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Generalized Weighted Composition Operators from the Bloch-Type
Spaces to the Weighted Zygmund Spaces

Ebrahim Abbasi?, Hamid Vaezi®

?Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran.

Abstract. The boundedness and compactness of generalized weighted composition operators from Bloch-
type spaces and little Bloch-type spaces into weighted Zygmund spaces on the unit disc are characterized,
in this paper.

1. Introduction

Let ID be the open unit disc in the complex plane C, H(ID) the class of all analytic functions on ID, and
H* = H*(D) the space of bounded analytic functions on ID with the norm ||f|lc = sup,., | f(z) |. For
0 < a < 00, a function f € H(ID) is said to be in the Bloch-type spaces 8¢ = 8*(D), if

ba(f) = Sug(l —12P) ] f'(2) 1< eo.

The space 8% becomes a Banach space under the norm ||f||g« =| f(0) | +b.(f). The little Bloch-type space 85,
is a subspace of B%, consisting of all f € H(ID) such that

lim(1 -2 )1 f'(z) 1= 0.
When a = 1, 8! = Bis the well-known Bloch space, while B(l) = B is the well-known little Bloch space. For
more information on Bloch-type spaces see [12, 13].

Every positive and continuous function on ID is called a weight. Let u(z) be a weight. The weighted
Zygmund space Z, = Z,(ID) is the space of all analytic functions f on ID such that

by (f) = suﬂ}; p@) | f7(z) I< oo,

The space Z,, becomes a Banach space with the following norm

Ifllz, =L FO) [ +1 f(0) | +bay2(f).
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When u(z) = (1 -z ), Zyu = Zis the well-known Zygmund space. More information on the Zygmund-
type space on the unit disc or the unit ball, can be found in [9, 14, 17].

Let ¢ be an analytic self-map of ID and u € H(ID). The weighted composition operator uC,,, which induced
by ¢ and u, is defined as follows

WC,f)2) = u@f(p(z), feHD), zeD.

If u(z) = 1, then the weighted composition operator is reduced to the composition operator, usually denoted
by C,, while for ¢(z) = z, it is reduced to the multiplication operator, usually denoted by M,,.
Let D be the differentiation operator and 7 be a nonnegative integer. Write

Df=f, D'f=f", feHD).

The generalized weighted composition operator, denoted by Dy, ,, is defined as follows (see [15, 16, 18, 20])

D}, /@) = u@f"(p(), feHID), zeD.

When n = 0, then Dg, becomes the weighted composition operator. If n = 0 and u(z) = 1, then D ,, = C.
If n=1and u(z) = ¢'(z), then Dy, = DCy. If n = 1 and u(z) = 1, then D5, = CyD. The operators DC,, and
CyD were studied in [2, 5, 6, 8, 11]

Stevi¢ in [10] has found some characterizations for boundedness and compactness of generalized weighted
composition operators D} , from H* and Bloch space to nth weighted-type spaces on the unit disc. In
addition, Zhu in [19, 21] has found some characterizations for boundedness and compactness of operator
Dy, from Bto Hy and 8° to $BF. Liand Stevi¢ in [7] provide some results for boundedness and compactness
of D, from B to Hy. In this paper, inspired by previous works, we attempt to study boundedness and
compactness of generalized weighted composition operators from 8% to Z,.

Throughout this paper, C is used to denote a positive constant which may differ from one occurrence to
the other. We say that A < B if there exists a constant C such that A < CB. The symbol A ~ B means that
A<B=xA

2. Boundedness of D},  : B%(87) - Z,

In this section, we give some characterizations for boundedness of generalized weighted composition
operators from the Bloch-type spaces into the weighted Zygmund spaces.
ForaelDand 0 < a < 0, set

~ |a|2 CA-laPy? 1-lal)?
fa(2) = a—m ha(2) = A 7a(z) = Fp— zeD. 1)
We have
) A-laP)a
a (Z) - _ = )a+n H( +]),
2

W = L1 L3n+1 H(c«ﬂ
wo Q—laPPa

A CR r— [J@+n.

=2
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By using f,, h, and g,, for any n € IN we define m,,,, I,,, and k; , as follows

aa +2n + 3) ala+1)
@ marnr2 O Gin@rns2)

94(2),

Mya(z) = fa(Z) -

_ 2a ale+1)
ha(2) = fa(@) = a+n+1 ha(2) + (a+n+1)(a+n+2)g“(z)’
2a ala+1)
bua(e) = file) = 2 nle) + o u(2)
Lemma 2.1. Foranya € Dandn € N, m(")(a) = mﬁ,’f;z)(a) =0and
n-1
(n+1) ﬁ”"’l )
= a+j).
@)= C(@+n+2)1—|a P g( /
Proof.
-1 n
o) ar aa +2n + 3) .
a+
M0 (1 yp a+n 1:! —la |2)a+”—1 (a+n)a+n+2) g( D
at ala+1) ias .
+(1 p |2)“+”—1 (a+n)a+n+2) g(a+])
n-1
a ) 20+2n+3 a+n+1
—(1—|a|2)a+n_1g(a+])(1_ a+n+2 +a+n+2)
=0,
n+1 n+1 n+1
1) a(Ra +2n + 3) )
(n+ ()_ a+nH( +]_ |)“+”(a+n)(a+n+2)H(a+])
- 1
an+l ala+1) ax
* (1-|a| )“+” (a+n)(a+n+2) H(OH_])
at! _(a+2n+3)(a+n+1)
- a+nH(a+]) atn+2 +C¥+I’l+1)
d”+1 n-1 .
=- a+
rrrrsTIEpd § Cadl
and
n+1 n+2
(n+2) a2 . a2 aa +2n + 3) ,
My, () = —————= | |(a+)) - - (a+))
i (1—|ﬂ|2)a++1]’:H0 (1_| |2)++1(a+n)(a+n+2)g
a2 ala+1) T
* (1 a| )a+n+1 (0(+1‘l)(0(+1’l+2) H(a-l-]

a2 st ) 2a+2n+3 a+n+3
= oa+n+l H(O( + ])(1 - + + + )
(1—|ﬂ| ) =0 a+n a+n
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The proofs of the next lemmas are similar to the proof of Lemma 2.1 and are omitted.
Lemma 2.2. Foranya€ Dandn e N, 15 (a) = 107 (a) = 0 and

n—-1

l(”) 2q"
0) = (a+n+1)(a+n+2)1—|a)en1 g(a =

Lemma 2.3. Foranya € Dandn € N, k(")( ) = k("+1)(a) =0and

n+2

k(n+2)( ) |ﬂ| )a+n+1 H(

Theorem 2.4. Let n be a positive integer, 0 < a < oo, u € H(ID), u be a weight and ¢ be an analytic self-map of D.
Then the following statements are equivalent.

(a) The operator Dy, : B* — Z,, is bounded.
(b) The operator Dy, : 85— Z, is bounded.

(© SUPjs, 7 1”D([) MP]”Zy < oo, where Pj(Z) =7
) 1€ Zy sup.pu) | u@) ¢/ P< oo, sup.pu) |20/ @@ + ¢! @u) 1< oo and

Sup ”DZ),uﬁ”Z“ < OO, Sup ”Dg),uhll”Z“ < OO, Sup ”Dg,ugu”ZH < OO,
aeD aeD aeD

where f,, hy and g, are defined in (1).

(e)
sup MR 129" + 9" @uE | @@ o R [9'E) Plu) |
b (- le@ P C Ol - Te@ P T A Te@ P

Proof. (a) = (b) This implication is obvious.

(b) = (c) The sequence {j*~ 1p]} is bounded in 87 and lim;,« j* 1||p]||3a = (?“) (see Lemma 2.1 in [3]).
Hence,
sup j* D}, pjllz, < .
j21
Since for j <n, Dg ,p;j = 0, we obtain sups, ]'a_1||D$,tu||Z“ < oo,
(c) = (d) Suppose (c) holds. Applying the operator Dg , for p; with j = n, n + 1 and n + 2, we obtain

2)!
(D pa)@) = 1@, (D) pu)(@) = (4 DP@UGE),  (Dhupurn)@ = oL Pz, (@)
Thus from (2), we have
sup H() W < 1 1D p iz, < . 3)
So, u € Zy. By using (2), we get
sup ) [ () + 20/ (2) + U@ £ o | Dz, < .

From the boundedness of the function ¢ and (3),

sup (z) |¢” (2)u(z) + 20" (2 (z)] < oo (4)
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By using (2),

sup p(z) [2¢ (2Vu(z) + 2(¢” @u(z) + 29’ @' (2))p(2) + P> ()] <

2
'p ST | DG, upn+2 llz, < oo
z€E

Finally, from boundedness of the function ¢, (3) and (4)

sup pu(2)| ¢'(2) * | u(z) < oo.

zeD

We set Q := sup,, j*~ i Dg.pj llz,- For any a € ID, it is easy to check that f,, h, and g, are in 8%. By
simple calculation, we obtain

A= -la |>Z D 0atal, = -1a PRy, ol gt
=0

j'T(a) T+ a)

r 2
ga<z>=(1—|a|2)3z%af ]
j=0

1o TG+a) _ sa-1
From Stirling’s formula, we have e <1

as j — oo. Using linearity, we get

€@ —|aP)

=1

I DG, fallz, < CA-a| )Zlalf I Dy upj llz, < .- <2CQ, (5)
CQal(1 — |af*)?

1 D2 o llz,< C(1- |a|>22|a|f];“1||pr] Iz, < <4CQ, ©)

j=0

(1 - a))?

CQal(1 + Jal)(1 ~ |al*)?
(1 - al)®

I D%,,a llz,< C(1— | a )32 \al 2 DL Nz, < < 16CQ. @)

Since a is arbitrary, so

sup || D(’{’,,Mfg llz,< oo, supll Drp uMallz,< o0 and sup || Dz/ugg llz,< co.
aeD acD acD

(d) = (e) Assume that (d) holds. Set

Ci=sup |l Dy ufallz,, Co=supllDy,hallz, and Cs=sup |l Dy ,g llz, -
acD acD acD

It is obvious that for any 2 € ID and n € N the functions m,,,, I,,, and k, , are in 8%. Moreover

aRa +2n + 3)
D! < D! D! h,
ig}]}; || (p,uml’l,tl “ZN — ig}]}; || (p,uf(l “ZH (a + n)(a + n +2) HE]D ” Q,u ”'Zﬁ‘
ala+1)
DTl
(@ +n)(a+n+2) igﬂg 1Dguga N1z,
<Ci+ aa +2n +3) ala+1) ®)

(a+n)(a+n+2) 2Jr(a+n)(0¢+n+2) 3

Hence, for any A € DD it follows from Lemma 2.1 and (8) that

m) @) = ml @) = 0,
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u(d) 129" (' (D) + 9" W) ) I 55 o R )
s n DA o) Py 1JW+D—MMWMOWNM+MM¢M»mwwﬂmﬂ—
) | ) m (@) + (26 (D' () + 1A () mD) () + u()p (1) mr2) ()] <
sup (2) [ () 1 (@) + (22 @' @) + @) 0 (002 + @) o3 (2| =
n 2 2n+3
sup (2 |(1) ) (P) | <N Dty Iz, S sup I D Nz, < €1 + m 2D
ala+1)
(oz+n)(a+n+2)c3 < . )
So,
BA) |9 ™11 20" (A (W) + 9" () | _
(1_ | (p(/\) |2)0¢+n
a+n+2 C aa+2n+ 3) ala+1) C
a(a+l)---(a+n—1)( * @+n)a+n+2) > (a+n)(a+n+2) 3)-
Therefore,

sup wA) | p(A) 1" 2" (M’ (A) + @ (Mu(A) |

< oo. 1
AeD (1= p(A) Parn (19
For any fixed r € (0, 1) from (10), we obtain

p(A) 1 29" (A’ (A) + " (Mu(A) | 1 u(A) [ @A) " 29" (M’ (A) + @” (Mu(A) |
p < — sup <. (11)
lp(D)l>r (1= 1 @A) Pyt sy (1= 1 @(A) P)a+n

On the other hand from (d),

u) 120" D' () + " (Du() | _ SUPlpuisr pA) [ 29" (M)’ (A) + 9" (Mu(A) |

. 12
lp(A)l<r (1- 1] @(A) [Pya+r - (1 — r2)a+n < (12)
Foranya e D,
2a ala+1)
o <
1D ulnallz, < €1+ a+n+ 1C2 (@+n+D(a+n+2) Ca- (13)

So, sup,.p ||D$ul,,,u|| z, < oo. From Lemma 2.2,

n+1)

I @A) = 10 (1) = 0.

Hence, by a similar calculation as in (9), we obtain

M) 1) 1" u”(A) | 2 1 ‘ ,
#(1_ |(€0(A) Py (a+n+L)a+n+2) H(a +7) = u) ' () Zn (p(A)((P(/\)) < ||D(p,uln,§0(/\)”Zy
]:

2a ala+1)

Scl+az+n+1C2+(a+n+1)(az+n+2)cs' (14)

Therefore,

) L) 11 w7 () |
P e Py (15)
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From (15) and u € Z,, with similar calculation as in (11) and (12), we get

sup p(A) [u’(A) |
aep (1= p(A) [P)atn-1

Foranya € D,
2 ala+1)
D" k <C+ G+ .
1D knallz, < & a+n 2 (a+n)(a+n+1)

(16)

Hence, sup,, |l Dg,ukﬂ,ﬂ 1 z,< . Forany A € D, from Lemma 2.3

K @) =KD (@A) = 0

and with the similar calculation as in (9), we have

26) L) "2 @' W) Pl | 7, 200 K ’
(1= | @) Pyt g(a + ) = 1) [uNp () K2 (@)| <l Dy kg Nz,

200 Cot ala+1)
a+n 2 @+n)a+n+1) >

<Ci+ 17)

Thus,
sup LAY L eA) ["2] @' (A) Pl u(A) | ‘o
AeD (1= @(A) [P)atn+l

From (d) and (18) with similar calculation as in (11) and (12), we obtain

w uA) @' (A) Plu(p) |
Ae]g (1_ | (P(/\) |2)a+n+1

(e) = (a) Assume (¢) holds. For any f € 87,

(18)

1@ (D5, @)] = 1@ |f" 2 (9)e*(@u) + "D (p@)(2¢' @' @) + ¢ @)u(z)) + f<">(go<z>>u"<z>]
< u@) "2 p@)| ¢ @u@)| + u@) |V @E)| 20 @' (2) + ¢ @uE)| + p@) [feE)| |1 @)

L@@ u@) | 1) [2¢' @' (@) + 9" @u( | uz) [u(z) |
A=l Py (1= p(@) P (=1 p@) Pyt

Cllflls: + Cliflls + Cllfllse .
(19)
In the last inequality we use the fact that (Proposition 8 in [13]) for f € B*

sup(1 =1z )| f(2) = fO) | +---+ | f70) | +sup(l —| z F)**" | f**D(z) |. (20)
Moreover,

| u(0) |
D2, O] = [f™(p(0)u(0)| <
|( (P/Mf)( )| |f ((P( )u( )| (1- (P(O) |2)a+n—1

D2 O)] = [F" D (@0)p’ (0)u(0) + F*((0))u’ (O)|
< [F" D (@(0))g’ (0)u(0)] + | F™ (p(0)u (0)|
| ¢'(0) | u(0) | |w(0) |
<—C Ba
T 190 P T o) e

From (e), (19) and (21), we conclude that the operator Df , : 8* — Z, isbounded. The proofis complete. [

CIlf llge,

Cllfllg . (21)
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3. Compactness of D : B¥(8B%) — Z,
P 0

In this section, we obtain several characterizations for compactness of generalized weighted composition
operators from the Bloch-type spaces into the weighted Zygmund spaces. To study compactness, we need
the following lemma, which can be proved in a standard way (see, for example, Proposition 3.11 in [1]).

Lemma 3.1. Let n be a positive integer, 0 < a < oo, u be a weight, u € H(ID) and ¢ be an analytic self-map of D.
Then Dy, : B* — Z,, is compact if and only if Dy, , : B* — Z,, is bounded and for any bounded sequence (fi)xen
in B*, which converges to zero uniformly on compact subsets of ID,

e e
lim D}, fillz, = 0.

Theorem 3.2. Let n be a positive integer, 0 < a < oo, u € H(D), ¢ be an analytic self-map of D and Dy, : B* — Z,,
is bounded. Then the following statements are equivalent.

(a) The operator D, , : B — Z,, is compact.

(b) The operator Dy, : By — Z,, is compact.

(©) limje j*7 MDY pjllz, = O.

((d; hml(p(u)l—ﬂ ”D&uf@(ﬂ)nzy =0, lim|(p(ll)|—>i ”D%uh({)(ﬂ)”Z# =0, liml(p(a)l—ﬂ ||D$,u!7<p(u)||z,, =0.
e

pE 129 QU@+ @] _ @@ s@le @ e

lim _ 5 , i > , i 5
(@)1 (1 - p(z) )+ lp@I=T (1 = | p(z) [F)*+n-1 p@=1 (1| p(z) [F)r+m+
Proof. (a) = (b) This implication is clear.
(b) = (c) The sequence {j*'p j}]?’il is bounded in B and converges to 0 uniformly on compact subsets of ID.

By Lemma 3.1 it follows that lim_,c j“‘llng),upjll z,=0.
(c) = (d) Suppose (c) holds. Since for j < n, Dg.pj = 0, hence for given € > 0 there exists a positive integer
N > n, such that

a1
7 IDgupilliz, <€,

forall j > N. Also from Theorem 2.4 (c), Q = sup o j“’lllD(’Z),uijI z, <. Let {zk}ken De a sequence in ID such
that limy_,. | @(zx) |= 1. Similar to the proof of (5), there exists a constant C such that

oo n—-1
1D foollz, < CL=1 () D) Y 1 o) VD pillz, = €A~ 19 ) Y 1) I IDkpilz,

=0 =0
0
N-1 ) oo ,
+C( =1 o) (Y 1o ViDL pillz, + Y 1 @G Vi IDs pilz, )
= =N
N-1 . ) )
<C -1 @) P(QY IpE) I'+e ) o) 1)
=0 =0

<2CQ(1 - | p(z) V) + 2Ce.

Since lim,o | ¢(z) = 1, sO
Lim || Dg,. foz llz, < 2Ce.

Hence, limkp(g)‘_,i ||D$u fowl z,=0, because € is an arbitrary positive number.
Notice that

N-1

, - 1-N=NN1 -7
Z(]+1)r]= (1_7)2( ), 0<r<1.
=0
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Arguing as in the proof of (6), we get

1D ez, < CQ =1 p(z) PY Y 1 9@ VD up)llz,
j=0

N-1 )
<=1 9G) PP Y G+ DI9ED) V7D upillz, + ) G+ Dl o) Vi ID;pillz, )

j=0 j=N

<4CQ(1 -l p(i) IV = Nl (z0) N(1— | p(z1) 1)) + 4Ce.

Therefore,
]}1_{1; I D&uh@(zk) ||Z“S 4Ce

and arbitrariness of € gives us lim|qj(u)‘_)i IID%uhq)(g)II z, =0
Notice that

N _ 2 2 _1VoN+1 _ N2,N+2
ijrj:r(1+r (N +1)%N + (2N? + 2N - 1)r N2N+2) 0<r<l
j=1

1-rp3 !

Similar to the proof of (7), we get

D2 Foeoliz, < CA =1 @) PV Y L o) Vi IDs piliz, =
j=0

N o
1~ p(z) PP( Y. Pl VD pillz, + Y Pl VDS pjllz,)

j=0 j=N+1

<8CQ | p(z) | (1+ | p(z) | =(N + 1) [ p(zi) IV +2N? +2N = 1) | p(ze) V! =N? | p(ze) N+ ) +16Ce.

Therefore,
lim | D}, gtz llz, < 16Ce.

Since € is arbitrary, we obtain limw(a”_)i ||D3),u Fowl z, =0.
(d) = (e) To prove (e), it is sufficient to prove that for any sequence {zi}ren in ID with limg_,e | @(z¢) = 1,

lim p(zi) | 2" (zi)u’ (zi) J;@"(Zk)u(zk) | 0 1 p(ze) | M"(ZZk) I 0, lim 1zl ¢’ (zx) |22| u(za) | _ 0
koo (L=l p(zg) )3+ koo (1= (zg) [F)e+n=1 koo (1= p(zp) [+

Let {zi}ken be any sequence in ID such that limy_, | ¢(z¢) |= 1. Similar to the proof (8), we obtain

. i aa+2n+3)
K [ DG utogi Nz, < m | Dy ufoen 17, + e s 2y B Dot Nz,
ala+1) _
1 D"
(@ + )@+ 1 +2) koo I Dg,upe llz,
=0. N
From (22) and (9), we get
i H(ze) | p(ze) '] 29" @w’ (2) + @ (ze)u(z) |
m o,

k=0 (1= 1 (zx) P)atn
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Since limy_,o | @(2¢) |= 1, therefore

w(zi) 1 29" (zi)u' (zi) + @ (zr)u(zx) | —0

lim
k=0 (1= | p(z) [P)atr

Similar to the proof of (13), we have

Lim || D ulngy iz, < Hm I Dy fpe llz, + im [ Dl llz,

a+n+1i-
ala+1) .
1 D}
(a+n+)(a+n+2) Kooh 1D%u90c0 llz,

By using (14) and (23), we get

o) Loz ' w (zk) |
k—oo (1= @(z) [P)atnt

=0,

since limy_, | @(2¢) |= 1, from the above equation, we obtain

I pzo) [u"z) |
k—oo (1— | (P(Zk) |2)a+n—1

Finally, similar to the proof (16)

20 .
n 111_)1?0 “ DZ,th(Zk) ”Zy

3 1n 3 n
Lim || D ukn g llz, < Hm Wl Dgufo llz, +-—

ala+1) .
(a+n)(a+n+1) 111—{?0 1 Dg 80 Iz,

=0. (24)

So, by using (17) and (24),

oz @) 2] @ (zi) 1P udz) |
1 =
koo (1= [ p(zz) Pt

0.

Since lim_,o0 | @(z¢) |= 1, we get
) |9 Plu) |
k—oo (1— | (P(Zk) |2)a+n+1

(e) = (a) Assume that (fi)ren is a bounded sequence in 8% converging to 0 uniformly on compact subsets
of ID. For any € > 0, there exists 0 € (0, 1) such that
20’ ’ + " ” ’ 2
u(2)| 29" (2)u’'(z) + ¢ (2)u(z) | e u@)| u”(2) | e p@)l @' (2) I | u(z) | e

(1 _ | (P(Z) |2)01+" 4 a+n-1 4 a+n+1

1-19@ P 1-19@ P

when 6 <| ¢(z) |< 1. Since Df , : 8% — Z,, is bounded, from Theorem 2.4, we have

(25)

Cy = sup u(z) [ u”(z) I< eo,
zeD

Cs = sup u(2) | u() || ¢’ (2) P< oo,
zeD

Ce = sup (@) | 29" (@)’ (2) + ¢ (2)u(z) |< co. (26)
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Let V = {z € D | p(z) I< 6}. From (20), (25) and (26), we obtain
sup i(2) | (D fi)"(@) | < sup () | F"2 0@ @' @) P lu) |

+supp(a) | I @@) | 20" (' (2) + ¢ (2)u(2) |

" z U@ '@ Pl u@) |
+5up (@) | (@@ 10/ 1 +C sup £ sl

(@) | 20" (@' (2) + ¢” (2)u(2) | u@) |’ @) |
C O N
+ ZSB?V (= o) P Il fell g + ZSBPV = lo@ |2)a+n71||fk||3
< Cssup | f]fVHZ)((p(z)) | +Ce sup | fk(nﬂ)((p(z)) | +C4sup | fk(n)((p(z)) | +Cellfilg:.
zeV eV

zeV

Hence,

D2, fillz, < Cssup | £ @) | +Cesup | £ V@) | +Cysup | £ (@) | +Cellfillse+ | u(0) || £ ((0)) |

[w|<d [wl<6 [w]<b

+1 £7 V(@) 1 9 (0) 11 u(0) | + | £ ((0)) Il ' (0) | - (27)

Since (fi)ken converges to 0 uniformly on compact subsets of ID, by Cauchy’s estimates so do the sequences
( fk("))keN. From (27), letting k — oo and using the fact that € is an arbitrary positive number, we get

]}1_{{)10 IDG,. fillz, = 0.

1

From Lemma 3.1, we deduce that the operator D ,

: B — Z, is compact. O
Setting @ = 1 and p(z) = 1- | z |2, in (1) and Theorems 2.4 and 3.2, we obtain the following corollaries.

Corollary 3.3. Let n be a positive integer, u € H(ID) and ¢ be an analytic self~-map of ID. Then the following
statements are equivalent.

(a) The operator Dy, : B — Z is bounded.
(b) The operator Dg. : Bo — Z is bounded.

(c) SUpPjs, ||D$,tu||Z < oo, where Pj(Z) =7,
) ueZ, sup.p(-1zP) u@) | ¢'@) P< o, sup.p(i-|z P) |29/ @w(E) + " @u() |< oo and

sup D}, fillz < o, sup|ID hallz < oo, sup[ID},gallz < o0
acD aeD aeD

where f,, h, and g, are defined in (1).

(e)

(1-12P) 120G () + 9" @u) | _ 1-1zP) | '@ |
e (- () Py = T Te@ Py
o (212D 9@ Pl |
T A e P2

Corollary 3.4. Let n be a positive integer, u € H(ID) and ¢ be an analytic self-map of D and D, : B — Z is
bounded. Then the following statements are equivalent.

(a) The operator Dy, : B — Z is compact.
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(b) The operator Dy, : By — Z is compact.
(C) lim]-_m, ”Dz,uP]”Z =0.
(d) limyy a1 1DG,u fo@llz = 0, limypey-1 1D, p@liz = 0, limygey 11D g llz = 0.

()

oy 41z ) 129" (' (@) + 9" (@u(z) | _ A-1zP) 1w @) | _

lim > 0, lim 5 =0 and
lp(2)l -1 (1-1q() )+t lp@I-1 (1 -] @(z) )"
1— 2 ’ 2
1rn_( |Z|)|<P(Z)2||u(z)|:0
lp(z)l—1 (1-1e() )=+

The equivalence of conditions (a), () and (d) of corollaries 3.3 and 3.4 was proved in [4]. Also Stevi¢ in
[10] proved that the conditions (a), (b) and (e) of above two corollaries are equivalent.
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