp/2E||ξ||p f or any T > 0, (27)

where C̃(K, p,T) is independent of h, k ∈N and l = 0, 1, 2, · · · ,m − 1.

Proof. In view of equations (5) and (17), for k ∈N and l = 0, 1, 2, · · · ,m − 1, the following expression holds

x(tkm+l+1) − ykm+l+1 =x(tkm) − ykm +

∫ tkm+l+1

tkm

(
σ(x(s), x([s])) − σ(z1(s), z3(s))

)
dB(s)

+

∫ tkm+l+1

tkm

(
µ(x(s), x([s])) − µ(θz2(s) + (1 − θ)z1(s), z3(s))

)
ds.

Hence

E(||x(tkm+l+1) − ykm+l+1||
2
|ξ) ≤ 3E(||x(tkm) − ykm||

2
|ξ)

+ 3E
(
||

∫ tkm+l+1

tkm

(
µ(x(s), x([s])) − µ(θz2(s) + (1 − θ)z1(s), z3(s))

)
ds||2|ξ

)
+ 3E

(
||

∫ tkm+l+1

tkm

(
σ(x(s), x([s])) − σ(z1(s), z3(s))

)
dB(s)||2|ξ

)
.

Due to the Hölder inequality, the property of the stochastic integral and Assumption 2.4, we show

E(||x(tkm+l+1) − ykm+l+1||
2
|ξ) ≤ 3E(||x(tkm) − ykm||

2
|ξ)

+ 3(l + 1)h
∫ tkm+l+1

tkm

E
(
||µ(x(s), x([s])) − µ(θz2(s) + (1 − θ)z1(s), z3(s))||2|ξ

)
ds

+ 3
∫ tkm+l+1

tkm

E
(
||σ(x(s), x([s])) − σ(z1(s), z3(s))||2|ξ

)
ds

≤3E(||x(tkm) − ykm||
2
|ξ) + 3K(l + 1)h

∫ tkm+l+1

tkm

E
(
||x([s]) − z3(s)||2|ξ

)
ds

+ 3K(l + 1)h
∫ tkm+l+1

tkm

E
(
||x(s) − θz2(s) − (1 − θ)z1(s)||2|ξ

)
ds

+ 3K
∫ tkm+l+1

tkm

E
(
(||x(s) − z1(s)||2 + ||x([s]) − z3(s)||2)|ξ

)
ds.

(28)

Let

y1(s) =

∞∑
km+l=0

x(tkm+l)1[tkm+l,ykm+l+1)(s), y2(s) =

∞∑
km+l=0

x(tkm+l+1)1[tkm+l,tkm+l+1)(s).
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According to Lemma 3.4 and (l + 1)h ≤ 1, (28) yields

E(||x(tkm+l+1) − ykm+l+1||
2
|ξ) ≤ 3

(
1 + K

(
1 + (l + 1)h

)
(l + 1)h

)
E(||x(tkm) − ykm||

2
|ξ)

+ 12Kθ2(l + 1)h
∫ tkm+l+1

tkm

E
(
(||x(s) − y2(s)||2 + ||y2(s) − z2(s)||2)|ξ

)
ds

+ 6K
(
1 + 2(1 − θ)2(l + 1)h

) ∫ tkm+l+1

tkm

E
(
(||x(s) − y1(s)||2 + ||y1(s) − z1(s)||2)|ξ

)
ds

≤3
(
1 + K

(
1 + (l + 1)h

)
(l + 1)h

)
E(||x(tkm) − ykm||

2
|ξ)

+ 12Kθ2(l + 1)h
l∑

j=0

∫ tkm+ j+1

tkm+ j

E(||x(s) − x(tkm+ j+1)||2|ξ)ds

+ 6K
(
1 + 2(1 − θ)2(l + 1)h

) l∑
j=0

∫ tkm+ j+1

tkm+ j

E(||x(s) − x(tkm+ j)||2|ξ)ds

+ 12Kθ2(l + 1)h2
l∑

j=0

E(||x(tkm+ j+1) − ykm+ j+1||
2
|ξ)

+ 6K
(
1 + 2(1 − θ)2(l + 1)h

)
h

l∑
j=0

E(||x(tkm+ j) − ykm+ j||
2
|ξ)

≤12Kθ2hE(||x(tkm+l+1) − ykm+l+1||
2
|ξ) + 3(1 + 2K)E(||x(tkm) − ykm||

2
|ξ)

+ 6K
(
1 + 2θ2 + 2(1 − θ)2

)
C(K,T)||ξ||2h

+ 6K
(
1 + 2(1 − θ)2 + 2θ2

)
h

l∑
j=0

E(||x(tkm+ j) − ykm+ j||
2
|ξ).

Using 24Kθ2h < 1 and θ2 + (1 − θ)2
≤ 1, we obtain

E(||x(tkm+l+1) − ykm+l+1||
2
|ξ) ≤ 6(1 + 2K)E(||x(tkm) − ykm||

2
|ξ)

+ 36KC(K,T)||ξ||2h + 36Kh
l∑

j=0

E(||x(tkm+ j) − ykm+ j||
2
|ξ).

(29)

Due to the Gronwall inequality, for l = 0, 1, 2, · · · ,m − 1, we have

E(||x(tkm+l+1) − ykm+l+1||
2
|ξ) ≤ (A0||ξ||

2h + B0E(||x(tkm) − ykm||
2
|ξ))F0

=A0F0||ξ||
2h + (B0F0)E(||x(tkm) − ykm||

2
|ξ).

(30)

where A0 = 36KC(K,T), B0 = 6(1 + 2K) and F0 = e36K. If l = m − 1, then

E(||x(t(k+1)m) − y(k+1)m||
2
|ξ) ≤ A0F0||ξ||

2h + (B0F0)E(||x(tkm) − ykm||
2
|ξ). (31)

Hence (29) yields

E(||x(tkm+l+1) − ykm+l+1||
2
|ξ) ≤ A0F0||ξ||

2h + (B0F0)E(||x(tkm) − ykm||
2
|ξ)

≤A0F0||ξ||
2h + (B0F0)A0F0||ξ||

2h + (B0F0)2E(||x(t(k−1)m) − y(k−1)m||
2
|ξ)

≤ · · ·

≤
(B0F0)k+1

− 1
B0F0 − 1

A0F0||ξ||
2h

≤
(B0F0)T+1

− 1
B0F0 − 1

A0F0||ξ||
2h.

(32)
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Using the Hölder inequality gives

sup
0≤tkm+l≤T

E||x(tkm+l) − ykm+l||
p = sup

0≤tkm+l≤T
E
(
E(||x(tkm+l) − ykm+l||

p
|ξ)

)
≤ sup

0≤tkm+l≤T
E
(
E(||x(tkm+l) − ykm+l||

2
|ξ)

) p
2
≤ C̃(K, p,T)h

p
2E||ξ||p,

(33)

where p ∈ (0, 1) and C̃(K, p,T) =
(

(B0F0)T+1
−1

B0F0−1 A0F0

) p
2 . The proof is completed.

4. Stability of the one-leg θmethod

In this section, we aim to investigate whether the one-leg θmethod shares the exponential stability with
SDEPCAs (1) in the sense of pth(p ∈ (0, 1)) moment or not. Theorem 4.5 gives the positive answer. To begin
with, two useful definitions are given.

Definition 4.1. Let p > 0. The SDEPCA (1) is said to be exponentially stable in pth moment if there exists a pair of
positive constants λ and M such that for any initial value ξ

E||x(t)||p ≤ME||ξ||pe−λt f or all t ≥ 0, (34)

where λ is the rate constant and M is the growth constant.
Since SDEPCAs (1) is time-homogeneous, (34) has the following more general form

E||x(t)||p ≤ME||x(k̄)||pe−λ(t−k̄) f or all t ≥ k̄, (35)

where k̄ is an integer.

Definition 4.2. Let p > 0. For a given step size h > 0, the one-leg θ method is said to be exponentially stable in pth
moment on SDEPCA (1) if there exists a pair of positive constants γ and L such that for any initial value ξ

E||ykm+l||
p
≤ LE||ξ||pe−γ(km+l)h, (36)

for all k ∈N, l = 0, 1, 2, ...,m − 1, where γ is the rate constant and L is the growth constant.
In fact, for each k̄ ∈ N, we know that if t ∈ [k̄, k̄ + 1), then SDEPCAs (1) become SDEs. Hence, if the

initial time t0 = k̄ and the initial value x(k̄) of (1) are given, then SDEPCAs possess Markov property in
[k̄, k̄ + 1). The numerical solution {ykm+l}km+l≥k̄m is solved by the one-leg θ method on (1) with the initial
value x(tk̄m) = yk̄m. By time-homogeneity, (36) yields the following general form

E||ykm+l||
p
≤ LE||yk̄m||

pe−γ(km+l−k̄m)h (37)

for all k ≥ k̄, l = 0, 1, 2, · · · ,m − 1.

Theorem 4.3. Let Assumption 2.4 hold. Assume that the SDEPCAs (1) is pth(p ∈ (0, 1)) moment exponentially
stable and satisfies (34). Then there exists h∗ > 0 such that for every 0 < h < min(h∗, 1

24Kθ2 ), the one-leg θ
method applied to SDEPCAs (1) is pth moment exponentially stable with rate constant γ = 1

2λ and growth constant
L = H̄(K, p,T)e

1
2λT, where T = 1 + [ 4

λ lo1M]. And H̄(K, p,T) is given by Lemma 3.3.

Proof. Let 24Kθ2h < 1. It is not difficult to know 4
λ lo1M < T. Hence,

Me−λT < e−
3
4λT. (38)

Due to p ∈ (0, 1) and the Elementary Inequality (4), we have

E||ykm+l||
p
≤ E||x(tkm+l) − ykm+l||

p + E||x(tkm+l)||p (39)
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for k ∈N, l = 0, 1, 2, · · · ,m − 1. Using Theorem 3.5, we get

sup
0≤tkm+l≤2T

E||x(tkm+l) − ykm+l||
p
≤ C̃(K, p, 2T)h

p
2E||ξ||p. (40)

According to (40) and (34), (39) yields that

sup
T≤tkm+l≤2T

E||ykm+l||
p
≤ sup

T≤tkm+l≤2T
E||x(tkm+l) − ykm+l||

p + Me−λTE||ξ||p

≤

(
C̃(K, p, 2T)h

p
2 + e−

3
4λT

)
E||ξ||p

=R(h)E||ξ||p

for k ∈N, l = 0, 1, 2, · · · ,m − 1, where R(h) = C̃(K, p, 2T)h
p
2 + e−

3
4λT.

Since R(0) = e−
3
4λT, there exists h∗ such that

R(h∗) ≤ e−
1
2λT.

Therefore, for every 0 < h < min(h∗, 1
24Kθ2 ), we have

E||ykm+l||
p
≤ e−

1
2λTE||ξ||p, tkm+l ∈ [T, 2T] (41)

for k ∈N, l = 0, 1, 2, · · · ,m − 1.
Denote x̃(t) as the solution of SDEPCAS (1) with initial value x̃(T) = yTm for t ≥ T. As the same procedure

as Theorem 3.5, we can shift (27) to obtain

sup
T≤tkm+l≤3T

E||̃x(tkm+l) − ykm+l||
p
≤ C̃(K, p, 2T)hp/2E||yTm||

p, (42)

and we may shift (35) to get

E||̃x(t)||p ≤ME||yTm||
pe−λ(t−T) f or all t ≥ T. (43)

Hence, we obtain

sup
2T≤tkm+l≤3T

E||ykm+l||
p
≤ sup

2T≤tkm+l≤3T
E||̃x(tkm+l) − ykm+l||

p + Me−λTE||yTm||
p

≤

(
C̃(K, p, 2T)h

p
2 + e−

3
4λT

)
E||yTm||

p

=R(h)E||yTm||
p.

Continuing the approach above and using R(h) ≤ e−
1
2λT, we obtain

sup
(i+1)T≤tkm+l≤(i+2)T

E||ykm+l||
p
≤ e−

1
2λTE||yiTm||

p, i ≥ 0.

Consequently

sup
(i+1)T≤tkm+l≤(i+2)T

E||ykm+l||
p
≤e−

1
2λT sup

iT≤tkm+l≤(i+1)T
E||ykm+l||

p

≤ · · ·

≤e−
1
2λ(i+1)T sup

0≤tkm+l≤T
E||ykm+l||

p.

(44)
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By Lemma 3.3, (44) becomes

sup
(i+1)T≤tkm+l≤(i+2)T

E||ykm+l||
p
≤e−

1
2λ(i+1)TH̄(K, p,T)E||ξ||p

=e
1
2λTH̄(K, p,T)e−

1
2λ(i+2)TE||ξ||p

≤e
1
2λTH̄(K, p,T)e−

1
2λ(km+l)hE||ξ||p,

(45)

which implies the one-leg θ method is exponentially stable in pth moment on SDEPCAs (1) with rate
constant γ = 1

2λ and growth constant L = H̄(K, p,T)e
1
2λT. Now the proof is complete.

Theorem 4.4. Under Assumption 2.4, if for a step size h > 0, the one-legθmethod is pth(p ∈ (0, 1)) moment exponen-
tially stable with rate constant γ and growth constant L and satisfies (36), and if h satisfies max{12Kh, 24Kθ2h} < 1
and

C̄(K, p, 2T)h
p
2 + e−

3
4γT
≤ e−

1
2γT, (46)

where T = 1 + [ 4
γ lo1L], then the SDEPCAs (1) is pth(p ∈ (0, 1)) moment exponentially stable with rate constant

λ = 1
2γ and growth constant M = H(T, p,K)e

1
2γT, where C̄(K, p, 2T) = C̃(K, p, 2T) + C(K, 2T)

p
2 , and the constants

H(T, p,K), C(K, 2T) and C̃(K, p, 2T) are given in Lemma 2.6, Lemma 3.4and Theorem 3.5, respectively.

Proof. From the definition of T, it is easy to obtain

Le−γT
≤ e−

3
4γT.

Note that for any t ≥ 0, there exist integers k and l = 0, 1, 2, · · · ,m−1 such that (km+ l)h ≤ t < (km+ l+1)h.
Using p ∈ (0, 1) and the Elementary Inequality (4), we have

E||x(t)||p =E||x(t) − x(tkm+l) + x(tkm+l) − ykm+l + ykm+l||
p

≤E||x(t) − x(tkm+l)||p + E||x(tkm+l) − ykm+l||
p + E||ykm+l||

p.
(47)

According to Lemma 3.4 and Hölder inequality, the first term in (47) yields

sup
t∈[0,2T]

E||x(t) − x(tkm+l)||p ≤ C(K, 2T)
p
2 h

p
2E||ξ||p. (48)

Using (27), (36) and (48), we have

sup
t∈[T,2T]

E||x(t)||p ≤ sup
t∈[T,2T]

E||x(t) − x(tkm+l)||p + sup
km+l∈[mT,2mT]

E||ykm+l||
p

+ sup
t∈[T,2T]

E||x(tkm+l) − ykm+l||
p

≤ sup
t∈[0,2T]

E||x(t) − x(tkm+l)||p + sup
km+l∈[mT,2mT]

E||ykm+l||
p

+ sup
t∈[0,2T]

E||x(tkm+l) − ykm+l||
p

≤

(
C(K, 2T)

p
2 h

p
2 + C̃(K, p, 2T)h

p
2 + Le−γT

)
E||ξ||p

≤

(
C̄(K, p, 2T)h

p
2 + e−

3
4γT

)
E||ξ||p.

(49)

Using (46), we have

sup
t∈[T,2T]

E||x(t)||p ≤e−
1
2γTE||ξ||p

≤e−
1
2γT sup

t∈[0,T]
E||x(t)||p.

(50)
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Let {ŷkm+l}km+l≥Tm be the approximate solutions of SDEPCAs (1) obtained by the one-leg θ method on
t ≥ T with initial value x(T) at t = T. Then (37) becomes

E||̂ykm+l||
p
≤ Le[γ(km+l)h−T]E||x(T)||p, km + l ≥ Tm. (51)

Using the similar approach that produces (50), we obtain

sup
t∈[2T,3T]

E||x(t)||p ≤ sup
t∈[T,3T]

E||x(t) − x(tkm+l)||p + sup
km+l∈[2Tm,3Tm]

E||̂ykm+l||
p

+ sup
t∈[T,3T]

E||x(tkm+l) − ŷkm+l||
p

≤

(
C̄(K, p, 2T)h

p
2 + e−

3
4γT

)
E||x(T)||p

≤e−
1
2γT sup

t∈[T,2T]
E||x(t)||p.

(52)

Repeating this procedure, we can show that for any i ≥ 0

sup
t∈[iT,(i+1)T]

E||x(t)||p ≤e−
1
2γT sup

t∈[(i−1)T,iT]
E||x(t)||p

≤...

≤e−
1
2γiT sup

t∈[0,T]
E||x(t)||p.

(53)

Moreover, according to (8), for t ∈ [iT, (i + 1)T], (53) yields

E||x(t)||p ≤e−
1
2γiTH(T, p,K)E||ξ||p

=e
1
2γTH(T, p,K)e−

1
2γ(i+1)TE||ξ||p

≤e
1
2γTH(T, p,K)e−

1
2γtE||ξ||p.

(54)

Let λ = 1
2γ, M = H(T, p,K)e

1
2γT, then the SDEPCAs is pth moment exponentially stable with rate constant

λ and growth constant M. The proof is completed.

Theorem 4.3 and Theorem 4.4 lead to the following necessary and sufficient theorem.

Theorem 4.5. Under Assumption 2.4, the SDEPCAs is exponentially stable in pth(p ∈ (0, 1)) moment if and only if
there exists h∗ > 0 such that the one-leg θmethod is exponentially stable in pth(p ∈ (0, 1)) moment with rate constant
γ, growth constant L, step size 0 < h < h∗, and C̄(K, p, 2T) satisfying (46) with T = 1 + [ 4

γ log L].

Theorem 4.6 below indicates that by taking h small enough, the rate constants λ for SDEPCAs and γ for
the one-leg θ method can be arbitrarily close.

Theorem 4.6. Let Assumption 2.4 hold. If SDEPCAs (1) is exponentially stable in pth(p ∈ (0, 1)) moment with rate
constant λ, then given any ε ∈ (0, λ) there exists h∗ such that for all h ∈ (0, h∗) the one-leg θ method is exponentially
stable in pth(p ∈ (0, 1)) moment with rate constant γ = λ − ε. Conversely, if the one-leg θ method on (1) is
exponentially stable in pth(p ∈ (0, 1)) moment with rate constant γ for some sufficiently small h, then for any given
ε ∈ (0, γ), the SDEPCAs (1) is exponentially stable in pth(p ∈ (0, 1)) moment with rate constant γ − ε.

Proof. The proof of Theorem 4.6 is similar to that of Theorems 4.3 and 4.4. For given ε ∈ (0, λ), choose
T = 1 + [ 2

ε lo1M] such that

Me−λT < e−(λ−0.5ε)T.
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As in the proof of Theorem 4.3, there exists some h∗ such that

R(h) =C̃(K, p, 2T)h
p
2 + e−(λ−0.5ε)T

≤ e−(λ−ε)T,

for all h ∈ (0, h∗). Here, C̃(K, p, 2T) depends on ε. Continuing as in the proof of Theorem 4.3, we observe
that for each h < h∗ the one-leg θ methods are exponentially stable in pth moment with γ = λ − ε and
L = H̄(K, p,T)e(λ−ε)T.

To prove the converse, for any ε ∈ (0, γ), we can choose T = 1 + [ 2
ε lo1L] such that

Le−γT < e−(γ−0.5ε)T.

Choosing M = H(K, p,T)e(γ−ε)T and continuing as in the proof of Theorem 4.4, we can obtain the second part
of this theorem.

Now, we are in position to consider the almost sure exponential stability of both equation (1) and the
one-leg θ method.

Corollary 4.7. Under Assumption 2.4, if the SDEPCAs is pth(p ∈ (0, 1)) moment exponentially stable and satisfies
(34), then the solution of SDEPCAs (1) is almost surely exponentially stable. That is

lim sup
t→∞

1
t

log(||x(t)||) ≤ −
λ
p

a.s.. (55)

Proof. The proof of this theorem is similar to that of Theorem 4.2 in [8].

Corollary 4.8. Under Assumption 2.4, if the one-leg θ method is pth(p ∈ (0, 1)) moment exponentially stable and
satisfies (36), then the method is almost surely exponentially stable. That is

lim sup
km+l→∞

1
(km + l)h

log(||ykm+l||) ≤ −
γ

p
a.s.. (56)

Proof. The proof of this theorem is similar to that of Theorem 4.2 in [9].

Remark 4.9. (1) According to Theorems 4.5 and 4.6, under Assumption 2.4, if h is small enough, then the pth(p ∈
(0, 1)) moment exponential stability of the one-leg θ method is equivalent to that of SEPCAs (1). Therefore, it is
feasible to investigate the exponential stability of SDEPCAs from carefully numerical simulations.
(2) The two corollaries above show that the almost sure exponential stability of SDEPCAs can be derived by the
pth(p ∈ (0, 1)) moment exponential stability of SDEPCAs. Moreover, by Theorem 4.5, it is feasible to investigate the
almost sure exponential stability of SDEPCAs from the pth(p ∈ (0, 1)) moment exponential stability of the numerical
approximations.

5. Numerical simulations

In this section, we focus on the following one-dimensional linear SDEPCAs

dx(t) =
(
− 5x(t) + x([t])

)
dt + x([t])dB(t), t ≥ 0, (57)

with x(0) = −1. (57) has an explicit solution which is called the mean-reverting Ornstein-Uhlenbeck process
(see Example 3.5.2 in [8]) and the solution can be expressed as

x(t) =
1
5

x(k) +
4
5

e−5(t−k)x(k) + x(k)
∫ t

k
e−5(t−s)dB(s), (58)
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step size ε(1) ε(2) ε(3) ε(4) ε(5) ε(6) ε(7) ε(8)
2−4 0.1384 0.0919 0.0543 0.0308 0.0169 0.0092 0.0049 0.0026
2−5 0.0962 0.0652 0.0390 0.0218 0.0122 0.0067 0.0036 0.0019
2−6 0.0691 0.0459 0.0272 0.0155 0.0086 0.0047 0.0025 0.0013
2−7 0.0496 0.0327 0.0194 0.0111 0.0062 0.0033 0.0018 0.0009

Table 1: The error for p = 0.5, θ = 0.5 at times T = 1, 2, ..., 8.

for all t ∈ [k, k + 1), where k is an integer. Applying the one-leg θ method to (57), we have

ykm+l+1 =
1 − 5(1 − θ)h

1 + 5θh
ykm+l +

h
1 + 5θh

ykm +
1

1 + 5θh
ykm∆Bkm+l, (59)

where k is integer and l = 0, 1, 2, · · · ,m − 1.
Our simulations consist of two parts which are used to verify Theorem 3.5 and stability results in

Theorem 4.5. The following settings are the same in each part. Let θ = 0.5, p = 0.5. Moreover, the
exact value of (58) at time tkm+l is not known because of the Itô’s integral. To get x(tkm+l), we approximate
the Itô’s integral in (58) with a sum with 216 summands for each interval (k, k + 1], that is, the step size
h1 is 2−16 when computing the Itô’s integral. In addition, a set of 50 blocks, each of which contains 100
outcomes(ωi j : 1 ≤ i ≤ 50, 1 ≤ j ≤ 100), is simulated. We denote the numerical solution of the jth trajectory
in the ith block by ykm+l(ωi j), and the exact solution of (57) in the jth trajectory and ith block by x(tkm+l, ωi j)
at t = tkm+l.

Part 1: The convergence of the one-leg θ method is tested in this part. Let ε denote the error in pth
moment, then by the law of large numbers, at the final integer time T, ε satisfies

ε(T) = E|x(T) − yTm|
p =

1
5000

50∑
i=1

100∑
j=1

|x(T, ωi j) − yTm(ωi j)|p. (60)

There are 8 tests to compute the error in Table 1 with T = 1, 2, ..., 8 and m = 24, 25, 26, 27. It is obvious to
see that the one-leg θ method converges to (57).

Part 2: In this part, we consider the exponential stability of both (57) and the numerical solution (59).
Because of x(0) = −1 < 0, according to Lemma 4.3.2 in [8], we see that for t ≥ 0

x(t) < 0, a.s. (61)

Choose function V(t, x) = |x|p, by (61), Theorem 4.4.4 in [8] and p ∈ (0, 1), then there exist λ = −2p and
M = 10 such that

E|x(t)|p ≤ 10e−2ptE|x(k)|p, (62)

for all t ∈ [k, k + 1]. Figure 1 shows the pth moment exponential stability of Equation (57) and the one-leg
θ method with θ = 0.5 and p = 0.5. The solid line which is the reference line indicates the value of 10e−2pt

with p = 0.5. It is apparent to observe that E|x(t)|p ≤ 10e−2pt and E|ykm+l|
p
≤ 10e−2ptkm+l . We can also discover

that the values of E|x(tkm+l)|p are quite close to that of E|ykm+l|
p, which demonstrates that the rate constants

λ and γ can be considerably close. Figure 1 illustrates Theorem 4.6.
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Figure 1: The pth moment exponential stability of (57) and the one-leg θ method with θ = 0.5 and p = 0.5
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