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Abstract. A balanced bipartite graph G is said to be 2p-Hamilton-biconnected if for any balanced subset W
of size 2p of V(G), the subgraph induced by V(G)\W is Hamilton-biconnected. In this paper, we prove that
“ Let G be a balanced bipartite graph of order 2n with minimum degree δ(G) ≥ k, where n ≥ 2k − p + 2
for two integers k ≥ p ≥ 0. If the number of edges e(G) > n(n − k + p − 1) + (k + 2)(k − p + 1), then
G is 2p-Hamilton-biconnected except some exceptions.” Furthermore, this result is used to present two
new spectral conditions for a graph to be 2p-Hamilton-biconnected. Moreover, the similar results are also
presented for nearly balanced bipartite graphs.

1. Introduction

Let G be an undirected simple graph with vertex set V(G) = {v1, . . . , vn} and edge set E(G). Denote by
δ(G) the minimum degree of G. The adjacency matrix A(G) of G is the n × n matrix (ai j), where ai j = 1 if vi is
adjacent to v j, and 0 otherwise. The matrix Q(G) = D(G) + A(G) is known as the signless Laplacian matrix
of G, where D(G) is the degree diagonal matrix. The spectral radius and signless Laplacian spectral radius of G
are the largest eigenvalues of A(G) and Q(G), denoted by ρ(G) and q(G), respectively.

For two disjoint graphs G and H, we denote by G
⋃

H and G
∨

H the union of G and H, and the join
of G and H which is obtained from G

⋃
H by joining every vertex of G to every vertex of H, respectively.

Moreover, kG denotes a graph consisting of k disjoint copies of G. Denote by G[X,Y] the subgraph of G with
all possible edges with one end vertex in X and the other in Y respectively. Denote e(X,Y) = |E(G[X,Y])|.

A cycle (path) in a graph G that contains every vertex of G is called a Hamiltonian cycle (path) of G,
respectively. A graph G is said to be Hamiltonian if it contains a Hamiltonian cycle. A bipartite graph
G = (X,Y; E) is called (nearly) balanced if (||X| − |Y|| = 1) |X| = |Y| respectively. A (nearly) balanced bipartite
graph G = (X,Y; E) with (||X|− |Y|| = 1) |X| = |Y| is called Hamilton-biconnected if for (any two distinct vertices
u, v ∈ X) any vertex u ∈ X and any vertex v ∈ Y, G has a Hamiltonian path between u and v, respectively.
A (nearly) balanced bipartite graph G is said to be 2p-Hamilton-biconnected if for any balanced subset W of
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size 2p of V(G), the subgraph induced by V(G)\W is Hamilton-biconnected, respectively. Obviously for
p = 0, 2p-Hamilton-biconnected graphs are exactly Hamilton-biconnected graphs. For graph notation and
terminology undefined here, readers are referred to [6].

Denote by Ms,t
n,m a bipartite graph obtained from Ks,m−t

⋃
Kn−s,t by joining every vertex in X2 to every

vertex in Y1, where Ks,m−t = (X1,Y1; E1) and Kn−s,t = (X2,Y2; E2) with |X1| = s, |Y1| = m − t, |X2| = n − s, and
|Y2| = t (see Fig. 1). Moreover, denote by Np,1

n,n a balanced bipartite graph obtained from Kn−p−2,n−p−2
⋃

Kp+1,p+1⋃
K2 by joining every vertex in X1 to every vertex in Y2, every vertex in X2 to every vertex in Y1

⋃
Y3, and

every vertex in X3 to every vertex in Y2, where Kn−p−2,n−p−2 = (X1,Y1; E1), Kp+1,p+1 = (X2,Y2; E2), and
K2 = (X3,Y3; E3) with |X1| = |Y1| = n − p − 2, |X2| = |Y2| = p + 1, and |X3| = |Y3| = 1 (see Fig. 1).

The problem of deciding whether a graph is Hamiltonian is NP-complete. So researchers focus on
giving reasonable sufficient or necessary conditions for Hamiltonian cycles in graphs and bipartite graphs.
Moon and Moser [13] studied balanced bipartite graphs and showed a sufficient condition for Hamiltonian
cycles in balanced bipartite graphs with large minimum degree.

Theorem 1.1. [13] Let G be a balanced bipartite graph of order 2n with δ(G) ≥ k, where 1 ≤ k ≤ n
2 . If

e(G) > max
{

n(n − k) + k2,n
(
n −

⌊n
2

⌋)
+

⌊n
2

⌋2
}
,

then G is Hamiltonian.

Amar et al. [2] proved a sufficient condition for 2p-Hamilton-biconnnectedness of balanced bipartite
graphs.

Theorem 1.2. [2] Let p ≥ 0 and G be a balanced bipartite graph of order 2n. If

e(G) > n(n − 1) + p + 1, (1)

then G is 2p-Hamilton-biconnnected.

Recently, Li and Ning [10] gave the spectral analogue of Moon–Moser’s theorem [13]. For more results,
readers are referred to [1, 3, 8, 9, 11, 12, 14–16]. In this paper, we establish the analogues of Moon–Moser’s
theorem for 2p-Hamilton-biconnnectedness of balanced bipartite graphs and nearly balanced bipartite
graphs, respectively.

Theorem 1.3. Let G be a balanced bipartite graph of order 2n with δ(G) ≥ k, where n ≥ 2k−p+2 for two nonnegative
integers k ≥ p ≥ 0. If

e(G) > n(n − k + p − 1) + (k + 2)(k − p + 1), (2)

then G is 2p-Hamilton-biconnected, unless G ⊆Mn−k,k−p
n,n for k ≥ p + 1, or G ⊆ Np,1

n,n for k = p + 2.

Remark 1. Theorem 1.2 [2] and Theorem 1.3 are not comparable. For k ≥ p + 1 and large n, the condition
(2) in Theorem 1.3 is weaker than the condition (1) in Theorem 1.2.

Theorem 1.4. Let G be a nearly balanced bipartite graph of order 2n− 1 with δ(G) ≥ k, where n ≥ 2k− p + 2 for two
nonnegative integers k ≥ p ≥ 0. If

e(G) > n(n − k + p − 2) + (k + 2)(k − p + 1),

then G is 2p-Hamilton-biconnected, unless one of the following holds:
(i) G ⊆Mn−k−1,k−p

n,n−1 for k ≥ p + 1;

(ii) G ⊆Mk−p,n−k−1
n,n−1 for k ≥ p + 1;

(iii) G ⊆Mn−k,k−p−1
n,n−1 for k ≥ p + 2.
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Theorems 1.3 and 1.4 can be used to obtain some spectral conditions for 2p-Hamilton-biconnectedness
of balanced bipartite graphs and nearly balanced bipartite graphs in terms of spectral radius or signless
Laplacian spectral radius, respectively.

For balanced bipartite graphs, we have

Theorem 1.5. Let G be a balanced bipartite graph of order 2n with δ(G) ≥ k and two integers k ≥ p + 1 ≥ 1.
(i) If k = p + 2, n ≥ 2k2 + 3, and ρ(G) ≥ ρ(Nk−2,1

n,n ), then G is 2p-Hamilton-biconnected unless G = Nk−2,1
n,n .

(ii) If k , p + 2, n ≥ (k + 2)(k − p + 1), and ρ(G) ≥ ρ(Mn−k,k−p
n,n ), then G is 2p-Hamilton-biconnected unless

G = Mn−k,k−p
n,n .

Theorem 1.6. Let G be a balanced bipartite graph of order 2n with δ(G) ≥ k, where n ≥ (k + 2)(k − p + 1) for two
integers k ≥ p + 1 ≥ 1. If q(G) ≥ q(Mn−k,k−p

n,n ), then G is 2p-Hamilton-biconnected unless G = Mn−k,k−p
n,n .

For nearly balanced bipartite graphs, we have

Theorem 1.7. Let G be a nearly balanced bipartite graph of order 2n− 1 with δ(G) ≥ k for two nonnegative integers
k and p.
(i) If k = p + 1, n ≥ 2k + 3, and ρ(G) ≥ ρ(M1,n−k−1

n,n−1 ), then G is 2p-Hamilton-biconnected unless G = M1,n−k−1
n,n−1 .

(ii) If k ≥ p+2, n ≥ (k+2)(k−p+1)
2 , and ρ(G) ≥ ρ(Mn−k,k−p−1

n,n−1 ), then G is 2p-Hamilton-biconnected unless G = Mn−k,k−p−1
n,n−1 .

Theorem 1.8. Let G be a nearly balanced bipartite graph of order 2n− 1 with δ(G) ≥ k for two nonnegative integers
k and p.
(i) If k = p + 1, n ≥ 2k + 4, and q(G) ≥ q(Mn−k−1,1

n,n−1 ), then G is 2p-Hamilton-biconnected unless G = Mn−k−1,1
n,n−1 .

(ii) If k ≥ p+2, n ≥ (k+2)(k−p+1)
2 , and q(G) ≥ q(Mn−k,k−p−1

n,n−1 ), then G is 2p-Hamilton-biconnected unless G = Mn−k,k−p−1
n,n−1 .

The rest of this paper is organized as follows. In Section 2, we state some known and new results that
will be used in the proofs of Theorems 1.3–1.8. In Section 3, we present some necessary lemmas and prove
Theorems 1.3 and 1.4. In Section 4, we present some necessary lemmas and prove Theorems 1.5 and 1.6.
Some corollaries are also included. In Section 5, we present some necessary lemmas and prove Theorems 1.7
and 1.8. Some corollaries are also included.

2. Preliminaries

We now introduce some more terminologies and notations, which will be used in this section and the
proofs of Theorems 1.3 and 1.4. Recall that the k-biclosure of a bipartite graph G = (X,Y; E) [5] is the unique
smallest bipartite graph H of order |V(H)| := |V(G)| such that G ⊆ H and dH(x) + dH(y) < k for any two
non-adjacent vertices x ∈ X and y ∈ Y. The k-biclosure of G is denoted by clk(G), and clk(G) can be obtained
from G by a recursive procedure which consists of joining non-adjacent vertices in different classes with
degree sum at least k until no such pair remains. A bipartite graph is called k-closed if G = clk(G).

s︷︸︸︷ n − s︷︸︸︷

m − t
︸︷︷︸

t
︸︷︷︸

Ms,t
n,m

s − 1︷︸︸︷ n − s︷︸︸︷

m − t − 1
︸︷︷︸

t
︸︷︷︸

Ms,t;−
n,m

t︷︸︸︷ l︷︸︸︷ k − l︷︸︸︷ k − l︷︸︸︷

m − k + p
︸︷︷︸

k − p
︸︷︷︸

Fk,p,l
n,m ,

t = n − (k − p)(k − l) − l
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n − p − 2︷︸︸︷ p + 1︷︸︸︷

n − p − 2
︸︷︷︸

p + 1
︸︷︷︸

Np,1
n,n

n − p − 3︷︸︸︷ p + 2︷︸︸︷

n − p − 3
︸︷︷︸

p + 2
︸︷︷︸

Np,2
n,n

Fig. 1. Graphs Ms,t
n,m, Ms,t;−

n,m , Fk,p,l
n,m , Np,1

n,n and Np,2
n,n.

Denote by Ms,t;−
n,m a bipartite graph obtained from Ks−1,m−t−1

⋃
K2

⋃
Kn−s,t by joining every vertex in X2

to every vertex in Y1, and every vertex in X3 to every vertex in Y1
⋃

Y2, where Ks−1,m−t−1 = (X1,Y1; E1),
K2 = (X2; Y2; E2), and Kn−s,t = (X3,Y3; E3) with |X1| = s − 1, |Y1| = m − t − 1, |X2| = |Y2| = 1, |X3| = n − s, and
|Y3| = t (see Fig. 1). Obviously Ms,t;−

n,m ⊆Ms,t
n,m.

Denote by Np,2
n,n a balanced bipartite graph obtained from Kn−p−3,n−p−3

⋃
Kp+2,p+2

⋃
K2 by joining every

vertex in X1 to every vertex in Y2, every vertex in X2 to every vertex in Y1
⋃

Y3, and every vertex in X3

to every vertex in Y2, where Kn−p−3,n−p−3 = (X1,Y1; E1), Kp+2,p+2 = (X2,Y2; E2), and K2 = (X3,Y3; E3) with
|X1| = |Y1| = n − p − 3, |X2| = |Y2| = p + 2, and |X3| = |Y3| = 1 (see Fig. 1).

Given integers n,m, k, p, l, where k ≥ p + 2, 0 ≤ l ≤ k− 1, n ≥ (k− p)(k− l) + l, and n− 1 ≤ m ≤ n, we denote
by Fk,p,l

n,m a bipartite graph obtained from Mn−(k−p)(k−l)−l,k−p
n−(k−p)(k−l),m by attaching k − l pendant vertices at every vertex

of those k − p vertices with degree l, respectively, and then joining every pendant vertex to every vertex
with degree n − (k − p)(k − l) in Mn−(k−p)(k−l)−l,k−p

n−(k−p)(k−l),m (see Fig. 1).

The following lemma follows from the Perron–Frobenius theorem.

Lemma 2.1. Let G be a connected graph. If H is a (proper) subgraph of G, then ρ(H)(<) ≤ ρ(G) and q(H)(<) ≤ q(G),
respectively.

Lemma 2.2. [4] Let G be a bipartite graph. Then

ρ(G) ≤
√

e(G),

with equality if and only if G is a disjoint union of a complete bipartite graph and isolated vertices.

Lemma 2.3. [10] Let G be a balanced bipartite graph of order 2n. Then

q(G) ≤
e(G)

n
+ n.

with equality if and only if G = Kn,n.

Remark 2: The extremal graph in Lemma 2.3 is not characterized in [10]. But it is easy to obtain the extremal
graph by combining the proof of Lemma 2.3 and Das’s bound [7, Theorem 4.5].

Note that G ⊆ cln+p+2(G). If G is 2p-Hamilton-biconnected then so is cln+p+2(G). Combining this with [2,
Theorem 3.3.1], we have the following lemma.

Lemma 2.4. Let p ≥ 0 and G be a balanced bipartite graph of order 2n. Then G is 2p-Hamilton-biconnected if and
only if cln+p+2(G) is 2p-Hamilton-biconnected.
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Lemma 2.5. Let p ≥ 0 and G be a nearly balanced bipartite graph of order 2n−1. Then G is 2p-Hamilton-biconnected
if and only if cln+p+1(G) is 2p-Hamilton-biconnected.

Proof. Since G ⊆ cln+p+1(G), if G is 2p-Hamilton-biconnected then so is cln+p+1(G). Conversely, suppose that
cln+p+1(G) is 2p-Hamilton-biconnected. Denote G = (X,Y; E) with |X| = n and |Y| = n − 1. We show that if
G+xy is 2p-Hamilton-biconnected for two non-adjacent vertices x ∈ X and y ∈ Y with dG(x)+dG(y) ≥ n+p+1,
then G is 2p-Hamilton-biconnected. Indeed, if G is not 2p-Hamilton-biconnected, then there exists a balanced
subset W of size 2p of V(G) and two vertices x1, x2 ∈ X\W such that the subgraph F induced by V(G)\W has
no Hamiltonian path between x1 and x2. On the other hand, since G + xy is 2p-Hamilton-biconnected, the
graph F + xy has a Hamiltonian path between x1 and x2 and thus x ∈ X\W and y ∈ Y\W. Let H be a graph
obtained from F by adding a new vertex v in Y and two edges vx1 and vx2. Then H is not Hamiltonian, but
H + xy is Hamiltonian. Note that

dH(x) + dH(y) ≥ dF(x) + dF(y) ≥ (dG(x) − p) + (dG(y) − p)

= dG(x) + dG(y) − 2p ≥ n − p + 1 =
1
2
|V(H)| + 1.

It follows from [5, Theorem 6.2] that H is Hamiltonian, a contradiction. Note that cln+p+1(G) is a graph
obtained from G by a recursive procedure joining non-adjacent vertices in different classes with degree
sum at least n + p + 1 until no such pair remains. Since cln+p+1(G) is 2p-Hamilton-biconnected, G is also
2p-Hamilton-biconnected. �

The proofs of Lemmas 2.6–2.8 are put in the appendix, since they are technical and complicated.

Lemma 2.6. Fk,p,l
n,m is 2p-Hamilton-biconnected.

Lemma 2.7. (i) For integers p ≥ 0, s ≥ 2, t ≥ 1, and n = s + t + p + 1, Ms,t;−
n,n is 2p-Hamilton-biconnected.

(ii) For two integers p ≥ 0 and n ≥ p + 6, Np,2
n,n is 2p-Hamilton-biconnected.

Lemma 2.8. (i) For integers p ≥ 0, s, t ≥ 1, and max{s + p + 1, t + p + 2} ≤ n ≤ s + t + p + 1, Ms,t
n,n−1 is not

2p-Hamilton-biconnected.
(ii) For integers p ≥ 0, s, t ≥ 1, and n = s + t + p, Ms,t

n,n is not 2p-Hamilton-biconnected.
(iii) For two integers p ≥ 0 and n ≥ p + 6, Np,1

n,n is not 2p-Hamilton-biconnected.

3. Proofs of Theorems 1.3 and 1.4

In order to prove Theorems 1.3 and 1.4, we first prove the following lemma, in which the techniques are
from [10, Lemma 4].

Lemma 3.1. Let G be an (n + p + 2)-closed balanced bipartite graph of order 2n, where n ≥ 2k−p + 2 for two integers
k ≥ p ≥ 0. If

e(G) > n(n − k + p − 1) + (k + 2)(k − p + 1),

then G contains a complete bipartite graph of order 2n − k + p. Furthermore, if δ(G) ≥ k, then Kn,n−k+p ⊆ G, or
G ∈ {Np,1

n,n,N
p,2
n,n} for k = p + 2.

Proof. Denote G = (X,Y; E) with |X| = |Y| = n. Let U =
{
x ∈ X : dG(x) ≥ n+p+2

2

}
and W =

{
y ∈ Y : dG(y) ≥

n+p+2
2

}
. Then

n(n − k + p − 1) + (k + 2)(k − p + 1) < e(G) ≤ n|U| +
(n − |U|)(n + p + 1)

2
.

Since k ≥ p and n ≥ 2k − p + 2, we have

|U| ≥
n2
− (2k − p + 3)n + 2(k + 2)(k − p + 1) + 2

n − p − 1
> k + 1,
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which implies that |U| ≥ k + 2. By symmetry, |W| ≥ k + 2. Since G is an (n + p + 2)-closed balanced bipartite
graph, every vertex in U is adjacent to every vertex in W and thus Kk+2,k+2 ⊆ G. Let t be the largest integer
such that Kt,t ⊆ G.

Claim 1. t ≥ n − k + p.

Suppose that k +2 ≤ t ≤ n− k +p−1. Let X1 ⊆ X and Y1 ⊆ Y with |X1| = |Y1| = t such that G[X1,Y1] = Kt,t.
Set X2 = X\X1 and Y2 = Y\Y1. Since t is the largest integer such that Kt,t ⊆ G, there exists a corresponding
vertex y ∈ Y1 such that xy < E(G) for every x ∈ X2 (by symmetry). It follows that dG(x) ≤ n + p − t + 1 for
every x ∈ X2. Hence

e(G) = e(X1,Y1) + e(X1,Y2) + e(X2,Y)
≤ t2 + t(n − t) + (n + p − t + 1)(n − t)
= t2

− (n + p + 1)t + n(n + p + 1)
≤ (n − k + p − 1)2

− (n + p + 1)(n − k + p − 1) + n(n + p + 1)
= n(n − k + p − 1) + (k + 2)(k − p + 1)
< e(G),

a contradiction. Thus Claim 1 holds.
Let s be the largest integer such that Ks,t ⊆ G. Obviously, s ≥ t. Let X1 ⊆ X and Y1 ⊆ Y such that

G[X1,Y1] = Ks,t, where |X1| = s and |Y1| = t. Set X2 = X\X1 and Y2 = Y\Y1.

Claim 2. s + t ≥ 2n − k + p.

Suppose that s + t ≤ 2n − k + p − 1. It follows from Claim 1 that n − k + p ≤ t ≤ n − k−p+1
2 and

t ≤ s ≤ 2n − k + p − t − 1. Since G is an (n + p + 2)-closed balanced bipartite graph, dG(x) ≤ n + p − s + 1 for
every x ∈ X2 and dG(y) ≤ n + p − t + 1 for every y ∈ Y2. Hence

e(G) ≤ e(X1,Y1) + e(X2,Y) + e(X,Y2)
≤ st + (n + p − s + 1)(n − s) + (n + p − t + 1)(n − t)
= s2

− (2n + p − t + 1)s + (n − t)(n + p − t + 1) + n(n + p + 1)
≤ (2n − k + p − t − 1)2

− (2n + p − t + 1)(2n − k + p − t − 1) +

(n − t)(n + p − t + 1) + n(n + p + 1)
= t2

− (2n − k + p − 1)t + 2n2
− 2(k − p + 1)n + (k + 2)(k − p + 1)

≤ (n − k + p)2
− (2n − k + p − 1)(n − k + p) + 2n2

− 2(k − p + 1)n +

(k + 2)(k − p + 1)
= n(n − k + p − 1) + (k + 1)(k − p + 1) + 1
< e(G),

a contradiction. Thus Claim 2 holds.

It follows from Claim 2 that Ks,t is a complete bipartite graph of order at least 2n−k+p. Hence G contains
a complete bipartite graph of order 2n − k + p.

Claim 3. If δ(G) ≥ k, then Kn,n−k+p ⊆ G, or G ∈ {Np,1
n,n,N

p,2
n,n} for k = p + 2.

If t = n−k+p, then Claim 2 implies that s = n and thus Kn,n−k+p ⊆ G. So we can assume that t ≥ n−k+p+1.
Next we consider the following two cases.

Case 1. s = n−k+p+1. Obviously, k ≥ p+1 and t = n−k+p+1. If k ≥ p+3, then s+t = 2(n−k+p+1) < 2n−k+p,
which contradicts Claim 2. Hence p + 1 ≤ k ≤ p + 2. Furthermore, if k = p + 1, then G = Kn,n and thus
Kn,n−k+p ⊆ G. If k = p + 2, then s = t = n− 1. Note that G is an (n + p + 2)-closed bipartite graph with δ(G) ≥ k.
If there exists a vertex v ∈ V(G)\V(Kn−1,n−1) such that dG(v) ≥ k + 1, then Kn,n−1 ⊆ G. If dG(v) = k = p + 2 for
every v ∈ V(G)\V(Kn−1,n−1), then G = Np,1

n,n or G = Np,2
n,n for k = p + 2.
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Case 2. s ≥ n− k + p + 2. Clearly, dG(y) ≥ n− k + p + 2 for every y ∈ Y1. Then every vertex in Y1 is adjacent
to every vertex in X. This implies that Kn,n−k+p ⊆ G. �

Corollary 3.2. Let G be an (n + p + 1)-closed nearly balanced bipartite graph of order 2n − 1, where n ≥ 2k − p + 2
for two integers k ≥ p ≥ 0. If

e(G) > n(n − k + p − 2) + (k + 2)(k − p + 1),

then G contains a complete bipartite graph of order 2n − k + p − 1. Furthermore, if δ(G) ≥ k, then Kn−1,n−k+p ⊆ G or
Kn,n−k+p−1 ⊆ G.

Proof. Denote G = (X,Y; E) with |X| = n and |Y| = n − 1. Let H be a graph with vertex set V(G)
⋃
{y} and

edge set E(G)
⋃
{xy : x ∈ X}, where y < V(G). Then H is an (n + p + 2)-closed balanced bipartite graph of

order 2n and e(H) = e(G) + n > n(n − k + p − 1) + (k + 2)(k − p − 1). By Lemma 3.1, H contains a complete
bipartite graph of order 2n− k + p. Thus G contains a complete bipartite graph of order 2n− k + p− 1. Note
that if δ(G) ≥ k, then δ(H) ≥ δ(G) ≥ k. It follows from Lemma 3.1 that Kn,n−k+p ⊆ H, or H ∈ {Np,1

n,n,N
p,2
n,n}

for k = p + 2. If Kn,n−k+p ⊆ H, then Kn,n−k+p−1 ⊆ G or Kn−1,n−k+p ⊆ G. If H ∈ {Np,1
n,n,N

p,2
n,n} for k = p + 2, then

δ(G) = p + 1 < k, a contradiction. This completes the proof. �

Lemma 3.3. Let k, p be two noneagative integers and G = (X,Y; E) be an (m + p + 2)-closed bipartite graph with
|X| = n, |Y| = m, and δ(G) ≥ k, where n ≥ 2k − p + 2 and n − 1 ≤ m ≤ n. Suppose that k ≥ p and Kn,m−k+p ⊆ G.
(i) If m = n, then G is 2p-Hamilton-biconnected, unless G = Mn−k,k−p

n,n for k ≥ p + 1.
(ii) If m = n − 1, then G is 2p-Hamilton-biconnected, unless one of the following holds:

(a) G = Mn−k,k−p
n,n−1 for k ≥ p + 1;

(b) G = Mn−k−1,k−p
n,n−1 for k ≥ p + 1;

(c) G = Mn−k,k−p−1;−
n,n−1 for k ≥ p + 2;

(d) G = Mn−k,k−p−1
n,n−1 for k ≥ p + 2.

Proof. Suppose that G is not 2p-Hamilton-biconnected. Let t be the largest integer such that Kn,t ⊆ G, and
Y1 ⊆ Y such that G[X,Y1] = Kn,t. Obviously, t ≥ m − k + p. We claim that m − k + p ≤ t ≤ m − k + p + 1. Note
that G is an (m + p + 2)-closed bipartite graph and δ(G) ≥ k. If t > m − k + p + 1, then every vertex in Y is
adjacent to every vertex in X, and thus G = Kn,m, a contradiction. Next we consider the following two cases.

Case 1. t = m − k + p. Then |Y1| = m − k + p and |Y\Y1| = k − p ≥ 1. We show that k ≤ dG(y) ≤ k + 1 for
every y ∈ Y\Y1. Indeed, if there exists a vertex y ∈ Y\Y1 such that dG(y) ≥ k + 2, then y is adjacent to every
vertex in X and thus t ≥ m − k + p + 1, a contradiction. Next we consider the following two subcases.

Case 1.1. For every y ∈ Y\Y1, dG(y) = k. Set X =
⋃3

i=1 Xi, where X1 = {x ∈ X : dG(x) = m − k + p},
X2 = {x ∈ X : dG(x) = m− k + p + 1}, and X3 = {x ∈ X : dG(x) ≥ m− k + p + 2}. Set Y2 = Y\Y1 and l = |X3|. Since
G is an (m + p + 2)-closed bipartite graph with δ(G) ≥ k, every vertex in Y2 is adjacent to every vertex in X3.
This implies that 0 ≤ l ≤ k. Furthermore, every vertex in Y2 is adjacent to k − l vertices in X2 and any two
distinct vertices in Y2 have no common neighbors in X2. This implies that |X2| = (k − p)(k − l). Moreover, if
k ≥ p + 2 and 0 ≤ l ≤ k − 1, then G = Fk,p,l

n,m . By Lemma 2.6, Fk,p,l
n,m is 2p-Hamilton-biconnected, a contradiction.

If l = k ≥ p + 2 or k = p + 1, then G = Mn−k,k−p
n,m . It follows from Lemma 2.8 (i) and (ii) that Mn−k,k−p

n,m is not
2p-Hamilton-biconnected, as desired.

Case 1.2. There exists a vertex y ∈ Y\Y1 such that dG(y) = k + 1. Set X =
⋃2

i=1 Xi and Y =
⋃3

i=1 Yi,
where X1 = {x ∈ X : dG(x) = m − k + p}, X2 = {x ∈ X : dG(x) ≥ m − k + p + 1}, Y2 = {y ∈ Y : dG(y) = k}, and
Y3 = {y ∈ Y : dG(y) = k + 1}. Since G is an (m + p + 2)-closed bipartite graph with δ(G) ≥ k, every vertex in
Y3 is adjacent to every vertex in X2. This implies that |X2| = k + 1 and thus |X1| = n − k − 1.

We first assume that Y2 = ∅. It is easy to see that G = Mn−k−1,k−p
n,m for k ≥ p + 1. Suppose that m = n.

Since Mn−k−1,k−p;−
n,n is a spanning subgraph of Mn−k−1,k−p

n,n , it follows from Lemma 2.7 (i) that Mn−k−1,k−p
n,n is
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2p-Hamilton-biconnected, a contradiction. Next suppose that m = n− 1. By Lemma 2.8 (i), Mn−k−1,k−p
n,n−1 is not

2p-Hamilton-biconnected, as desired.
We next assume that Y2 , ∅. We show that |Y3| = 1. Indeed, if |Y3| ≥ 2, then dG(x) ≥ m − k + p + 2 for

every x ∈ X2 and hence every vertex in Y2 is adjacent to every vertex in X2. This implies that dG(y) = k + 1
for every y ∈ Y2, a contradiction. By a similar argument to the proof of |Y3| = 1, there exists a vertex x ∈ X2
adjacent to none of vertices in Y2. Moreover, since δ(G) ≥ k, every vertex in Y2 is adjacent to every vertex
in X2\{x}. Hence G = Mn−k,k−p−1;−

n,m for k ≥ p + 2. Suppose that m = n. By Lemma 2.7 (i), Mn−k,k−p−1;−
n,n is

2p-Hamilton-biconnected, a contradiction. Next suppose that m = n − 1. Since Mn−k,k−p−1;−
n,n−1 is a spanning

subgraph of Mn−k,k−p−1
n,n−1 , it follows from Lemma 2.8 (i) that Mn−k,k−p−1;−

n,n−1 is not 2p-Hamilton-biconnected, as
desired.

Case 2. t = m − k + p + 1. Then |Y1| = m − k + p + 1 and k ≥ p + 2. Set X =
⋃2

i=1 Xi, where
X1 = {x ∈ X : dG(x) = m − k + p + 1}, X2 = {x ∈ X : dG(x) ≥ m − k + p + 2}. Set Y2 = Y\Y1. Obviously,
|Y2| = k−p−1. Since G is an (m + p + 2)-closed bipartite graph with δ(G) ≥ k, every vertex in Y2 is adjacent to
every vertex in X2. We claim that Y2 = {y ∈ Y : dG(y) = k}. Otherwise, there exists a vertex in Y2 adjacent to
every vertex in X, and thus t ≥ m− k + p + 2, a contradiction. It follows that |X2| = k and |X1| = n− k. Hence
G = Mn−k,k−p−1

n,m for k ≥ p + 2. Suppose that m = n. Since Mn−k,k−p−1;−
n,n is a spanning subgraph of Mn−k,k−p−1

n,n , it
follows from Lemma 2.7 (i) that Mn−k,k−p−1

n,n is 2p-Hamilton-biconnected, a contradiction. Next suppose that
m = n − 1. By Lemma 2.8 (i), Mn−k,k−p−1

n,n−1 is not 2p-Hamilton-biconnected, as desired. �

Now we are ready to prove Theorems 1.3 and 1.4.

Proof of Theorem 1.3. Suppose that k ≥ p, e(G) > n(n− k +p−1)+ (k +2)(k−p+1), and G is not 2p Hamilton-
biconnected. Let H = cln+p+2(G). By Lemma 2.4, H is also not 2p-Hamilton-biconnected. Furthermore,
δ(H) ≥ δ(G) ≥ k and e(H) ≥ e(G) > n(n − k + p − 1) + (k + 2)(k − p + 1). By Lemma 3.1, Kn,n−k+p ⊆ H, or
H ∈ {Np,1

n,n,N
p,2
n,n} for k = p + 2. It follows from Lemmas 2.7 (ii), 2.8 (iii), and 3.3 (i) that H = Mn−k,k−p

n,n for
k ≥ p + 1, or H = Np,1

n,n for k = p + 2. Hence G ⊆Mn−k,k−p
n,n for k ≥ p + 1, or G ⊆ Np,1

n,n for k = p + 2. �

Let p = 0 in Theorem 1.3, we partially prove the following Moon and Moser’s Theorem [13].

Corollary 3.4. Let G be a balanced bipartite graph of order 2n with δ(G) ≥ k, where 1 ≤ k ≤ n−2
3 . If

e(G) > n(n − k) + k2,

then G is Hamiltonian.

Proof. Note that e(G) > n(n−k)+k2
≥ n(n−k−1)+(k+2)(k+1), e(Mn−k,k

n,n ) = n(n−k)+k2, and e(N0,1
n,n) = n2

−2n+4.
It follows from Theorem 1.3 that G is Hamilton-biconnected. Hence G is Hamiltonian. �

Proof of Theorem 1.4. Denote G = (X,Y; E) with |X| = n and |Y| = n− 1. Suppose that k ≥ p, e(G) > n(n− k +
p−2)+(k+1)(k−p+1), and G is not 2p-Hamilton-biconnected. Let H = cln+p+1(G). By Lemma 2.5, H is also not
2p-Hamilton-biconnected. In addition, δ(H) ≥ δ(G) ≥ k and e(H) ≥ e(G) > n(n−k+p−2)+(k+2)(k−p+1). By
Corollary 3.2, Kn,n−k+p−1 ⊆ H or Kn−1,n−k+p ⊆ H. Since H is not 2p-Hamilton-biconnected, we have H , Kn,n−1,
which implies that k ≥ p + 1. Next we consider the following two cases.

Case 1. Kn,n−k+p−1 ⊆ H. Note that G ⊆ H, Mn−k,k−p
n,n−1 ⊆Mn−k−1,k−p

n,n−1 , and Mn−k,k−p−1;−
n,n−1 ⊆Mn−k,k−p−1

n,n−1 . Combining

this with Lemma 3.3 (ii), G is 2p-Hamilton-biconnected unless G ⊆Mn−k−1,k−p
n,n−1 for k ≥ p + 1, or G ⊆Mn−k,k−p−1

n,n−1
for k ≥ p + 2.

Case 2. Kn−1,n−k+p ⊆ H and Kn,n−k+p−1 * H. Let s, t with s ≥ t be the largest integers such that Ks,t ⊆ H. It
follows that s = n − 1 and n − k + p ≤ t ≤ n − 1. We consider the following two subcases.
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Case 2.1. Let X1 ⊆ X with |X1| = t such that H[X1,Y] = Kt,n−1. We show that t = n − k + p. Indeed, if
t > n − k + p, then dH(y) ≥ n − k + p + 1 for every y ∈ Y. Since H is an (n + p + 1)-closed bipartite graph
with δ(H) ≥ k, every vertex in Y is adjacent to every vertex in X and thus H = Kn,n−1, a contradiction. Then
|X1| = n−k +p and |X\X1| = k−p. Furthermore, since H is an (n+p+1)-closed bipartite graph with δ(H) ≥ k,
dH(x) = k for every x ∈ X\X1. Let Y1 = {y ∈ Y : dH(y) = n− k + p}. Moreover, every vertex in X\X1 is adjacent
to every vertex in Y\Y1. It follows that |Y\Y1| = k and |Y1| = n − k − 1. Hence H = Mk−p,n−k−1

n,n−1 for k ≥ p + 1.

On the other hand, by Lemma 2.8 (i), Mk−p,n−k−1
n,n−1 is not 2p-Hamilton-biconnected, as desired.

Case 2.2. Let X1 ⊆ X and Y1 ⊆ Y with |X1| = n− 1 and |Y1| = t such that H[X1,Y1] = Kn−1,t. We first show
that k = p + 1. Since H is an (n + p + 1)-closed bipartite graph, if k > p + 1 then every vertex in X is adjacent
to every vertex in Y1, which implies that Kn,n−k+p−1 ⊆ Kn,n−k+p ⊆ H, a contradiction. Since k = p + 1, we have
t = n − 1. Hence Kn−1,n−1 ⊆ H, which can be described to Case 2.1. �

4. Proofs of Theorems 1.5 and 1.6

In order to prove Theorems 1.5 and 1.6, we need the following lemma.

Lemma 4.1. (i) For two integers k ≥ 2 and n ≥ 2k2 + 3, ρ(Nk−2,1
n,n ) > ρ(Mn−k,2

n,n ).
(ii) For two integers k ≥ 2 and n ≥ k + 1, q(Mn−k,2

n,n ) > q(Nk−2,1
n,n ).

Proof. (i) Denote Mn−k,2
n,n = (X,Y; E) with |X| = |Y| = n. Let x be the eigenvector corresponding to ρ(Mn−k,2

n,n ).
Let X = X1

⋃
X2 and Y = Y1

⋃
Y2, where X1 and X2 are the sets of vertices in X with degree n − 2 and n

respectively, and Y1 and Y2 are the sets of vertices in Y with degree n and k respectively.
By symmetry, the coordinate of x corresponding to any vertex in Xi, denoted by xi, is a positive constant

for 1 ≤ i ≤ 2. Similarly, the coordinate of x corresponding to any vertex in Yi, denoted by yi, is also a
positive constant for 1 ≤ i ≤ 2. By eigenequation A(Mn−k,2

n,n )x = ρ(Mn−k,2
n,n )x, we have

ρx1 = (n − 2)y1,

ρx2 = (n − 2)y1 + 2y2,

ρy1 = (n − k)x1 + kx2,

ρy2 = kx2.

By a simple calculation, ρ(Mn−k,2
n,n ) is the largest root of f (x) = 0, where

f (x) = x4
− (n2

− 2n + 2k)x2 + 2k(n − k)(n − 2).

Since
f (n − 1) = n(n − 2k2

− 2) + 4k2
− 2k + 1 > 0

and for x ≥ n − 1,
f ′(x) = 2x(2x2

− n2 + 2n − 2k) ≥ 2(n − 1)(n2
− 2n − 2k + 2) > 0,

we have ρ(Mn−k,2
n,n ) < n−1. On the other hand, since Kn−1,n−1 is a subgraph of Nk−2,1

n,n , it follows from Lemma 2.1
that

ρ(Nk−2,1
n,n ) ≥ ρ(Kn−1,n−1) = n − 1 > ρ(Mn−k,1

n,n ).

(ii) Let f (x) = x(x − n) f1(x) and 1(x) = x(x − n)2(x − k + 1)11(x), where

f1(x) = x2
− (2n + k − 2)x + 2kn − 4k,

11(x) = x2
− (2n + k − 1)x + 2kn + 2n − 4k.
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By a similar argument to the proof of (i), q(Mn−k,2
n,n ) and q(Nk−2,1

n,n ) are the largest roots of f (x) = 0 and 1(x) = 0,
respectively. Furthermore, since Kn,n−2 and Kn−1,n−1 are proper subgraphs of Mn−k,2

n,n and Nk−2,1
n,n , respectively,

it follows from Lemma 2.1 that

q(Mn−k,2
n,n ) > 2n − 2, q(Mn−k,2

n,n ) > 2n − 2.

Hence q(Mn−k,2
n,n ) and q(Nk−2,1

n,n ) are the largest roots of f1(x) = 0 and 11(x) = 0, respectively. On the other hand,
since both Mn−k,2

n,n and Nk−2,1
n,n are proper subgraphs of Kn,n, it follows from Lemma 2.1 that

q(Mn−k,2
n,n ) < 2n, q(Mn−k,2

n,n ) < 2n.

Since for x < 2n
11(x) − f1(x) = 2n − x > 0,

we have q(Mn−k,2
n,n ) > q(Nk−2,1

n,n ). �

Proof of Theorem 1.5. (i) Suppose that ρ(G) ≥ ρ(Nk−2,1
n,n ) and G is not 2p-Hamilton-biconnected. Since

Kn−1,n−1 is a proper subgraph of Nk−2,1
n,n , Lemma 2.1 implies that

ρ(G) ≥ ρ(Nk−2,1
n,n ) > ρ(Kn−1,n−1) = n − 1.

By Lemma 2.2,
√

e(G) ≥ ρ(G) > n − 1, which implies that

e(G) > (n − 1)2
≥ n(n − 3) + 3(k + 2).

It follows from Theorem 1.3 that G ⊆ Mn−k,2
n,n or G ⊆ Nk−2,1

n,n . If G ⊆ Mn−k,2
n,n , then Lemmas 2.1 and 4.1 (i)

imply that ρ(G) ≤ ρ(Mn−k,2
n,n ) < ρ(Nk−2,1

n,n ), a contradiction. If G is a proper subgraph of Nk−2,1
n,n , then Lemma 2.1

implies that ρ(G) < ρ(Nk−2,1
n,n ), a contradiction. Hence G = Nk−2,1

n,n .

(ii) Suppose that ρ(G) ≥ ρ(Mn−k,k−p
n,n ) and G is not 2p-Hamilton-biconnected. Since Kn,n−k+p is a proper

subgraph of Mn−k,k−p
n,n , Lemma 2.1 implies that

ρ(G) ≥ ρ(Mn−k,k−p
n,n ) > ρ(Kn,n−k+p) =

√
n(n − k + p).

By Lemma 2.2,
√

e(G) ≥ ρ(G) >
√

n(n − k + p), which implies that

e(G) > n(n − k + p) ≥ n(n − k + p − 1) + (k + 2)(k − p + 1).

It follows from Theorem 1.3 that G ⊆Mn−k,k−p
n,n . If G is a proper subgraph of Mn−k,k−p

n,n , then Lemma 2.1 implies
that ρ(G) < ρ(Mn−k,k−p

n,n ), a contradiction. Hence G = Mn−k,k−p
n,n . �

Corollary 4.2. Let k, p be two noneagative integers and G be a balanced bipartite graph of order 2n with δ(G) ≥ k ≥
p + 1, where n ≥ n0(k, p) and

n0(k, p) =

 2k2 + 3, if k = p + 2
(k + 2)(k − p + 1), otherwise.

If ρ(G) ≥
√

n(n − k + p) + k(k − p), then G is 2p-Hamilton-biconnected.

Proof. Suppose that k = p + 2. Note that e(Nk−2,1
n,n ) = n2

− 2n + 2k. By Lemma 2.2 and Theorem 1.5 (i), the
result follows. Next suppose that k , p + 2. Note that e(Mn−k,k−p

n,n ) = n(n− k + p) + k(k− p). By Lemma 2.2 and
Theorem 1.5 (ii), the result follows. �
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Proof of Theorem 1.6. Suppose that q(G) ≥ q(Mn−k,k−p
n,n ) and G is not 2p-Hamilton-biconnected. Since Kn,n−k+p

is a proper subgraph of Mn−k,k−p
n,n , Lemma 2.1 implies that

q(G) ≥ q(Mn−k,k−p
n,n ) > q(Kn,n−k+p) = 2n − k + p.

By Lemma 2.3, e(G)
n + n ≥ q(G) > 2n − k + p, which implies that

e(G) > n(n − k + p) ≥ n(n − k + p − 1) + (k + 2)(k − p + 1).

It follows from Theorem 1.3 that G ⊆ Mn−k,k−p
n,n for k ≥ p + 1, or G ⊆ Np,1

n,n for k = p + 2. If G is a proper
subgraph of Mn−k,k−p

n,n , then Lemma 2.1 implies that q(G) < q(Mn−k,k−p
n,n ), a contradiction. If G is a subgraph

of Np,1
n,n for k = p + 2, then Lemmas 2.1 and 4.1 (ii) imply that q(G) ≤ q(Np,1

n,n) < q(Mn−k,k−p
n,n ), a contradiction.

Hence G = Mn−k,k−p
n,n . �

Corollary 4.3. Let k, p be two noneagative integers and G be a balanced bipartite graph of order 2n with δ(G) ≥ k ≥
p + 1, where n ≥ (k + 2)(k − p + 1). If q(G) ≥ 2n − k + p +

k(k−p)
n , then G is 2p-Hamilton-biconnected.

Proof. Note that n +
e(Mn−k,k−p

n,n )
n = 2n − k + p +

k(k−p)
n . By Lemma 2.3 and Theorem 1.6, the result follows. �

5. Proofs of Theorems 1.7 and 1.8

The proofs of Lemmas 5.1 and 5.2 are similar to that of Lemma 4.1, so we put them in the appendix.

Lemma 5.1. (i) For integers p ≥ 0, k ≥ p + 1, and n ≥ 2k − p + 2,

ρ(Mk−p,n−k−1
n,n−1 ) > ρ(Mn−k−1,k−p

n,n−1 ).

(ii) For integers p ≥ 0, k ≥ p + 2, and n ≥ 2k − p + 2,

ρ(Mn−k,k−p−1
n,n−1 ) > ρ(Mk−p,n−k−1

n,n−1 ).

Lemma 5.2. (i) For integers p ≥ 0, k ≥ p + 1, and n ≥ 2k − p + 2,

q(Mn−k−1,k−p
n,n−1 ) > q(Mk−p,n−k−1

n,n−1 ).

(ii) For integers p ≥ 0, k ≥ p + 2, and n ≥ 2k − p + 2,

q(Mn−k,k−p−1
n,n−1 ) > q(Mn−k−1,k−p

n,n−1 ).

Proof of Theorem 1.7. (i) Suppose that ρ(G) ≥ ρ(M1,n−k−1
n,n−1 ) and G is not 2p-Hamilton-biconnected. Since

Kn−1,n−1 is a proper subgraph of M1,n−k−1
n,n−1 , it follows from Lemma 2.1 that

ρ(G) ≥ ρ(M1,n−k−1
n,n−1 ) > ρ(Kn−1,n−1) = n − 1.

By Lemma 2.2
√

e(G) ≥ ρ(G) > n − 1, which implies that

e(G) > n2
− 2n + 1 ≥ n(n − 3) + 2k + 4.

Then it follows from Theorem 1.4 that G ⊆Mn−k−1,1
n,n−1 or G ⊆M1,n−k−1

n,n−1 . By Lemmas 2.1 and 5.1 (i), G = M1,n−k−1
n,n−1 .
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(ii) Suppose that ρ(G) ≥ ρ(Mn−k,k−p−1
n,n−1 ) and G is not 2p-Hamilton-biconnected. Since Kn,n−k+p is a proper

subgraph of Mn−k,k−p−1
n,n−1 , it follows from Lemma 2.1 that

ρ(G) ≥ ρ(Mn−k,k−p−1
n,n−1 ) > ρ(Kn,n−k+p) =

√
n(n − k + p).

By Lemma 2.2,
√

e(G) ≥ ρ(G) >
√

n(n − k + p), which implies that

e(G) > n(n − k + p) ≥ n(n − k + p − 2) + (k + 2)(k − p + 1).

It follows from Theorem 1.4 that G ⊆ Mn−k−1,k−p
n,n−1 , G ⊆ Mk−p,n−k−1

n,n−1 , or G ⊆ Mn−k,k−p−1
n,n−1 . By Lemmas 2.1 and 5.1,

G = Mn−k,k−p−1
n,n−1 . �

Corollary 5.3. Let k, p be two nonnegative integers and G be a nearly balanced bipartite graph of order 2n − 1 with
δ(G) ≥ k.
(i) If k = p + 1, n ≥ 2k + 3, and ρ(G) ≥

√
(n − 1)2 + k, then G is 2p-Hamilton-biconnected.

(ii) If k ≥ p + 2, n ≥ (k+2)(k−p+1)
2 , and ρ(G) ≥

√
n(n − k + p) + k(k − p − 1), then G is 2p-Hamilton-biconnected.

Proof. (i) Note that e(M1,n−k−1
n,n−1 ) = (n − 1)2 + k. By Lemma 2.2 and Theorem 1.7 (i), the result follows.

(ii) Note that e(Mn−k,k−p−1
n,n−1 ) = n(n − k + p) + k(k − p − 1). By Lemma 2.2 and Theorem 1.7 (ii), the result

follows. �

Proof of Theorem 1.8. (i) Suppose that q(G) ≥ q(Mn−k−1,1
n,n−1 ) and G is not 2p-Hamilton-biconnected. Since

Kn,n−2 is a proper subgraph of Mn−k−1,1
n,n−1 , Lemma 2.1 implies that

q(G) ≥ q(Mn−k−1,1
n,n−1 ) > q(Kn,n−2) = 2n − 2.

By Lemma 2.3, e(G)
n + n ≥ q(G) > 2n − 2. Note that here we consider G as a balanced bipartite graph with an

isolated vertex. This implies that

e(G) > n2
− 2n ≥ n(n − 3) + 2k + 4.

It follows from Theorem 1.4 that G ⊆Mn−k−1,1
n,n−1 or G ⊆M1,n−k−1

n,n−1 . By Lemmas 2.1 and 5.2 (i), G = Mn−k−1,1
n,n−1 .

(ii) Suppose that q(G) ≥ q(Mn−k,k−p−1
n,n−1 ) and G is not 2p-Hamilton-biconnected. Since Kn,n−k+p is a proper

subgraph of Mn−k,k−p−1
n,n−1 , Lemma 2.1 implies that

q(G) ≥ q(Mn−k,k−p−1
n,n−1 ) > q(Kn,n−k+p) = 2n − k + p.

By Lemma 2.3, e(G)
n + n ≥ q(G) > 2n− k + p. Note that here we consider G as a balanced bipartite graph with

an isolated vertex. This implies that

e(G) > n(n − k + p) ≥ n(n − k + p − 2) + (k + 2)(k − p + 1).

It follows from Theorem 1.4 that G ⊆ Mn−k−1,k−p
n,n−1 , G ⊆ Mn−k,k−p−1

n,n−1 , or G ⊆ Mk−p,n−k−1
n,n−1 . By Lemmas 2.1 and 5.2,

G = Mn−k,k−p−1
n,n−1 . �

Corollary 5.4. Let k, p be two noneagative integers and G be a nearly balanced bipartite graph of order 2n − 1 with
δ(G) ≥ k.

(i) If k = p + 1, n ≥ 2k + 4, and q(G) ≥
√

2n − 2 + k+1
n , then G is 2p-Hamilton-biconnected.

(ii) If k ≥ p + 2, n ≥ (k+2)(k−p+1)
2 , and q(G) ≥

√
2n − k + p +

k(k−p−1)
n , then G is 2p-Hamilton-biconnected.
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Proof. (i) Note that n +
e(Mn−k−1,1

n,n−1 )
n = 2n − 2 + k+1

n . By Lemma 2.3 and Theorem 1.8 (i), the result follows.

(ii) Note that n +
e(Mn−k,k−p−1

n,n−1 )
n = 2n − k + p +

k(k−p−1)
n . By Lemma 2.3 and Theorem 1.8 (ii), the result follows.

�
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[5] J.A. Bondy, V. Chvátal, A method in graph theory, Discrete Math. 15 (1976) 111–135.
[6] J.A. Bondy, U.S.R. Murty, Graph Theory, Springer, New York (2007).
[7] K.Ch. Das, The Laplacian spectrum of a graph, Comput. Math. Appl. 48 (2004) 715–724.
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Appendix
Denote by Puv a path between u and v. Denote by Puv

⊔
Pwz a path obtained from two disjoint paths Puv

and Pwz by joining v and w.

u11 u1,s−1 u

v

u21 u2,t+1

v11 v1s v21 v2t

Ms,t;−
s+t+1,s+t+1

u11 u1t u21 u21 u(1)
31 u(1)

3,s+1
u(h)

31 u(h)
3,s+1

v11 v1,m−k v21 v2h

Hk,p,l
n−p,m−p
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u11 u1t u21 u22

v11 v1t v21 v22

u

v

N0,2
n−p,n−p

u11 u1t
u(1)

31 u(1)
3,s1+1

u(h)
31

u(h)
3,sh+1

v11 v1,m−k v21 v2h

Hk,p,l
n−p,m−p(s1, . . . , sh)

Fig. 2. Graphs Ms,t
s+t+1,s+t+1, Ms,t;−

s+t+1,s+t+1, N0,2
n−p,n−p, and Hk,p,l

n−p,m−p(s1, . . . , sh).

Proof of Lemma 2.6. We first assume that l > p. Let 1 = l−p, h = k−p, s = k− l−1, and t = n− (k−p)(k− l)− l.
Let Hk,p,l

n−p,m−p be a bipartite graph obtained from Fk,p,l
n,m by deleting all vertices in a balanced set of size 2p

which consists of vertices with as large as possible degree (see Fig. 2). Note that every bipartite graph of
order m + n − 2p obtained from Fk,p,l

n,m by deleting all vertices in a balanced set of size 2p contains Hk,p,l
n−p,m−p

as a spanning subgraph. It suffices to prove that Hk,p,l
n−p,m−p is Hamilton-biconnected. Label the vertices of

Hk,p,l
n−p,m−p as u11, . . . ,u1t, u21, . . . ,u21, u(1)

31 , . . . ,u
(1)
3,s+1, . . . ,u

(h)
31 , . . . ,u

(h)
3,s+1, v11, . . . , v1,m−k, v21, . . . , v2h (see Fig. 2).

Let m = n. We assume that l ≤ k − 2. Clearly, 1 ≥ 1, h ≥ 2, and s ≥ 1. Denote

Pu11v1t =

t⊔
i=1

u1iv1i, Pu21v1,t+1 =

1⊔
i=1

u2iv1,t+i,

Pu(h)
31 v2h

=

s⊔
i=1

u(h)
3i v1,t+1+(h−1)s+i

⊔
u(h)

3,s+1v2h,

Qu(h)
31 v2h

=

s−1⊔
i=1

u(h)
3i v1,t+1+(h−1)s+i

⊔
u(h)

3s v2h,

Pu(i)
3,s+1v1,t+1+is

= u(i)
3,s+1v2i

⊔( s⊔
j=1

u(i)
3 jv1,t+1+(i−1)s+ j

)
for 1 ≤ i ≤ h.

Hk,p,l
n−p,n−p has seven kinds of Hamiltonian paths, denoted by R1, . . . ,R7. We present them as follows:

R1 = Pu11v1t

⊔
Pu21v1,t+1

⊔( h⊔
i=1

Pu(i)
3,s+1v1,t+1+is

)
,

R2 = Pu11v1t

⊔
Pu21v1,t+1

⊔( h−1⊔
i=1

Pu(i)
3,s+1v1,t+1+is

)⊔
Pu(h)

31 v2h
,

R3 = Pu21v1,t+1

⊔
Pu11v1t

⊔( h⊔
i=1

Pu(i)
3,s+1v1,t+1+is

)
,
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R4 = Pu21v1,t+1

⊔
Pu11v1t

⊔( h−1⊔
i=1

Pu(i)
3,s+1v1,t+1+is

)⊔
Pu(h)

31 v2h
,

R5 =

h⊔
i=1

Pu(i)
3,s+1v1,t+1+is

⊔
Pu11v1t

⊔
Pu21v1,t+1 ,

R6 =

h−1⊔
i=1

Pu(i)
3,s+1v1,t+1+is

⊔
Pu11v1t

⊔
Pu21v1,t+1

⊔
Pu(h)

31 v2h
,

R7 = u(h)
3,s+1v1,n−k

⊔( h−1⊔
i=1

Pu(i)
3,s+1v1,t+1+is

)⊔
Pu11v1t

⊔
Pu21v1,t+1

⊔
Qu(h)

31 v2h
.

Hence Hk,p,l
n−p,n−p is Hamilton-biconnected. Thus Fk,p,l

n,n is 2p-Hamilton-biconnected for p < l ≤ k − 2. Similarly

we can prove that Fk,p,l
n,n is also 2p-Hamilton-biconnected for p < l = k − 1.

Let m = n − 1. We assume that l ≤ k − 2. Hk,p,l
n−p,n−p−1 has seven Hamiltonian paths, denoted by R∗1, . . . ,R

∗

7,

obtained from Hamiltonian paths R1, R3, and R5 in Hk,p,l
n−p,n−p by some vertex and edge operations. We present

them as follows:

R∗1 = R1 − v1t − u1tv1,t−1 + {u21v1,t−1,u1tv1,n−k},

R∗2 = R1 − v1,t+1 − u21v1,t+1−1 + {u(1)
3,s+1v1,t+1−1,u21v1,n−k},

R∗3 = R1 − v1,n−k,

R∗4 = R3 − v1,t+1 − u21v1,t+1−1 + {u11v1,t+1−1,u21v1,n−k},

R∗5 = R3 − v1,n−k,

R∗6 = R5 − v1,t+1+s − u(1)
3s v1,t+1+s−1 + {u(2)

3,s+1v1,t+1+s−1,u
(1)
3s v1,t+1},

R∗7 = R5 − v1,t+1+hs − u(h)
3s v1,t+1+hs−1 + {u11v1,t+1+hs−1,u

(h)
3s v1,t+1}.

Hence Hk,p,l
n−p,n−p−1 is Hamilton-biconnected. Thus Fk,p,l

n,n−1 is 2p-Hamilton-biconnected for p < l ≤ k − 2.

Similarly we can prove that Fk,p,l
n,n is also 2p-Hamilton-biconnected for p < l = k − 1.

We next assume that l ≤ p. Let ri ≥ 0 with
∑h

i=1 ri = p− l for 1 ≤ i ≤ h. Let h = k−p, s0 = 0, si = k− l− ri−1
for 1 ≤ i ≤ h, and t = n − (k − p)(k − l) − l. Let Hk,p,l

n−p,m−p(s1, . . . , sh) be a bipartite graph obtained from Fk,p,l
n,m by

deleting all vertices in a balanced set of size 2p which consists of vertices with as large as possible degree (see
Fig. 2). LetGk,p,l

n−p,m−p be a set of all bipartite graphs G satisfying G = Hk,p,l
n−p,m−p(s1, . . . , sh). Note that every graph

of order m + n−2p obtained from Fk,p,l
n,m by deleting all vertices in a balanced set of size 2p contains a bipartite

graph G ∈ Gk,p,l
n−p,m−p as a spanning subgraph. It suffices to prove that any bipartite graph G ∈ Gk,p,l

n−p,m−p is

Hamilton-biconnected. Let G ∈ Gk,p,l
n−p,m−p, without loss of generality, say G = Hk,p,l

n−p,m−p(s1, . . . , sh). Label the

vertices of Hk,p,l
n−p,m−p(s1, . . . , sh) as u11, . . . ,u1t, u(1)

31 , . . . ,u
(1)
3,s1+1, . . . ,u

(h)
31 , . . . ,u

(h)
3,sh+1, v11, . . . , v1,m−k, v21, . . . , v2h (see

Fig. 2).
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Let m = n. Since k ≥ p + 2 and 0 ≤ ri ≤ p − l, we have h ≥ 2 and si ≥ 1 for 1 ≤ i ≤ h. Denote

Pu11v1t =

t⊔
i=1

u1iv1i,

Pu(h)
31 v2h

=

sh⊔
i=1

u(h)
3i v1,t+i+

∑h−1
j=1 s j

⊔
u(h)

3,sh+1v2h,

Qu(h)
31 v2h

=

sh−1⊔
i=1

u(h)
3i v1,t+i+

∑h−1
j=1 s j

⊔
u(h)

3sh
v2h,

Pu(i)
3,si+1v1,t+

∑i
j=1 sj

= u(i)
3,si+1v2i

⊔( si⊔
j=1

u(i)
3 jv1,t+ j+

∑i−1
w=1 sw

)
for 1 ≤ i ≤ h.

Hk,p,l
n−p,n−p(s1, . . . , sh) has five kinds of Hamiltonian paths, denoted by R1, . . . ,R5. We present them as

follows:

R1 = Pu11v1t

⊔( h⊔
i=1

Pu(i)
3,si+1v1,t+

∑i
j=1 sj

)
,

R2 = Pu11v1t

⊔( h−1⊔
i=1

Pu(i)
3,si+1v1,t+

∑i
j=1 sj

)⊔
Pu(h)

31 v2h
,

R3 =

h⊔
i=1

Pu(i)
3,si+1v1,t+

∑i
j=1 sj

⊔
Pu11v1t ,

R4 =

h−1⊔
i=1

Pu(i)
3,si+1v1,t+

∑i
j=1 sj

⊔
Pu11v1t

⊔
Pu(h)

31 v2h
,

R5 = u(h)
3,sh+1v1,n−k

⊔( h−1⊔
i=1

Pu(i)
3,si+1v1,t+

∑i
j=1 sj

)⊔
Pu11v1t

⊔
Qu(h)

31 v2h
.

Hence Hk,p,l
n−p,n−p(s1, . . . , sh) is Hamilton-biconnected. Thus Fk,p,l

n,n is 2p-Hamilton-biconnected for l ≤ p.

Let m = n− 1. Hk,p,l
n−p,n−p−1(s1, . . . , sh) has four kinds of Hamiltonian paths, denoted by R∗1, . . . ,R

∗

4, obtained

from Hamiltonian paths R1 and R3 in Hk,p,l
n−p,n−p(s1, . . . , sh) by some vertex and edge operations. We present

them as follows:

R∗1 = R1 − v1t − u1tv1,t−1 + {u(1)
3,s1+1v1,t−1,u1tv1,n−k},

R∗2 = R1 − v1,n−k,

R∗3 = R3 − v1,t+s1 − u(1)
3s1

v1,t+s1−1 + {u(2)
3,s2+1v1,t+s1−1,u

(1)
3s1

v1t},

R∗4 = R3 − v1,t+
∑h

i=1 si
− u(h)

3sh
v1,t−1+

∑h
i=1 si

+ {u11v1,t−1+
∑h

i=1 si
,u(h)

3sh
v1t}.

Hence Hk,p,l
n−p,n−p−1(s1, . . . , sh) is Hamilton-biconnected. Thus Fk,p,l

n,n−1 is also 2p-Hamilton-biconnected for l ≤ p.
This completes the proof. �

Proof of Lemma 2.7. (i) Note that every balanced bipartite graph of order 2n − 2p obtained from Ms,t;−
n,n by

deleting all vertices in a balanced set of size 2p contains Ms,t;−
s+t+1,s+t+1 as a spanning subgraph. It suffices

to prove that Ms,t;−
s+t+1,s+t+1 is Hamilton-biconnected. Label the vertices of Ms,t;−

s+t+1,s+t+1 as u11, . . . ,u1,s−1, u,
u21, . . . ,u2,t+1, v11, . . . , v1s, v21, . . . , v2t (see Fig. 2). Denote

Pu11v1,s−1 =

s−1⊔
i=1

u1iv1i, Pu21v2t =

t⊔
i=1

u2iv2i.
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Ms,t;−
s+t+1,s+t+1 has nine kinds of Hamiltonian paths, denoted by R1, . . . ,R9. We present them as follows:

R1 = Pu11v1,s−1

⊔
uv

⊔
Pu21v2t

⊔
u2,t+1v1s,

R2 = Pu11v1,s−1

⊔
Pu21v2t

⊔
u2,t+1v1suv,

R3 = Pu11v1,s−1

⊔
uvu2,t+1v1s

⊔
Pu21v2t ,

R4 = uv
⊔

Pu21v2t

⊔
u2,t+1v1s

⊔
Pu11v1,s−1 ,

R5 = uv1s

⊔
Pu11v1,s−1

⊔
Pu21v2t

⊔
u2,t+1v,

R6 = uvu2,t+1v1s

⊔
Pu11v1,s−1

⊔
Pu21v2t ,

R7 = Pu21v2t

⊔
u2,t+1vuv1s

⊔
Pu11v1,s−1 ,

R8 = Pu21v2t

⊔
u2,t+1v1s

⊔
Pu11v1,s−1

⊔
uv,

R9 = u2,t+1v1s

⊔
Pu11v1,s−1

⊔
uv

⊔
Pu21v2t .

Hence Ms,t;−
n−p,n−p is Hamilton-biconnected. Thus Ms,t;−

n,n is 2p-Hamilton-biconnected.

(ii) Note that every balanced bipartite graph of order 2n − 2p obtained from Np,2
n,n by deleting all vertices

in a balanced set of order 2p contains N0,2
n−p,n−p as a spanning subgraph. It suffices to prove that N0,2

n−p,n−p is
Hamilton-biconnected. Let t = n−p−3 and label the vertices of N0,2

n−p,n−p as u11, . . . ,u1t, u21,u22,u, v11, . . . , v1t,
v21, v22, v (see Fig. 2). Denote

Pu11v1,t−1 =

t−1⊔
i=1

u1iv1i, Pu11v1t =

t⊔
i=1

u1iv1i.

N0,2
n−p,n−p has nine kinds of Hamiltonian paths. We present them as follows:

R1 = Pu11v1,t−1

⊔
u21vu22v22uv21u1tv1t,

R2 = Pu11v1t

⊔
u21vu22v22uv21,

R3 = Pu11v1t

⊔
u21v22uv21u22v,

R4 = u21vu22v22uv21

⊔
Pu11v1t ,

R5 = u21vu22v1t

⊔
Pu11v1,t−1

⊔
u1tv22uv21,

R6 = u21v22uv21

⊔
Pu11v1t

⊔
u22v,

R7 = uv21u22vu21v22

⊔
Pu11v1t ,

R8 = uv21u22vu21v1t

⊔
Pu11v1,t−1

⊔
u1tv22,

R9 = uv21

⊔
Pu11v1t

⊔
u21v22u22v.

Hence N0,2
n−p,n−p is Hamilton-biconnected. Thus Np,2

n,n is 2p-Hamilton-biconnected. �

Proof of Lemma 2.8. (i) Denote Ms,t
n−p,n−p−1 = (X,Y; E) with |X| = n − p and |Y| = n − p − 1. If n ≥ s + p + 2,

then let x, y ∈ X such that d(x) = d(y) = n− p− 1. Since s ≥ n− t− p− 1, Ms,t
n−p,n−p−1 has no Hamiltonian path

between x and y. If n = s + p + 1, then let x, y ∈ X such that d(x) = n − p − t − 1 and d(y) = n − p − 1. Clearly,
all neighbours of y are pendant vertices. So Ms,t

n−p,n−p−1 has no Hamiltonian path between x and y. Hence

in each case, Ms,t
n−p,n−p−1 is not Hamilton-biconnected. Note that Ms,t

n−p,n−p−1 is one of graphs obtained from
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Ms,t
n,n−1 by deleting all vertices in a balanced set of size 2p. It follows from definition that Ms,t

n−p,n−p−1 is not
2p-Hamilton-biconnected.

(ii) Denote Ms,t
n−p,n−p = (X,Y; E) with |X| = |Y| = n − p. Let x ∈ X and y ∈ Y such that d(x) = n − p − t and

d(y) = n − p. Since s = n − p − t, Ms,t
n−p,n−p has no Hamiltonian path between x and y. Hence Ms,t

n−p,n−p is not
Hamilton-biconnected. Note that Ms,t

n−p,n−p is one of graphs obtained from Ms,t
n,n by deleting all vertices in a

balanced set of size 2p. It follows from definition that Ms,t
n−p,n−p is not 2p-Hamilton-biconnected.

(iii) Denote N0,1
n−p,n−p = (X,Y; E) with |X| = |Y| = n − p. Let x ∈ X and y ∈ Y such that d(x) = d(y) = n − p.

Then N0,1
n−p,n−p has no Hamiltonian path between x and y. Hence N0,1

n−p,n−p is not Hamilton-biconnected. Note

that N0,1
n−p,n−p is one of graphs obtained from Np,1

n,n by deleting all vertices in a balanced set of size 2p. It

follows from definition that Np,1
n,n is not 2p-Hamilton-biconnected. �

Proof of Lemma 5.1. By a similar argument to Lemma 4.1 (i), ρ(Mn−k−1,k−p
n,n−1 ), ρ(Mk−p,n−k−1

n,n−1 ), and ρ(Mn−k,k−p−1
n,n−1 )

are the largest roots of f (x) = 0, 1(x) = 0, and h(x) = 0 respectively, where

f (x) = x4
−

(
n2
− (k − p + 1)n + (k + 1)(k − p)

)
x2 + (n − k − 1)(n − k + p − 1)(k + 1)(k − p),

1(x) = x4
−

(
n2
− (k − p + 1)n + (k − p)(k + 1)

)
x2 + (n − k − 1)(n − k + p)k(k − p),

h(x) = x4
−

(
n2
− (k − p)n + k(k − p − 1)

)
x2 + (n − k)(n − k + p)k(k − p − 1).

(i) Since for all real number x,

f (x) − 1(x) = (n − k − 1)(n − k + p − 1)(k − p) > 0,

we have ρ(Mk−p,n−k−1
n,n−1 ) > ρ(Mn−k−1,k−p

n,n−1 ).

(ii) Since for all real number x,

1(x) − h(x) = (n − 2k + p)(x2 + kn − k2 + kp) > 0,

we have ρ(Mn−k,k−p−1
n,n−1 ) > ρ(Mk−p,n−k−1

n,n−1 ). �

Proof of Lemma 5.2. By a similar argument to Lemma 4.1 (i), q(Mn−k−1,k−p
n,n−1 ), q(Mk−p,n−k−1

n,n−1 ), and q(Mn−k,k−p−1
n,n−1 )

are the largest roots of f (x) = 0, 1(x) = 0, and h(x) = 0, respectively, where f (x) = x f1(x), 1(x) = x11(x), and
h(x) = xh1(x),

f1(x) = x3
− (3n + p − 1)x2 +

(
2n2 + (2k + p)n − (2k + 1)(k − p + 1)

)
x − (2n − 1)(n − k + p − 1)(k + 1),

11(x) = x3
−

(
3n + p − 1)x2 +

(
2n2 + (2k + p − 1)n − k(2k − 2p + 1)

)
x − (2n − 1)(n − k + p)k,

h1(x) = x3
− (3n + p − 1)x2 +

(
2n2 + (2k + p − 2)n − (2k − 1)(k − p)

)
x − (2n − 1)(n − k + p)k.

Since signless Laplacian spectral radius of any nonempty graph is positive, q(Mn−k−1,k−p
n,n−1 ), q(Mk−p,n−k−1

n,n−1 ) and

q(Mn−k,k−p−1
n,n−1 ) are the largest roots of f1(x) = 0, 11(x) = 0, and h1(x) = 0, respectively.

(i) Since

f1(2n − 1) = (2n − 1)(n − k − 1)(k − p) > 0,
11(2n − 1) = (2n − 1)(n − k − 1)(k − p) > 0,
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and for x ≥ 2n − 1,

f ′1(x) = 3x2
− (6n + 2p − 2)x + 2n2 + (2k + p)n − (2k + 1)(k − p + 1)

≥ f ′1(2n − 1)

= n(n + 2k − 3p − 2) + n2
− (2k + 3)(k − p)

> (2k − p + 2)2
− (2k + 3)(k − p)

≥ 7k + 4
> 0,

1′1(x) = 3x2
− (6n + 2p − 2)x + 2n2 + (2k + p − 1)n − k(2k − 2p + 1)

≥ 1′1(2n − 1)

= n(n + 2k − 3p − 3) + n2
− (k + 1)(2k − 2p − 1)

> (2k − p + 2)2
− (k + 1)(2k − 2p − 1)

≥ 7k + 5
> 0,

we have
q(Mn−k−1,k−p

n,n−1 ) < 2n − 1, q(Mk−p,n−k−1
n,n−1 ) < 2n − 1.

Together with, for x < 2n − 1,

11(x) − f1(x) = (n − 2k + p − 1)(2n − 1 − x) > 0,

we have q(Mn−k−1,k−p
n,n−1 ) > q(Mk−p,n−k−1

n,n−1 ) for k ≥ p + 1.

(ii) Note that Kn,n−k+p−1 and Kn,n−k+p are proper subgraphs of Mn−k−1,k−p
n,n−1 and Mn−k,k−p−1

n,n−1 , respectively. By
Lemma 2.1,

q(Mn−k−1,k−p
n,n−1 ) > 2n − k + p − 1, q(Mn−k,k−p−1

n,n−1 ) > 2n − k + p.

Since for x > 2n − k + p − 1 > n,

f1(x) − h1(x) = (2n − 4k + 2p − 1)x − (2n − 1)(n − 2k + p − 1) > 0,

we have q(Mn−k,k−p−1
n,n−1 ) > q(Mn−k−1,k−p

n,n−1 ). �


