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Abstract. A balanced bipartite graph G is said to be 2p-Hamilton-biconnected if for any balanced subset W
of size 2p of V(G), the subgraph induced by V(G)\W is Hamilton-biconnected. In this paper, we prove that
“ Let G be a balanced bipartite graph of order 2n with minimum degree 6(G) > k, where n > 2k —p + 2
for two integers k > p > 0. If the number of edges e(G) > n(n —k +p —1) + (k + 2)(k — p + 1), then
G is 2p-Hamilton-biconnected except some exceptions.” Furthermore, this result is used to present two
new spectral conditions for a graph to be 2p-Hamilton-biconnected. Moreover, the similar results are also
presented for nearly balanced bipartite graphs.

1. Introduction

Let G be an undirected simple graph with vertex set V(G) = {v1,...,v,} and edge set E(G). Denote by
0(G) the minimum degree of G. The adjacency matrix A(G) of G is the n X n matrix (a;;), where a;; = 1 if v; is
adjacent to v;, and 0 otherwise. The matrix Q(G) = D(G) + A(G) is known as the signless Laplacian matrix
of G, where D(G) is the degree diagonal matrix. The spectral radius and signless Laplacian spectral radius of G
are the largest eigenvalues of A(G) and Q(G), denoted by p(G) and q(G), respectively.

For two disjoint graphs G and H, we denote by G|JH and G/ H the union of G and H, and the join
of G and H which is obtained from G |J H by joining every vertex of G to every vertex of H, respectively.
Moreover, kG denotes a graph consisting of k disjoint copies of G. Denote by G[X, Y] the subgraph of G with
all possible edges with one end vertex in X and the other in Y respectively. Denote e(X, Y) = |[E(G[X, Y])|.

A cycle (path) in a graph G that contains every vertex of G is called a Hamiltonian cycle (path) of G,
respectively. A graph G is said to be Hamiltonian if it contains a Hamiltonian cycle. A bipartite graph
G = (X, Y;E) is called (nearly) balanced if (||X| — |Y|| = 1) |X| = [Y| respectively. A (nearly) balanced bipartite
graph G = (X, Y; E) with (|| X| - Y]] = 1) |X| = |Y]is called Hamilton-biconnected if for (any two distinct vertices
u,v € X) any vertex u € X and any vertex v € Y, G has a Hamiltonian path between u and v, respectively.
A (nearly) balanced bipartite graph G is said to be 2p-Hamilton-biconnected if for any balanced subset W of
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size 2p of V(G), the subgraph induced by V(G)\W is Hamilton-biconnected, respectively. Obviously for
p = 0, 2p-Hamilton-biconnected graphs are exactly Hamilton-biconnected graphs. For graph notation and
terminology undefined here, readers are referred to [6].

Denote by M,Sfm a bipartite graph obtained from K ,,—; |J Ky—s; by joining every vertex in X, to every
vertex in Y1, where K; -+ = (X3, Y1; E1) and K,—s; = (Xp, Yo; Ex) with |Xq| =5, |Yi| =m -1, |Xs| =n—s, and
|Y;| = t (see Fig. 1). Moreover, denote by Nﬁ: 1, abalanced bipartite graph obtained from K;—p24—p—2 U Kp11,p+1
U K by joining every vertex in Xj to every vertex in Y», every vertex in X5 to every vertex in Y7 |J Y3, and
every vertex in X3 to every vertex in Y, where K,y 2,p2 = (X1,Y1;E1), Kpy1p01 = (X2, Y2, E), and
Kz = (X3, Yg,’ E3) with |X1| = |Y1| =n—-p- 2, |X2| = |Y2| =p+ 1, and |X3| = |Y3| =1 (see Flg 1)

The problem of deciding whether a graph is Hamiltonian is NP-complete. So researchers focus on
giving reasonable sufficient or necessary conditions for Hamiltonian cycles in graphs and bipartite graphs.
Moon and Moser [13] studied balanced bipartite graphs and showed a sufficient condition for Hamiltonian
cycles in balanced bipartite graphs with large minimum degree.

Theorem 1.1. [13] Let G be a balanced bipartite graph of order 2n with 6(G) > k, where 1 <k < 5. If

e(G) > max {n(n R+ R n(n=| 3]+ [Ejz},

then G is Hamiltonian.

Amar et al. [2] proved a sufficient condition for 2p-Hamilton-biconnnectedness of balanced bipartite
graphs.

Theorem 1.2. [2] Let p > 0 and G be a balanced bipartite graph of order 2n. If
e(G)>nn-1)+p+1, 1
then G is 2p-Hamilton-biconnnected.

Recently, Li and Ning [10] gave the spectral analogue of Moon—-Moser’s theorem [13]. For more results,
readers are referred to [1, 3, 8, 9, 11, 12, 14-16]. In this paper, we establish the analogues of Moon-Moser’s
theorem for 2p-Hamilton-biconnnectedness of balanced bipartite graphs and nearly balanced bipartite
graphs, respectively.

Theorem 1.3. Let G be a balanced bipartite graph of order 2n with 5(G) > k, where n > 2k—p+2 for two nonnegative
integersk > p > 0. If
eG)>nmn—-k+p-1)+k+2)(k-p+1), )

then G is 2p-Hamilton-biconnected, unless G € My, fork > p+1,0r G C NV fork = p +2.

Remark 1. Theorem 1.2 [2] and Theorem 1.3 are not comparable. For k > p + 1 and large #, the condition
(2) in Theorem 1.3 is weaker than the condition (1) in Theorem 1.2.

Theorem 1.4. Let G be a nearly balanced bipartite graph of order 2n — 1 with 6(G) > k, where n > 2k —p + 2 for two
nonnegative integers k > p > 0. If

e(G)>nn—k+p-2)+(k+2)k-p+1),

then G is 2p-Hamilton-biconnected, unless one of the following holds:
HDGCM P fork>p+1;
Ié—p,n—k—l

(i) GCT M fork > p+1;
(i) GC M fork > p+2.
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Theorems 1.3 and 1.4 can be used to obtain some spectral conditions for 2p-Hamilton-biconnectedness
of balanced bipartite graphs and nearly balanced bipartite graphs in terms of spectral radius or signless
Laplacian spectral radius, respectively.

For balanced bipartite graphs, we have

Theorem 1.5. Let G be a balanced bipartite graph of order 2n with 6(G) > k and two integersk > p+1> 1.

(i) Ifk=p+2,n>2k*+3,and p(G) > p(Nﬁl_nz’l), then G is 2p-Hamilton-biconnected unless G = Nﬁf’l.

(i) Ifk+#p+2,n=(k+2)k-—p+1), and p(G) = p(MZ;k'k_p), then G is 2p-Hamilton-biconnected unless
n—kk—

G=M,," "

Theorem 1.6. Let G be a balanced bipartite graph of order 2n with 6(G) = k, where n > (k + 2)(k — p + 1) for two

integersk > p+ 1= 1. If g(G) > (M), then G is 2p-Hamilton-biconnected unless G = M.

For nearly balanced bipartite graphs, we have

Theorem 1.7. Let G be a nearly balanced bipartite graph of order 2n — 1 with 6(G) = k for two nonnegative integers
kand p.

(i) Ifk=p+1,n>2k+3 and p(G) > p(Mi’Z:}fl), then G is 2p-Hamilton-biconnected unless G = Mi’z:ﬁ_l.
(ii) Ifk > p+2,n > E2EPD 404 5G) > pm 7! nokkepl,

nn—1 nn—1

), then G is 2p-Hamilton-biconnected unless G = M

Theorem 1.8. Let G be a nearly balanced bipartite graph of order 2n — 1 with 5(G) = k for two nonnegative integers
kandp.

(i) Ifk =p+1,n > 2k +4,and q(G) > (M), then G is 2p-Hamilton-biconnected unless G = M~ 1.

nn—1
(i) Ifk = p+2,n > E2EPD 400 4(G) > MY, then G is 2p-Hamilton-biconnected unless G = Mz;lk_’];_p_l.

nn—1

The rest of this paper is organized as follows. In Section 2, we state some known and new results that
will be used in the proofs of Theorems 1.3-1.8. In Section 3, we present some necessary lemmas and prove
Theorems 1.3 and 1.4. In Section 4, we present some necessary lemmas and prove Theorems 1.5 and 1.6.
Some corollaries are also included. In Section 5, we present some necessary lemmas and prove Theorems 1.7
and 1.8. Some corollaries are also included.

2. Preliminaries

We now introduce some more terminologies and notations, which will be used in this section and the
proofs of Theorems 1.3 and 1.4. Recall that the k-biclosure of a bipartite graph G = (X, Y; E) [5] is the unique
smallest bipartite graph H of order |V(H)| := |V(G)| such that G € H and dp(x) + du(y) < k for any two
non-adjacent vertices x € X and y € Y. The k-biclosure of G is denoted by clx(G), and cl(G) can be obtained
from G by a recursive procedure which consists of joining non-adjacent vertices in different classes with
degree sum at least k until no such pair remains. A bipartite graph is called k-closed if G = cli(G).

t=n—(k—-p)k-1)-1
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p,l
Nn,n

. st st;— phpl 1 2
Fig. 1. Graphs M/, M/, Fn,’,’n, Nﬁrn and NZ,H.

Denote by Mffn{ a bipartite graph obtained from K_j -1 U Kz U Ky—s+ by joining every vertex in X,
to every vertex in Yy, and every vertex in X3 to every vertex in Yq |JY>, where Ks_1,,——1 = (X1, Y1; E1),
Ky = (X2, Yo, E2), and Ki—sp = (X3, Y3; E3) with [Xq| =s =1, [Y1| =m —t =1, |Xp[ = [Y2| = 1, [X3| = n — s, and
|Y3| = t (see Fig. 1). Obviously M5, € M.

Denote by N% a balanced bipartite graph obtained from K313 U Kps2p2 U K> by joining every
vertex in Xj to every vertex in Y5, every vertex in X, to every vertex in Y; |J Y3, and every vertex in X3
to every vertex in Yz, where anpf3,n7pf3 = (Xl, Yl,‘El), Kp+2,p+2 = (Xz, Yz,‘ Ez), and Ez = (Xg, Y3,‘ E3) with
X1l =1Yil=n—p=3,|Xs| =Y2| =p +2,and |Xs| = |Y3| = 1 (see Fig. 1).

Given integers n,m, k,p,l, wherek > p+2,0<1<k-1,n> (k—p)(k—I)+],and n—1 < m < n, we denote
n—(k=p)(k=D~1k~p
n—(k—p)(k-1),m

of those k — p vertices with degree I, respectively, and then joining every pendant vertex to every vertex

. o Y n—(k—p) (k=D)L k—p
with degree n — (k — p)(k — I) in Mn—(k—p)(k—l),m

by F};’,Z;l a bipartite graph obtained from M by attaching k — [ pendant vertices at every vertex

(see Fig. 1).

The following lemma follows from the Perron-Frobenius theorem.

Lemma 2.1. Let G be a connected graph. If H is a (proper) subgraph of G, then p(H)(<) < p(G) and q(H)(<) < q(G),
respectively.

Lemma 2.2. [4] Let G be a bipartite graph. Then

p(G) < Ve(G),

with equality if and only if G is a disjoint union of a complete bipartite graph and isolated vertices.
Lemma 2.3. [10] Let G be a balanced bipartite graph of order 2n. Then

q(G)s@+n

with equality if and only if G = K, ..

Remark 2: The extremal graph in Lemma 2.3 is not characterized in [10]. But it is easy to obtain the extremal
graph by combining the proof of Lemma 2.3 and Das’s bound [7, Theorem 4.5].

Note that G C cliy4p+2(G). If G is 2p-Hamilton-biconnected then so is cl;i4p+2(G). Combining this with [2,

Theorem 3.3.1], we have the following lemma.

Lemma 2.4. Let p > 0 and G be a balanced bipartite graph of order 2n. Then G is 2p-Hamilton-biconnected if and
only if clyp12(G) is 2p-Hamilton-biconnected.
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Lemma 2.5. Letp > 0and G be a nearly balanced bipartite graph of order 2n—1. Then G is 2p-Hamilton-biconnected
if and only if cl,4p+1(G) is 2p-Hamilton-biconnected.

Proof. Since G C cly4p+1(G), if G is 2p-Hamilton-biconnected then so is cl;4,+1(G). Conversely, suppose that
Clysp+1(G) is 2p-Hamilton-biconnected. Denote G = (X, Y; E) with |X| = n and [Y| = n — 1. We show that if
G+xy is 2p-Hamilton-biconnected for two non-adjacent vertices x € Xand y € Y withdg(x)+dc(y) > n+p+1,
then G is 2p-Hamilton-biconnected. Indeed, if G is not 2p-Hamilton-biconnected, then there exists a balanced
subset W of size 2p of V(G) and two vertices x1, x, € X\W such that the subgraph F induced by V(G)\W has
no Hamiltonian path between x; and x;. On the other hand, since G + xy is 2p-Hamilton-biconnected, the
graph F + xy has a Hamiltonian path between x; and x; and thus x € X\W and y € Y\W. Let H be a graph
obtained from F by adding a new vertex v in Y and two edges vx; and vx,. Then H is not Hamiltonian, but
H + xy is Hamiltonian. Note that

du(x) +du(y) = dr(x) +dp(y) = (dc(x) — p) + (dc(y) —p)
do(x)+dc(y)—2p2zn—-p+1= %|V(H)l +1.

It follows from [5, Theorem 6.2] that H is Hamiltonian, a contradiction. Note that cl,,,41(G) is a graph
obtained from G by a recursive procedure joining non-adjacent vertices in different classes with degree
sum at least  + p + 1 until no such pair remains. Since cl;;,+1(G) is 2p-Hamilton-biconnected, G is also
2p-Hamilton-biconnected. o

The proofs of Lemmas 2.6-2.8 are put in the appendix, since they are technical and complicated.
Lemma 2.6. Flfl’,’;;l is 2p-Hamilton-biconnected.

Lemma 2.7. (i) For integersp 20,5 22, t > 1, andn=s+t+p+1, Mfl’f[ is 2p-Hamilton-biconnected.
(ii) For two integers p > 0andn > p + 6, Nﬁi is 2p-Hamilton-biconnected.

Lemma 2.8. (i) For integers p > 0,5,t > 1, and max{s+p+ Lt +p+2} <n <s+t+p+1, Mi’tn_l is not
2p-Hamilton-biconnected.
(i) For integers p > 0,s,t > 1, and n = s + t + p, M}}", is not 2p-Hamilton-biconnected.

(iii) For two integers p > 0 and n > p + 6, Nﬁ; is not 2p-Hamilton-biconnected.

3. Proofs of Theorems 1.3 and 1.4

In order to prove Theorems 1.3 and 1.4, we first prove the following lemma, in which the techniques are
from [10, Lemma 4].

Lemma 3.1. Let G be an (n+p + 2)-closed balanced bipartite graph of order 2n, where n > 2k — p + 2 for two integers
k>p>0.1If

eG)>nn—k+p-1)+(k+2)(k-p+1),
then G contains a complete bipartite graph of order 2n — k + p. Furthermore, if 6(G) > k, then K, ,_rsp S G, or
Ge {Nﬁ,,Nﬁ’i}for k=p+2.

roof. Denote G = (X, Y; E) wit = =n. LetU =yxe€ X :dg(x) > —— an = €Y :dg >
Proof. D G = (X, Y;E) with [X] = |Y] Let U= {x€X:do(x) 2 "5} and W = {y € Y : da(y)
lﬁ} Then

Pzl

mn=-U)n+p+1)

nmn—k+p-1+k+2)(k—p+1) <eG) <nlUl+ >

Since k > pand n > 2k — p + 2, we have

n*—2k—p+3mn+2k+2)k—p+1)+2 .
n-p-1

uj = k+1,
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which implies that |U| > k + 2. By symmetry, [W| > k + 2. Since G is an (1 + p + 2)-closed balanced bipartite
graph, every vertex in U is adjacent to every vertex in W and thus K,z 2 € G. Let f be the largest integer
such that K;; € G.

Claim1.t>n-k+p.

Suppose thatk+2 <t <n—-k+p-1. Let X; C Xand Y; C Y with |[Xj| = |Y3| = t such that G[ X3, Y1] = K.
Set X, = X\X; and Y, = Y\Y;. Since t is the largest integer such that K;; C G, there exists a corresponding
vertex y € Y7 such that xy ¢ E(G) for every x € X, (by symmetry). It follows that dg(x) <n+p -t +1 for
every x € X,. Hence

e(G) = e(Xy, Y1) +e(Xy,Yr)+e(Xp,Y)
< PHtmn—-t)+m+p—-t+1)(n—t)
= tz—(n+p+1)t+n(n+p+1)
< (m—k+p=-1P2-m+p+1)n-k+p-D+nn+p+1)
= nn-k+p-1+k+2)k-p+1)
< e(G),

a contradiction. Thus Claim 1 holds.
Let s be the largest integer such that K;; € G. Obviously, s > ¢t. Let X; € X and Y; C Y such that
G[X1,Y1] = K;, where [X1] = s and |Y3]| = t. Set X, = X\X; and Y, = Y\Y;.

Claim 2. s+t > 2n -k +p.

k—-p+1
Z and

t<s<2n-k+p-t-1.Since Gis an (n + p + 2)-closed balanced bipartite graph, dg(x) <n+p—s+1 for
every x € Xo and dg(y) <n+p—t+1forevery y € Y,. Hence

Suppose that s +t < 2n —k +p — 1. It follows from Claim 1 thatn —k+p <t < n —

e(G) < e(Xy,Yr)+e(Xy,Y)+e(X, Ys)

< st+(n+p-s+1l)n—-s)+(m+p—-t+1)(n-1t)

= S-Qu+p—t+)s+n—-tm+p—t+1)+nn+p+1)

< (2n—k+p—t—1)2—(2n+p—t+1)(2n—k+p—t—1)+
m-tn+p—-t+1)+nn+p+1)

= P-Qu-k+p-1t+2n* -2k -p+Dn+k+2)(k-p+1)

< (m—k+pP-Qu—k+p-1)(n-k+p)+2n*-2(k—p+1)n+
k+2)(k-p+1)

= nn-k+p-D+k+Dk-p+1)+1

< eG),

a contradiction. Thus Claim 2 holds.

It follows from Claim 2 that K, is a complete bipartite graph of order at least 2n —k+p. Hence G contains
a complete bipartite graph of order 2n — k + p.

Claim 3. If 5(G) > k, then K, sy € G, or G € (N, N2} fork = p + 2.

Ift = n—k+p, then Claim 2 implies thats = n and thus K, ,_t+» € G. So we can assume thatt > n—k+p+1.
Next we consider the following two cases.

Casel. s = n—k+p+1. Obviously, k > p+landt = n—k+p+1. Ifk > p+3, thens+t = 2(n—k+p+1) < 2n—k+p,
which contradicts Claim 2. Hence p +1 < k < p + 2. Furthermore, if k = p + 1, then G = K,,, and thus
Kinkip € G. Ifk = p+2,thens =t = n—1. Note that G is an (1 + p + 2)-closed bipartite graph with 6(G) > k.
If there exists a vertex v € V(G)\V(K;-1,-1) such that dg(v) > k + 1, then K, ,—1 € G. If dg(v) =k = p + 2 for
every v € V(G)\V(Ky-1,s-1), then G = Nﬁjl orG = Nﬁf, fork=p+2.
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Case2.s5s > n—k+p+2. Clearly, dc(y) > n—k+p+2forevery y € Y;. Then every vertex in Y is adjacent
to every vertex in X. This implies that K;; , ¢+, € G. O

Corollary 3.2. Let G be an (n + p + 1)-closed nearly balanced bipartite graph of order 2n — 1, where n > 2k —p + 2
for two integers k > p > 0. If
e(G)>nn—k+p-2)+(k+2)(k—-p+1),

then G contains a complete bipartite graph of order 2n — k + p — 1. Furthermore, if 5(G) = k, then K1+ S G or
Kn,n—k+p—l cG.

Proof. Denote G = (X,Y;E) with |X| = n and |Y]| = n — 1. Let H be a graph with vertex set V(G) U{y} and
edge set E(G) U{xy : x € X}, where y ¢ V(G). Then H is an (n + p + 2)-closed balanced bipartite graph of
order 2n and e(H) = e(G) +n > n(n —k+p —1) + (k+ 2)(k —p — 1). By Lemma 3.1, H contains a complete
bipartite graph of order 2n — k + p. Thus G contains a complete bipartite graph of order 2n —k + p — 1. Note

that if 6(G) > k, then 6(H) > 6(G) > k. It follows from Lemma 3.1 that K, , 1+, € H, or H € {Nﬁj}q,Nﬁi}

for k = p +2. If Ky gy € H, then Ky ygip1 S G 0 Kyoypap S G. If H € {NI,, N2} for k = p + 2, then
0(G) = p +1 <k, a contradiction. This completes the proof. m]

Lemma 3.3. Let k,p be two noneagative integers and G = (X, Y; E) be an (m + p + 2)-closed bipartite graph with
IX| =n, |Y| =m,and 6(G) > k, wheren > 2k —p + 2 and n — 1 < m < n. Suppose that k > p and K, ;,_x+, € G.

(i) If m = n, then G is 2p-Hamilton-biconnected, unless G = M, 7 fork > p + 1.

(ii) If m = n — 1, then G is 2p-Hamilton-biconnected, unless one of the following holds:
@WG=M""7fork>p+1;

n,n—1

b)) G=M""7 fork>p+1;

nn—1

©G=MT" """ fork>p+2

nn—1
d)G=M """ fork=p+2.
Proof. Suppose that G is not 2p-Hamilton-biconnected. Let ¢ be the largest integer such that K,,; € G, and
Y; € Y such that G[X, Y1] = K,,;. Obviously, t > m —k + p. We claim thatm —k+p <t <m —k+p+1. Note
that G is an (m + p + 2)-closed bipartite graph and 6(G) > k. If t > m — k + p + 1, then every vertex in Y is
adjacent to every vertex in X, and thus G = K, ,, a contradiction. Next we consider the following two cases.

Casel. t =m—k+p. Then|Yi| =m—k+pand |[Y\Yi| =k—p > 1. We show that k < dg(y) < k+1 for
every iy € Y\Y7. Indeed, if there exists a vertex y € Y\Y; such that d¢(y) > k + 2, then y is adjacent to every
vertex in X and thus t > m — k + p + 1, a contradiction. Next we consider the following two subcases.

Case 1.1. For every y € Y\Y1, dg(y) = k. Set X = Uf’zl Xi, where X; = {x € X : dg(x) = m -k +p},
Xp={xeX:dgx)=m—-k+p+1},and X5 = {x € X :dg(x) 2m—k+p+2}. Set Y, = Y\Y; and [ = |X3]|. Since
Gis an (m + p + 2)-closed bipartite graph with 6(G) > k, every vertex in Y5 is adjacent to every vertex in X3.
This implies that 0 < [ < k. Furthermore, every vertex in Y, is adjacent to k — [ vertices in X, and any two
distinct vertices in Y, have no common neighbors in X,. This implies that |X5| = (k — p)(k — [). Moreover, if

k>p+2and0<I<k-1,thenG = F’f,’f;;l. By Lemma 2.6, F’,cl’,’,’,;l is 2p-Hamilton-biconnected, a contradiction.

Ifl=k>p+2ork=p+1,thenG = MZ;ff’k_p . It follows from Lemma 2.8 (i) and (ii) that Mﬁ;f’k_p is not
2p-Hamilton-biconnected, as desired.

Case 1.2. There exists a vertex y € Y\Y; such that dg(y) = k+ 1. Set X = Uiz:1 Xiand Y = U?:l Y;,
where X; = {x e X:dg(x) =m—-k+p}, Xo ={xeX:dogx)2m—-k+p+1}, Yo ={y €Y :ds(y) =k}, and
Y; ={y €Y :ds(y) = k+1}. Since G is an (m + p + 2)-closed bipartite graph with 6(G) > k, every vertex in

Y3 is adjacent to every vertex in X,. This implies that |X,| = k + 1 and thus [X;| =n -k - 1.
We first assume that Y, = 0. It is easy to see that G = Mz;f_l’k_p for k > p + 1. Suppose that m = n.
Since Mz;lkfl’kfp " is a spanning subgraph of MZ;,kil’kfp , it follows from Lemma 2.7 (i) that MZ,;k*l’k*p is
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n—k=1k-p .

-1 is not

2p-Hamilton-biconnected, a contradiction. Next suppose that m = n — 1. By Lemma 2.8 (i), M
2p-Hamilton-biconnected, as desired.

We next assume that Y, # 0. We show that |Y3| = 1. Indeed, if |Y3| > 2, then dg(x) > m — k + p + 2 for
every x € X, and hence every vertex in Y5 is adjacent to every vertex in X5. This implies that dg(y) = k +1
for every y € Y», a contradiction. By a similar argument to the proof of |[Y3| = 1, there exists a vertex x € X»

adjacent to none of vertices in Y,. Moreover, since 6(G) > k, every vertex in Y, is adjacent to every vertex

in X,\{x}. Hence G = MZ_,,f’k_p_l; for k > p + 2. Suppose that m = n. By Lemma 2.7 (i), M, kPl s
2p-Hamilton-biconnected, a contradiction. Next suppose that m = n — 1. Since Mn kk s a spanning

nkkpl n—kk-p-1,-

nn—1

subgraph of M,
desired.

, it follows from Lemma 2.8 (i) that M is not Zp—Hamllton—biconnected, as

Case 2. t =m—k+p+1 Then|Y;] = m—-k+p+1andk > p+2 SetX = Jr, X, where
Xi=xeX:doglx)=m-k+p+1}, Xo = {x € X :dog(x) >m—k+p+2} SetY, = Y\Y;. Obviously,
[Y>| = k—p—1. Since G is an (m + p + 2)-closed bipartite graph with 6(G) > k, every vertex in Y5 is adjacent to
every vertex in X,. We claim that Y, = {y € Y : dg(y) = k}. Otherwise, there exists a vertex in Y, adjacent to
every vertex in X, and thus t > m —k + p + 2, a contradiction. It follows that [X,| = k and |X;| = n — k. Hence

G= Mzn]fk P fork > p + 2. Suppose that m = n. Since M, , T s a spanning subgraph of M, , AT
follows from Lemma 2.7 (i) that Mﬁrnkk Pis 2p-Hamilton-biconnected, a contradiction. Next suppose that
m =n— 1. By Lemma 2.8 (i), M:;k_’ﬁ_p s not 2p-Hamilton-biconnected, as desired. O

Now we are ready to prove Theorems 1.3 and 1.4.

Proof of Theorem 1.3. Suppose thatk > p, e(G) > n(n—k+p—1)+ (k+2)(k—p+1), and G is not 2p Hamilton-
biconnected. Let H = cl;;44+2(G). By Lemma 2.4, H is also not 2p-Hamilton-biconnected. Furthermore,
O0(H) 2 6(G) 2 kand e(H) 2 e(G) > n(n —k+p—1) + (k+ 2)(k —p + 1). By Lemma 3.1, K;,, x+» € H, or
H e {NZ:i,Nﬁf,} for k = p + 2. It follows from Lemmas 2.7 (ii), 2.8 (iii), and 3.3 (i) that H = MZ;lk’k_p for
k>p+1,0or H=N fork=p+2. Hence G C M}, fork>p+1,0r GC N} fork =p+2. O

Let p = 0 in Theorem 1.3, we partially prove the following Moon and Moser’s Theorem [13].
Corollary 3.4. Let G be a balanced bipartite graph of order 2n with §(G) > k, where 1 < k < "32. If
e(G) > n(n —k) + k2%,
then G is Hamiltonian.

Proof. Note thate(G) > n(n—k)+k* > n(n—k—1)+(k+2)(k+1), (M) = n(n—k)+k?, and e(NJ5) = n—2n+4.
It follows from Theorem 1.3 that G is Hamilton-biconnected. Hence G is Hamiltonian. O

Proof of Theorem 1.4. Denote G = (X, Y; E) with |X| = n and |Y| = n — 1. Suppose thatk > p, e(G) > n(n —k +
p—2)+(k+1)(k—p+1), and G is not 2p-Hamilton-biconnected. Let H = cl;;;+1(G). By Lemma 2.5, H is also not
2p-Hamilton-biconnected. In addition, 6(H) > 6(G) > kand e(H) > e(G) > n(n—k+p-2)+(k+2)(k—p+1). By
Corollary 3.2, K;; —k+p-1 € H or K;_1 4—¢+p € H. Since H is not 2p-Hamilton-biconnected, we have H # K, ,—1,
which implies that k > p + 1. Next we consider the following two cases.

n—k,k n—kk—p-1

n—k—l,k—p and Mn—k,k—p—l;—
nn—1

Case 1. Ky, kp-1 € H. Note that G € H, M """ € M"™ I cM

this with Lemma 3.3 (i7), G is 2p-Hamilton- b1connected unless G C M" -~ 1 P fork > p+l,orGCM
fork>p+2.

. Combining
n— kk —p-1
nn

Case 2. Ky—1,1-k+p € H and K, —¢4p-1 € H. Let s, t with s > ¢ be the largest integers such that K;; C H. It
follows thats =n—-1and n—k+p <t <n - 1. We consider the following two subcases.
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Case 2.1. Let X; € X with [Xj| = t such that H[X;, Y] = K;,—1. We show thatt = n —k + p. Indeed, if
t>n—k+p, thendy(y) >n—-k+p+1forevery y € Y. Since H is an (n + p + 1)-closed bipartite graph
with 0(H) > k, every vertex in Y is adjacent to every vertex in X and thus H = K,,,—1, a contradiction. Then
|X1] = n—k+pand |X\Xi| = k—p. Furthermore, since H is an (1 + p + 1)-closed bipartite graph with 6(H) > k,
du(x) = kforevery x € X\X;. Let Y1 = {y € Y : du(y) = n—k+p}. Moreover, every vertex in X\ X is adjacent

to every vertex in Y\Y;. It follows that [Y\Y;]| = kand |Y1| =n —k — 1. Hence H = Ml:l_np_’q_k_l fork>p+1.

On the other hand, by Lemma 2.8 (i), Mkl

nn—1

Case 2.2. Let X; € Xand Y7 C Y with |Xj| = n—1and |Y;| = ¢ such that H[ X3, Y1] = Kj—1,+. We first show
thatk = p + 1. Since H is an (n + p + 1)-closed bipartite graph, if k > p + 1 then every vertex in X is adjacent
to every vertex in Y7, which implies that Kj; ,_x4p-1 € Kyin—k+p S H, a contradiction. Since k = p + 1, we have
t =n —1. Hence Ky—1,,-1 € H, which can be described to Case 2.1. O

is not 2p-Hamilton-biconnected, as desired.

4. Proofs of Theorems 1.5 and 1.6

In order to prove Theorems 1.5 and 1.6, we need the following lemma.
Lemma 4.1. (i) For two integers k > 2 and n > 2k* + 3, p(Nﬁf’l) > p(MZ;j"2 .
(ii) For two integersk > 2andn > k+1, q(MZ;qk’z) > q(N’fl,_nz’l).
Proof. (i) Denote Mﬁk’z = (X, Y; E) with |X] = |Y| = n. Let x be the eigenvector corresponding to p(MZ;qk’2 .
Let X = X1 UXz and Y = Y3 J Y, where X; and X, are the sets of vertices in X with degree n —2 and n
respectively, and Y7 and Y, are the sets of vertices in Y with degree n and k respectively.

By symmetry, the coordinate of x corresponding to any vertex in X;, denoted by x;, is a positive constant
for 1 < i < 2. Similarly, the coordinate of x corresponding to any vertex in Y;, denoted by y;, is also a
positive constant for 1 < i < 2. By eigenequation A(Mﬁl_nk’z)x = p(MZ;qk’z)x, we have

px1 (n =21,

pxo = (n—2)y1 +2y,
py1 = (m—=k)xy +kxy,
PY2 = ka.

By a simple calculation, p(Mank’z) is the largest root of f(x) = 0, where
f(x) = x* = (1% = 21 + 2k)x® + 2k(n — k)(n - 2).

Since
fn—1)=nn-2k*-2)+4k> =2k +1>0

and forx >n -1,
f/(x) = 2x(2x* — n® + 2n = 2k) > 2(n — 1)(n* = 2n — 2k +2) > 0,

we have p(MZ,—nk,z) < n—1. Onthe other hand, since K;,_1 ,—1 is a subgraph of Nﬁ,—nz,1/ it follows from Lemma 2.1
that
p(Nﬁ;lz,l) > p(anl,nfl) =n-1> p(MZ;Ik,l)

(ii) Let f(x) = x(x — n) fi(x) and g(x) = x(x — n)*(x — k + 1)g1(x), where
fix) = x* — (2n + k — 2)x + 2kn — 4k,

g1(x) = x* — 2n + k — 1)x + 2kn + 2n — 4k.
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By a similar argument to the proof of (i), (M}, k 2y and q(Nﬁ;f’l) are the largest roots of f(x) = 0and g(x) =0,

respectively. Furthermore, since K}, ,—» and Kj,_1 ,—1 are proper subgraphs of MZ,_”k’z and N},j/_nz'l, respectively,
it follows from Lemma 2.1 that

qMIF) > 2n -2, g(MEF?) > 2n -2,

Hence q(M,,,, &, 2y and q(Nﬁl_nz’l) are the largest roots of f1(x) = 0 and g1(x) = 0, respectively. On the other hand,
since both lenk 2 and Nﬁ;,z’l are proper subgraphs of K, ,;, it follows from Lemma 2.1 that

qMEFA) <2n, (M) < 2.

Since for x < 2n
g1(x) — filx) =2n—x >0,

we have q(M,, k2y > q(Nf,;f’l). m]

Proof of Theorem 1.5. (i) Suppose that p(G) > p(N,ﬁ;,z’l) and G is not 2p-Hamilton-biconnected. Since
Ky—1,4—1 is a proper subgraph of Nﬁfnz’l, Lemma 2.1 implies that

p(G) 2 p(Ny,7") > p(Ky1n1) =1 = 1.
By Lemma 2.2, 1/e(G) > p(G) > n — 1, which implies that
e(G) > (n—1)* > n(n - 3) + 3(k + 2).

It follows from Theorem 1.3 that G C MZ,;k’z or G C Nﬁ;f’l. If G C MZ;,k’Z, then Lemmas 2.1 and 4.1 (i)
imply that p(G) < p(My, 2y < p(N,’f,,z’l), a contradiction. If G is a proper subgraph of Nﬁ;,z’l, then Lemma 2.1
implies that p(G) < p(N,’i/,l2 1), a contradiction. Hence G = N],j/_nz’l.

(ii) Suppose that p(G) > p(Mn k= Py and G is not 2p-Hamilton-biconnected. Since K+ is a proper
subgraph of M, , “KP Lemma 2.1 implies that

p(G) = p(M* Py > p(Ky o) = =k + p).

By Lemma 2.2, 1/e(G) > p(G) > +/n(n — k + p), which implies that
e(G)>nn—k+p)>nm—-k+p-1)+(k+2)k—p+1).

It follows from Theorem 1.3that G C M, K 1 Gisa proper subgraph of M, , “kkp

that p(G) < p(M,,n ko ), a contradiction. Hence G = M" kkp

, then Lemma 2.1 implies
O

Corollary 4.2. Let k, p be two noneagative integers and G be a balanced bipartite graph of order 2n with 6(G) > k >
p + 1, where n > ny(k, p) and

2k +3, ifk=p+2
(k,p) = (k+2)k—p+1), otherwise.

If p(G) = fn(n —k + p) + k(k — p), then G is 2p-Hamilton-biconnected.

Proof. Suppose that k = p + 2. Note that e(N,’f,,z’l) = n? - 2n + 2k. By Lemma 2.2 and Theorem 1.5 (i), the

result follows. Next suppose that k # p +2. Note that e(M" “kk= ) = n(n —k+p) +k(k— p). By Lemma 2.2 and
Theorem 1.5 (ii), the result follows. O
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Proof of Theorem 1.6. Suppose that (G) > q(M,, , ke ) and G is not 2p-Hamilton-biconnected. Since K, 4,
is a proper subgraph of M, , K Lemma 2.1 implies that

4(G) = qM ) > q(Kypgsy) = 20—k +p.

E(G)

By Lemma 2.3, +n > q(G) > 2n — k + p, which implies that

eG)>nn—k+p)znm—k+p-1)+(k+2)(k—-p+1).

It follows from Theorem 1.3 that G € M, , T for k > p+1l,orGcC NZj}l for k = p + 2. If G is a proper
subgraph of M, , M7 then Lemma 2.1 implies that g(G) < q(M,,, Tk ), a contradiction. If G is a subgraph
of Nﬁn for k = p + 2, then Lemmas 2.1 and 4.1 (ii) imply that g(G) < q(Nz:i) < q(MZ;k’k_p ), a contradiction.

—k k-
Hence G = Mn P, O

Corollary 4.3. Let k, p be two noneagative integers and G be a balanced bipartite graph of order 2n with 5(G) > k >
p+1 wheren > (k+2)k—p+1). Ifg(G)22n—k+p+ k(k MD) then G is 2p-Hamilton-biconnected.

11—k, k—| p)

Proof. Note that n + —*— A" ) k(k kk=p)

-k+p+ . By Lemma 2.3 and Theorem 1.6, the result follows. O

5. Proofs of Theorems 1.7 and 1.8
The proofs of Lemmas 5.1 and 5.2 are similar to that of Lemma 4.1, so we put them in the appendix.

Lemma 5.1. (i) For integersp >0, k>p+1,andn>2k—-p+2,

k—pn—k-1 —k—1,k—
p(Mn,np—ri ) > p(MZ,n—l p)'

(ii) For integersp > 0,k > p+2,andn > 2k —p + 2,

p(Mn—k,k—p—l) > p(Mk pn—k— 1)

nn—1 nn—1

Lemma 5.2. (i) For integersp >0, k>p+1,andn>2k—-p+2,

5]( n —k-1,k- p) (Mk—p,n—k—l)‘

nn—1 nn—1

(ii) For integersp > 0,k > p+2,andn > 2k —p + 2,

q(Mn—k,k—p—l) > q(Mn—k—l,k—p)‘

nn—1 nn—1

1,n—k-1
nn—1

Proof of Theorem 1.7. (i) Suppose that p(G) > p(M
Ky-1,n-1 is a proper subgraph of Mi’z:’i_l, it follows from Lemma 2.1 that

) and G is not 2p-Hamilton-biconnected. Since

p(G) = pM" ) > p(Kyy 1 1) =1 — 1.
By Lemma 2.2 +/e(G) = p(G) > n — 1, which implies that
e(G)>n*=2n+1>n(n—3)+2k+4.

nn—1

Then it follows from Theorem 1.4 that G C M:_f__l“ orG¢C Mi’fl:';_l. By Lemmas 2.1 and 5.1 (i), G = M1,
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(ii) Suppose that p(G) > p(M”—krk—p—l

un1 ) and G is not 2p-Hamilton-biconnected. Since K,k is a proper
1n— kk —p-1

, it follows from Lemma 2.1 that

p(G) = pM AT > p(Kyppap) = A =k + p).

By Lemma 2.2, 1/e(G) = p(G) > +/n(n —k + p), which implies that
e(G)>nmn—-—k+p)znm—k+p-2)+(k+2)k—p+1).

subgraph of M, |

It follows from Theorem 1.4 that G C MZ;’:l’k_p ,GC M:_npﬁ_k lorGc M: ~kk=p-1 . By Lemmas 2.1 and 5.1,
_ gk k—p-1
G=M, " . O

Corollary 5.3. Let k, p be two nonnegative integers and G be a nearly balanced bipartite graph of order 2n — 1 with
5(G) = k.

() Ifk=p+1,n>2k+3,and p(G) > \/(n —1)? + k, then G is 2p-Hamilton-biconnected.

(i) Ifk>p+2,n> w, und p(G) = \/n(n k+p)+k(k —p —1), then G is 2p-Hamilton-biconnected.

Proof. (i) Note that e(M}liZ:’ifl) = (n —1)? + k. By Lemma 2.2 and Theorem 1.7 (i), the result follows.
(i) Note that e(MZ;k_’];_p ) = n(m -k +p) + k(k —p — 1). By Lemma 2.2 and Theorem 1.7 (ii), the result
follows. O

Proof of Theorem 1.8. (i) Suppose that q(G) > q(M, .~ Kl 1) and G is not 2p-Hamilton-biconnected. Since
Kiu—2 is a proper subgraph of M" k !, Lemma 2.1 1mp11es that

4(G) = gM" 11y > (K, ) = 2n = 2.

n,n—1
By Lemma 2.3, E(G) +n > q(G) > 2n — 2. Note that here we consider G as a balanced bipartite graph with an
isolated vertex. This implies that

e(G) > n* = 2n > n(n — 3) + 2k + 4.
It follows from Theorem 1.4 that G C M”_kjll’l orGC Mi"’f;_l. By Lemmas 2.1 and 5.2 (i), G = ML

nn—1

nkkpl
nn

(ii) Suppose that g(G) = q(M,, ,
n—kk—p-1
n,n—1

) and G is not 2p-Hamilton-biconnected. Since K, x4 is a proper

subgraph of M , Lemma 2.1 1mplies that

9(G) 2 qM T > Kk = 20—k +p.

By Lemma 2.3, e(G) +n 2> g(G) > 2n — k + p. Note that here we consider G as a balanced bipartite graph with

an isolated vertex. This implies that
e(G)>nn—k+p)znm—-k+p-2)+(k+2)k—p+1).

It follows from Theorem 1.4 that G C M:’l;k__ll’k_p ,GC MR 1, orGC Mk p nokl . By Lemmas 2.1 and 5.2,

nn—1

G= Mnkkpl. O

nn—1

Corollary 5.4. Let k,p be two noneagative integers and G be a nearly balanced bipartite graph of order 2n — 1 with
0(G) =2 k.

() Ifk=p+1,n>2k+4, and q(G) > \|2n — 2 + &L, then G is 2p-Hamilton-biconnected.
(k+2)(k=p+1)
2

(i) Ifk>p+2,n> ,and q(G) = \/271 —-k+p+ @, then G is 2p-Hamilton-biconnected.
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B ) oy -2 &l By Lemma 2.3 and Theorem 1.8 (i), the result follows.

n

Mn—k—],l
Proof. (i) Note that n + «

n—kk-p-1
( nn—1 )

(ii) Note that n + : =2n—-k+p+ @. By Lemma 2.3 and Theorem 1.8 (ii), the result follows.

O
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Appendix

Denote by P, a path between u and v. Denote by P, | | P, a path obtained from two disjoint paths Py,
and Py, by joining v and w.

(h)
31 3,5+1
Uy Uis-1  u Upr  Uzpl U U Uzl Uy

U11 U1s v 021 (%)

M

s+t+1,5+t+1
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(h) (h)
OATIO N B P

ui Ut 31 3,51+1

kpl
H? (S1,---,5n)

n—p,m-p

- kpl
M NO2 and H?

Fig. 2. Graphs M

s+t+1s+t+17 T s+ s+t4+17 T n—p,n—p’ n—p,m—p(sl/ s ,Sh)-

Proof of Lemma 2.6. We first assume that! > p. Letg =1-p,h =k-p,s =k-I-1,and t =n—(k-p)(k-1) -1
Let Hﬁf Z/m_p be a bipartite graph obtained from Fﬁ’,’:,;l by deleting all vertices in a balanced set of size 2p
which consists of vertices with as large as possible degree (see Fig. 2). Note that every bipartite graph of
kp

"fnm—r’
as a spanning subgraph. It suffices to prove that H’;’f;m_p is Hamilton-biconnected. Label the vertices of

kip.l o) © (h) () :
Hn_p,m_p as Uy, .., Utty U1, -y Udg, Usgyeve Uy fiqyen s gy yene Ul s V10 oo, ULk, V21, -+, U2k (see Fig. 2).

order m + n — 2p obtained from F’:,’f:;ll by deleting all vertices in a balanced set of size 2p contains H,

Let m = n. We assume that/ <k — 2. Clearly, g > 1,k > 2, and s > 1. Denote

t g
Puo, = |_| 111014, P11217J1,r+y = |_| U2i 01, t+i,
i=1 i=1
s
_ ) , (h)
P”g?”z;: - |_| u3i Ul,t+g+(h—1)s+1 |_| u3,s+102h’
=1
s5—1
Q 4 = u h)'(] . u(h)v
”g;)UZh 3i OLt+g+(h—1)s+i 35 U2l
i=1
s
= 49 o 0) S .
P”glﬂvl,nﬁis - u3,s+1021 u3jvl,t+g+(1—1)s+] forl<i<h.

=1

Hﬁ’fz,n,p has seven kinds of Hamiltonian paths, denoted by Ry, ..., R;. We present them as follows:

P

[ =

(i)
Uy o101 t+g+is 4

—_

Rl = Puuvlf |_| Puzlvl,Hg |_| (
R, = Pu“v” |_| Pu“v”*’? |_| ( : Pu§l+1v1,f+g+,s) |_| Pug’l)v%'
Ry = P”Zlv'l,Hg |_| Punv” |_|(

=
—_

]
—_

[ =

P
Mg')s+1v1,f+g+is ),

—_
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h-1

R4 = PuZlZ’LHF |_| ot |_| ( p g)§+1vl f+f7+t<) |_| Pu h)vzh

i=1

3S+1U1 tegis anu U2101,t+g7
Ry = P P w
6 ”3>+1vl regeis Pyyon U101 g ul)vy,”

i=1

Rs =

-
,_. —_

h—1

— (h)
R; = U o190k 3<+1v“+y+’5 Pyyyon Py, g Qu Do

i=1

Hence Hn’pp n—p is Hamilton-biconnected. Thus F; ’p ,
kp,l

we can prove that F,;" is also 2p—Ham11ton-b1connected forp<l=k-1

is 2p-Hamilton-biconnected for p < I < k — 2. Similarly

kp,l

Letm =n — 1. We assume thatl <k — 2. anp np-1 has seven Hamiltonian paths, denoted by R, ..., R,

obtained from Hamiltonian paths R;, R3, and Rs in H kpl

nepn—p Dy some vertex and edge operations. We present
them as follows:

R} = Ry —vy — uyv1-1 + {21011, U101, 5k},

o ©
Ry = Ri—01g = UzgU1prg-1 + (U3 1 01 0g-1, UgU1nk},
Ry = Ri—vik
Ry = R3— 0114y — U2g01p4g-1 + {41101 1491, U2g01 0k},
R; = R3 — O1,n—ks

o _ O @ ©
R6 - RS - vl,t+g+s - u3s Z]1,t+g+s—1 + {u3’5+1vl,t+g+s—1r u35 vl,t+g}/

o _ (h) (h)
R7 = RS - z)1,1.‘+g+hs - ”35 vl,t+g+hs—1 + {ullvl,t+g+hs—1/ ”35 vl,t+g}-

. . kpl . .
Hence an S is Hamilton-biconnected. Thus Fn’; _, is 2p-Hamilton-biconnected for p < I < k — 2.

47,

Similarly we can prove that F,"; is also 2p-Hamilton-biconnected for p <1 =k - 1.

We next assume that! < p. Letr; > Owichi1 1rZ =p-lforl1<i<h Leth=k-p,50=0,5;=k—-I-r;—1
for1<i<handt=n-(k-p)k-1)-1L Let H! (s1,...,51) be a bipartite graph obtained from F, fpl 'n by

n—p,m—p

deleting all vertices in a balanced set of size 2p Wthh con51sts of vertices with as large as possible degree (see

Fig.2). Let gn"’ »m—p De aset of all bipartite graphs G satisfying G = Hn’p om—p(S1, -, sn). Note that every graph
,77/

of order m +n —2p obtained from F,’,; by deleting all vertices in a balanced set of size 2p contains a blpartlte

graph G € Qn’p;m _p as a spanning subgraph It suffices to prove that any blpartlte graph G € Qn’p; m—p 1

Hamilton-biconnected. Let G € G- without loss of generality, say G = H, kp (s1,...,51). Label the

n—p,m—p’ n—p,m—p
kpl o o (h) ()
vertices of H,” o= p(sl,...,sh) as UL1, - o Uiy Ugy,eoe Uy g yqsene Uggyeey Uzl gy D11, e e, Ok, V21, - -+, U2 (see

Fig. 2).
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Letm =n.Sincek>p+2and 0<r;<p—I, wehaveh >2ands; > 1for1 <i < h. Denote

t
Pullvl, = |_| ulivlil

_ () (h)
Pug?vzy, - Uz 0y t+1+2h,1 sj Uy s,,+102h’
i=1
S;,*l
_ (h) (h)
Qu(;?vz;, - U vl,t+i+2;’;1 sj U3, 020
i=1

e I_I 0 e
Pu(SZ,)s,‘-*-lvl,HZj'*l 5j B u3'5i+1021 3] ! t+]+2w 15w forl<i<h.
= =1

Hff;/,,,p(sl, ...,5n) has five kinds of Hamiltonian paths, denoted by R;,...,Rs. We present them as

follows:

Ry = Punvul_l( Po , )/
3,5i+1 1,r+):;.:1 sj

Rz = Puv |_|( P(i) )I_IPW
e ”3,5,-+101,t+2§:151» g 02

i=1

-

=
—_

-

Ry = | |Pg u Puvon,s
3 -1 1,[3'5[“?}1/”2,]":1 sj o
h-1
R4 - - 39 1Y% t+}:’ u Pullvlf u PuUt).U on”
i=1
h-1
_ (h)
Rs = uy . 01k I_I( p W o g )I_Iplluvu Quivg,-
i=1
Hence Hn’p;,n _p(s1,...,5p) is Hamilton-biconnected. Thus F, ’p’ is 2p-Hamilton-biconnected for / < p.
Letm =n—1. H" (s1,.-.,sp) has four kinds of Hamlltonian paths, denoted by Rj, ..., R}, obtained
n—pn—-p-1 1 4
from Hamiltonian paths R; and R3 in H, ’f . p(sl, ...,8y) by some vertex and edge operations. We present
them as follows:
. 1
Ry = Ri—vy—unvr—+ {uf,,;ﬁlm,t_b U101 -k},
R, = Ri—01
. 1 2 1
Ry = R3—01ps — Mész U1 tesy-1 + {“é,s)z 1101811 ugsf U1},
. (h) (h)
Ry = R3- Uiyt s ~ U3g, U114y s T {110, A-14+T s uashvlf}'
Hence Hn,p‘;an - 1(sl, ...,Sy) is Hamilton-biconnected. Thus F ’p ", is also 2p-Hamilton-biconnected for I < p.
This completes the proof. O

Proof of Lemma 2.7. (i) Note that every balanced bipartite graph of order 2 — 2p obtained from M~ by
deleting all vertices in a balanced set of size 2p contains M>"~ as a spanning subgraph. It suffices

s+t+1,s+t+1
S,t— S,t—
to prove that MS ‘16441 s Hamilton-biconnected. Label the vertices of M\, .,

U1, ..., U e, V11, - -+, Vs, 021, - . ., U2t (see Fig. 2). Denote

as ull/ cey ul,s—lr ur

s—1

t
anls 1 |_| 1i01i, M21712t |_| U202;.

i=1 i=1
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M has nine kinds of Hamiltonian paths, denoted by Rj, ..., Rs. We present them as follows:

Ss+t+1,5+t+1
P”llvl,s—l |_| uo LI Py LI U2,t4101s,
Ry, = P1¢11v1,5_1 I_I Puzﬂm I_I U2 t+101sUT,
RS = Punvlls,l |_| UOUD 141015 |_| Punvz[,
Ry = wo I_I Piios I_I U2 1+101s I_I Punvl,s_lr
Rs = wuvys |_| Pu“vLH |_| PuzﬂJz[ |_| Uz 419,

Re = UOU +4+1015 |_| Punvm_l |_| Puzwzu
R7 = Pu21 Vot |_| uZ,t+1vuvls |_| Punvm,]/

R8 = P1121212t |_| u2,t+1vls |_| P111101,5,1 |_| uv/
R9 = U2#+101s I_I Punvl,s_l I_I uo I_I Puﬂvz,-

Hence Mii; n—p 1s Hamilton-biconnected. Thus M5 is 2p-Hamilton-biconnected.

Ry

(ii) Note that every balanced bipartite graph of order 2n — 2p obtained from Nﬁf, by deleting all vertices
in a balanced set of order 2p contains Ngfp,n_p as a spanning subgraph. It suffices to prove that Ng’fp,n_p is
Hamilton-biconnected. Let t = n—p—3 and label the vertices of NO2 as Uy, ..., U, U1, U, U, V11, - - -, V11,

. n—pn—p
V21,022, (see Fig. 2). Denote
t_

1 t
PMHUU,] = |_| ullvll/ Plln'l)][ = |_| ullvll'
i=1

i= i=1

NO? has nine kinds of Hamiltonian paths. We present them as follows:

n=-p,n-p
R1 = Puyo,, |_| Up1 VUV U1 UV,
Ry = Py |_| Up VU V2 UV,
Rs = Py, |_| Up1 022UV U0,
Ry = unvupvinpuvy |_| Pyosr

Rs = unovuxnvy |_| P |_| U14U22UT21,
Re = upnovpnuvy |_| Py |_| U0,
R; = uvpuxpvurvy I_I Piyoys

Rs = uvnuxpounovy |_| Puoy I_I U102,

Ry = uvy I_I P oy, I_I U1 VU220
Hence Ngfpm_p is Hamilton-biconnected. Thus Nﬂf, is 2p-Hamilton-biconnected. O
Proof of Lemma 2.8. (i) Denote M*' =X, Y;E)with|X|=n—-pand |[Y|=n-p-1. Ifn>s+p+2,

n—pn—p-1
then let x, y € X such thatd(x) =d(y) =n—p—1. Sinces >n—-t-p-1, M;ip nop-1 has no Hamiltonian path
betweenxand y. If n =s+p+1, thenletx, y € Xsuch thatd(x) =n—-p—-t—-1and d(y) = n —p — 1. Clearly,

all neighbours of y are pendant vertices. So Mfl{p,”ipf1 has no Hamiltonian path between x and y. Hence

in each case, qut_ __. is not Hamilton-biconnected. Note that M*'  is one of graphs obtained from
pn—p-1 n—pn—p-1
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st

is not
n—pn—p-1

M‘;’tn_l by deleting all vertices in a balanced set of size 2p. It follows from definition that M

2p-Hamilton-biconnected.

(ii) Denote Mf{ip,n_p =X, Y;E)with [X| =|Y|=n—p. Letx € Xand y € Y such thatd(x) =n—p — t and
dlyy=n—p. Sinces=n—-p—t, M‘Z’t_‘prn_p has no Hamiltonian path between x and y. Hence Mf,’fp,n_p is not
Hamilton-biconnected. Note that M;’ip,n_p is one of graphs obtained from M;/, by deleting all vertices in a

t

balanced set of size 2p. It follows from definition that Mi[—p,n—p is not 2p-Hamilton-biconnected.

(iii) Denote N, = (X, Y;E) with [X| = |[Y| = n —p. Let x € X and y € Y such that d(x) = d(y) = n - p.
Then Ngfprn_p has no Hamiltonian path between x and y. Hence Ng'_lp,n_p is not Hamilton-biconnected. Note
that Ng’_lp/n_p is one of graphs obtained from Nﬁ:}l by deleting all vertices in a balanced set of size 2p. It
follows from definition that NZ: ,11 is not 2p-Hamilton-biconnected. O
Proof of Lemma 5.1. By a similar argument to Lemma 4.1 (i), p(M"_k_l’k_p ), p(Mk_p’"_k_l), and p(M"_k’k_p _1)

nn—1 nn—1 nn—1

are the largest roots of f(x) =0, g(x) = 0, and h(x) = 0 respectively, where
fo) =2t = (= k=p+Dn+ (k+ Dk -p)?+ (n—k=1)(n—k+p-1)(k+1k-p),

g =x* = (n? = (k= p+ Dn + (k= p)(k + D)x? + (n —k = 1)(n —k + p)k(k - p),
h(x) = x* = (n? = (k= p)n + k(k = p = ))x* + (n = k) — k + p)k(k = p = 1).

(i) Since for all real number x,
fX)—gx)=m-k-1)n-k+p-1)k-p) >0,

we have p(M‘ P71y > p(" KV,

nn—1 nn—1

(ii) Since for all real number x,

g(x) = h(x) = (n — 2k + p)(x*> + kn — k> + kp) > 0,

n—kk—-p-1
nn—1

) > p(Mk—p,n—k—l). O

nn—1
Proof of Lemma 5.2. By a similar argument to Lemma 4.1 (i), q(MZ;k__ll’k_p ), q(M]:l_f _’q_k_l), and q(MZ;k_’ﬁ_p _1)
are the largest roots of f(x) = 0, g(x) = 0, and h(x) = 0, respectively, where f(x) = xfi(x), g(x) = xg1(x), and

h(x) = xhy(x),

we have p(M

f@) =" = @n+p =12+ (202 + 2k +pn — @k + Dk —p+1))x = @n = 1)(n —k+p - )k + 1),
g1(0) =2 = (3n+p - D + (20% + 2k +p — Dn —k(2k = 2p + 1))x = 2n = 1)(n — k + p)k,
(x) =2 = Gn+p—1)x* + (202 + 2k + p — 2 — (2k = 1)(k - p)Jx = 2n = 1)(n - k + p)k.

. . . . . o n—k=1k- k—pn—k-
Since signless Laplacian spectral radius of any nonempty graph is positive, (M, " ", q(MMp 1 ") and

q(MZ;k_’ﬁ_p ') are the largest roots of f1(x) = 0, g1(x) = 0, and hy (x) = 0, respectively.
(i) Since
fA@n-1) = @n-Dmn—-k-1)(k-p) >0,
g2n-1) = 2n-1)m-k-k-p)>0,
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and forx >2n -1,

fix) = 32— (6n+2p—2)x+2n* + 2k +pn— 2k +1)(k—p +1)
> fi2n-1)
= n(n+2k-3p-2)+n*— 2k +3)k-p)
> (2k-p+2)?*-(2k+3)k-p)
> 7k+4
> 0,

gi(x) = 3x*—(6n+2p—2)x+2n*+ 2k +p—1n—k(2k - 2p + 1)
> gy(2n-1)
= nn+2k-3p-3)+n*—(k+1)2k-2p-1)
> (2k-p+2?-(k+1)2k-2p-1)
> 7k+5
> 0,

we have
g Ty <on—-1, g T <on -1

Together with, for x <2n -1,

71(x)— ix)=m-2k+p-1)2n-1-x)>0,

we have q(MZ;]:l’k_p ) > q(M’:l;p;q_k_l) fork>p+1.
(ii) Note that K, ,_¢+p-1 and K, ,_x+, are proper subgraphs of MZ;::Lk_p

Lemma 2.1,

MY s ok p—1, g TP s 2n— k.

nn—1 nn—1

Since forx >2n—-k+p—-1>mn,

and M

n—kk—p-1
nn—1

i) —h(x)=C2n-4k+2p-1)x-2n-1)(n-2k+p-1) >0,

we have q(M"ik’kfp 71) > q(M”fk*l’kfp ).

nn—1 nn—1

1011

, respectively. By



