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Abstract. Let G = (V, E) be a simple connected graph of order n (≥ 2) and size m, where V(G) = {1, 2, . . . , n}.
Also let ∆ = d1 ≥ d2 ≥ · · · ≥ dn = δ > 0, di = d(i), be a sequence of its vertex degrees with maximum degree
∆ and minimum degree δ. The symmetric division deg index, SDD, was defined in [D. Vukičević, Bond
additive modeling 2. Mathematical properties of max-min rodeg index, Croat. Chem. Acta 83 (2010) 261–

273] as SDD = SDD(G) =
∑

i∼ j

d2
i +d2

j
did j

, where i ∼ j means that vertices i and j are adjacent. In this paper
we give some new bounds for this topological index. Moreover, we present a relation between topological
indices of graph.

1. Introduction

Let G = (V,E) be a simple connected graph with n (≥ 2) vertices and m edges, where V(G) = {1, 2, . . . , n}
and E(G) = {e1, e2, . . . , em}. The maximum vertex degree is denoted by ∆ and the minimum by δ. For the
edge e connecting the vertices i and j, the degree of edge is d(e) = di+d j−2. Let ∆ = d1 ≥ d2 ≥ · · · ≥ dn = δ > 0,
di = d(i), and d(e1) ≥ d(e2) ≥ · · · ≥ d(em), ∆e = d(e1) + 2 and δe = d(em) + 2, be sequences of its vertex and edge
degrees, respectively. If vertices vi and v j are adjacent, we denote it as i ∼ j or viv j ∈ E.

Two vertex–degree–based topological indices, the first and the second Zagreb indices, M1 and M2, were
defined in [12, 13] as

M1 = M1(G) =

n∑
i=1

d2
i and M2 = M2(G) =

∑
i∼ j

did j.

As shown in [19], the first Zagreb index can also be expressed as

M1 =
∑
i∼ j

(di + d j).

Bearing in mind that for the edge e connecting the vertices i and j we have that

d(e) = di + d j − 2,
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the index M1 can also be considered as an edge–degree–based topological index [17]

M1 =

m∑
i=1

(d(ei) + 2).

Multiplicative variants of the Zagreb indices, the first and the second multiplicative Zagreb indices, Π1
and Π2, were defined in [15] as

Π1 = Π1(G) =

n∏
i=1

d2
i and Π2 = Π2(G) =

∏
i∼ j

did j.

One year later, the multiplicative sum Zagreb index, Π∗1, was introduced in [8]

Π∗1 = Π∗1(G) =
∏
i∼ j

(di + d j).

Since

Π∗1 =

m∏
i=1

(d(ei) + 2),

this index can also be considered as an edge–degree–based topological index.

For an edge i ∼ j of G, its weight is defined to be 2
di+d j

. The harmonic index of G is the sum of weights
over all its edges. It is denoted by H(G) and is defined in [9] as

H = H(G) =
∑
i∼ j

2
di + d j

.

For its basic mathematical properties, including lower bound, see, recent paper [2] and the references cited
therein.

The general Randić index, R−1, was defined as [22]

R−1 = R−1(G) =
∑
i∼ j

1
did j

.

The geometric–arithmetic vertex–degree–based topological index, GA, was introduced in [30]. It is
defined as

GA = GA(G) =
∑
i∼ j

2
√

did j

di + d j
.

Similarly, in [24], the arithmetic–geometric topological index, AG, was defined as

AG = AG(G) =
∑
i∼ j

di + d j

2
√

did j
.

A family of Adriatic indices was introduced in [28, 29] . An especially interesting subclass of these
descriptors consists of 148 discrete Adriatic indices. A so called inverse sum indeg index, ISI, was defined
in [29] as a significant predictor of total surface area of octane isomers. The inverse sum indeg index is
defined as

ISI = ISI(G) =
∑
i∼ j

did j

di + d j
.
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The symmetric division deg index, SDD, was defined in [29] as

SDD = SDD(G) =
∑
i∼ j

d2
i + d2

j

did j
.

In this paper we are interested in upper and lower bounds on topological index SDD. This problem was
considered in [4, 11, 27]. Very recently in [10], the authors studied to test the physico-chemical applicability
of SDD on a much wider empirical basis, and to compare it with other, most often used, vertex-degree-based
topological indices.

2. Preliminary results

In this section we list some analytical inequalities for real number sequences that will be used in the
subsequent considerations. Let x = (xi) and a = (ai), i = 1, 2, . . . ,m, be positive real number sequences. Then
for all r, r ≥ 0, holds [21]

m∑
i=1

xr+1
i

ar
i
≥

 m∑
i=1

xi


r+1

 m∑
i=1

ai


r (1)

with equality holding if and only if
x1

a1
=

x2

a2
= · · · =

xm

am
.

Let a = (ai), i = 1, 2, . . . ,m, be a positive real number sequence. In [16] (see also [31]) the following
inequalities were proven m∑

i=1

√
ai


2

≤ (m − 1)
m∑

i=1

ai + m

 m∏
i=1

ai


1
m

(2)

and  m∑
i=1

√
ai


2

≥

m∑
i=1

ai + m(m − 1)

 m∏
i=1

ai


1
m

. (3)

Let p = (pi) and a = (ai), i = 1, 2, . . . ,m, be two positive real number sequences with the properties
p1 + p2 + · · · + pm = 1 and 0 < r ≤ ai ≤ R < +∞. In [23] (see also [18]) the following inequality was proven

m∑
i=1

piai + rR
m∑

i=1

pi

ai
≤ r + R. (4)

Moreover, the equality holds in (4) if and only if R = a1 = a2 = · · · = am = r, or for some k, 1 ≤ k ≤ m − 1,
R = a1 = a2 = · · · = ak ≥ ak+1 = · · · = am = r.

Let p = (pi) and a = (ai), b = (bi), i = 1, 2, . . . ,m, be non-negative real number sequences with the
properties r1 ≤ ai ≤ R1 and r2 ≤ bi ≤ R2. Further, let S be a subset of I = {1, 2, . . . ,m} which minimizes the
expression∣∣∣∣∣∣∣∑i∈S pi −

1
2

m∑
i=1

pi

∣∣∣∣∣∣∣ . (5)
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In [1] the following inequality was proven∣∣∣∣∣∣∣
m∑

i=1

pi

m∑
i=1

piaibi −

m∑
i=1

piai

m∑
i=1

pibi

∣∣∣∣∣∣∣ ≤ (R1 − r1)(R2 − r2)α(S)

 m∑
i=1

pi


2

, (6)

where

α(S) =

∑
i∈S

pi

m∑
i=1

pi

1 −

∑
i∈S

pi

m∑
i=1

pi

 . (7)

Moreover, the equality holds in (6) if and only if R1 = a1 = a2 = · · · = am = r1 or R2 = b1 = b2 = · · · = bm = r2.

Let a1, a2, . . . , an and b1, b2, . . . , bn be real number sequences for which there exist real constants r and R
so that for each i, i = 1, 2, . . . , n, holds r ai ≤ bi ≤ R ai. Then the following inequality holds [7]:

n∑
i=1

b2
i + r R

n∑
i=1

a2
i ≤ (r + R)

n∑
i=1

ai bi (8)

with equality holding if and only if for at least one i, 1 ≤ i ≤ n holds r ai = bi = R ai.

3. Main results

In this section we determine some lower and upper bounds for the SDD index in terms of some other
topological indices.

In the following theorem we establish lower bound for invariant SDD in terms of parameter m and
topological indices M1 and M2.

Theorem 3.1. Let G be a connected graph of order n with m (≥ 1) edges. Then

SDD ≥
M2

1

M2
− 2m (9)

with equality holding if and only if G is a regular graph or a semiregular bipartite graph.

Proof. Define S = S(G) as

S =
∑
i∼ j

(di + d j)2

did j
.

Then we have

SDD =
∑
i∼ j

d2
i + d2

j

did j
=

∑
i∼ j

(di + d j)2
− 2did j

did j
= S − 2m. (10)

For r = 1, xi := di + d j, ai := did j, where summation is performed over all edges, the inequality (1) becomes

∑
i∼ j

(di + d j)2

did j
≥

∑
i∼ j

(di + d j)


2

∑
i∼ j

did j

, that is, S ≥
M2

1

M2
(11)
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with equality holding if and only if 1
di

+ 1
d j

= 1
dk

+ 1
d`

for any edges viv j, vkv` ∈ E(G). The inequality (9) follows
from equality (10) and inequality (11). The first part of the proof is done.

Suppose that equality holds in (11). Then 1
di

+ 1
d j

= 1
dk

+ 1
d`

for any edges viv j, vkv` ∈ E(G). For v j, vk ∈ NG(vi),
we have d j = dk. Since G is connected, one can easily see that G is a regular graph or a semiregular bipartite
graph.

Conversely, let G be a regular graph. Then

SDD =
∑
i∼ j

d2
i + d2

j

did j
= 2m =

M2
1

M2
− 2m.

Let G be an (r, s)-semiregular bipartite graph. Then

SDD =
∑
i∼ j

d2
i + d2

j

did j
=

r2 + s2

rs
m =

(r + s)2

rs
m − 2m =

M2
1

M2
− 2m.

Corollary 3.2. Let G be a connected graph with m (≥ 2) edges. Then

M2
1

M2
≤ SDD + 2m ≤ m


√

∆

δ
+

√
δ
∆

2

. (12)

Remark 3.3. Since m ≤ n(n−1)
2 , both inequalities in (12) are stronger than

M2
1

M2
≤

n(n − 1)
2


√

∆

δ
+

√
δ
∆

2

,

which was proven in [20].

Since M2
1 ≥M1δem ≥ m2δ2

e , the following corollary of Theorem 3.1 holds.

Corollary 3.4. Let G be a connected graph of order n with m (≥ 2) edges. Then

SDD ≥
mδeM1

M2
− 2m ≥

m2δ2
e

M2
− 2m.

Equalities hold if and only if G is regular or semiregular bipartite graph.

Since M2
1 ≥

2m2M1
H ≥

4m4

H2 the following corollary of Theorem 3.1 is also valid.

Corollary 3.5. Let G be a connected graph with m (≥ 2) edges. Then

SDD ≥
2m2M1

M2 H
− 2m ≥

4m4

M2 H2 − 2m.

Equalities hold if and only if G is regular or semiregular bipartite graph.

Since M2 ≤ ∆e ISI, the following corollary of Theorem 3.1 holds.

Corollary 3.6. Let G be a connected graph with m (≥ 2) edges. Then

SDD ≥
M2

1

∆e ISI
− 2m.

Equality holds if and only if G is regular or semiregular bipartite graph.
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Theorem 3.7. Let G be a connected graph of order n with m (≥ 2) edges. Then

SDD ≥
m2∆eδe

(∆e + δe)ISI −M2
− 2m (13)

with equality holding if and only if

di

d j
+

d j

di
=

dk

d`
+

d`
dk

for any edges viv j, vkv` ∈ E(G),

and di + d j = ∆e or δe for any edge viv j ∈ E(G).

Proof. Since δe ≤ di + d j ≤ ∆e for any edge viv j ∈ E(G), we have

(∆e − di − d j)(δe − di − d j) ≤ 0,

i.e., (di + d j)2 + ∆e δe − (di + d j) (∆e + δe) ≤ 0,

i.e., 1 +
∆e δe

(di + d j)2 −
∆e + δe

di + d j
≤ 0.

Moreover, the above equality holds if and only if di + d j = ∆e or δe for any edge viv j ∈ E(G).
Using the above result, one can easily see that∑

i∼ j

[
1 +

∆e δe

(di + d j)2 −
∆e + δe

di + d j

]
di d j ≤ 0

with equality holding if and only if di + d j = ∆e or δe for any edge viv j ∈ E(G). Thus we have∑
i∼ j

di d j + ∆e δe

∑
i∼ j

di d j

(di + d j)2 ≤ (∆e + δe)
∑
i∼ j

di d j

di + d j
,

that is,

M2 + ∆eδe

∑
i∼ j

did j

(di + d j)2 ≤ (∆e + δe) ISI,

that is,∑
i∼ j

di d j

(di + d j)2 ≤
(∆e + δe) ISI −M2

∆eδe
(14)

with equality holding if and only if di + d j = ∆e or δe for any edge viv j ∈ E(G).

By Cauchy-Schwarz inequality, we have

m2 =

∑
i∼ j

√
di d j

di + d j
·

di + d j√
di d j


2

≤

∑
i∼ j

did j

(di + d j)2

∑
i∼ j

(di + d j)2

did j
= S

∑
i∼ j

did j

(di + d j)2

with equality holding if and only if

di d j

(di + d j)2 =
dk d`

(dk + d`)2 , that is,
di

d j
+

d j

di
=

dk

d`
+

d`
dk

for any edges viv j, vkv` ∈ E(G).

From the above result with (14), we have

m2

S
≤

(∆e + δe)ISI −M2

∆eδe
, that is, S ≥

m2∆eδe

(∆e + δe)ISI −M2
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with equality holding if and only if

di

d j
+

d j

di
=

dk

d`
+

d`
dk

for any edges viv j, vkv` ∈ E(G),

and di + d j = ∆e or δe for any edge viv j ∈ E(G).

From the above with identity (10), we arrive at (13). This completes the proof of the theorem.

Example 3.8. Let H = (V, E) be a graph with vertex set V(H) = {v1, v2, . . . , v33} and |E(H)| = 72 such that
v1vi ∈ E(H) (i = 2, 3, . . . , 13) and v j+1vk+13 ∈ E(H) ( j = 1, 2, . . . , 12; k = (5 j − 4 mod 20), (5 j − 3 mod 20), (5 j −
2 mod 20), (5 j − 1 mod 20), (5 j mod 20)). For graph H,

di

d j
+

d j

di
=

5
2

for any edge viv j ∈ E(H),

and ∆e = 18, δe = 9. Moreover, di + d j = 18 or 9 for any edge viv j ∈ E(H). This graph H is neither regular graph nor
semiregular bipartite graph.

The following result is the corollary of Theorem 3.7.

Corollary 3.9. Let G be a connected graph with m (≥ 2) edges. Then

SDD ≥
m2δe

ISI
− 2m.

Equality holds if and only if G is a regular graph or a semiregular bipartite graph.

Proof. Since di + d j ≥ δe, we have

ISI =
∑
i∼ j

di d j

di + d j
≤

1
δe

∑
i∼ j

di d j =
M2

δe

with equality holding if and only if di + d j = δe for any edge viv j ∈ E(G), that is, if and only if G is a regular
graph or a semiregular bipartite graph [3].

The above result with Theorem 3.7, we get the required result. Moreover, the equality holds if and only if
G is a regular graph or a semiregular bipartite graph.

In the following theorem we determine lower bound for the invariant SDD depending on parameter m and
topological index GA.

Theorem 3.10. Let G be a simple graph of order n with m (≥ 1) edges. Then

SDD ≥
4m3

(GA)2 − 2m (15)

with equality holding if and only if

di

d j
+

d j

di
=

dk

d`
+

d`
dk

for any edges viv j, vkv` ∈ E(G).

Proof. By Cauchy-Schwarz inequality, we have∑
i∼ j

di + d j

2
√

did j


2

≤ m
∑
i∼ j

(di + d j)2

4did j
, that is,

m
4

S ≥ (AG)2 (16)
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with equality holding if and only if

di + d j

2
√

did j
=

dk + d`
2
√

dkd`
, that is,

√
di

d j
+

√
d j

di
=

√
dk

d`
+

√
d`
dk
,

that is,
di

d j
+

d j

di
=

dk

d`
+

d`
dk

for any edges viv j, vkv` ∈ E(G).

Using the arithmetic-harmonic mean inequality for real numbers (see e.g. [18]), we have

(AG)(GA) ≥ m2 (17)

with equality holding if and only if

di

d j
+

d j

di
=

dk

d`
+

d`
dk

for any edges viv j, vkv` ∈ E(G).

From this inequality and inequality (16) follows

S ≥
4m3

(GA)2

with equality holding if and only if

di

d j
+

d j

di
=

dk

d`
+

d`
dk

for any edges viv j, vkv` ∈ E(G).

According to this inequality and (10), we obtain (15). Moreover, the equality holds in (15) if and only if

di

d j
+

d j

di
=

dk

d`
+

d`
dk

for any edges viv j, vkv` ∈ E(G).

In the next theorem we establish lower and upper bounds for SDD in terms of parameter m and invariants
GA, AG, Π∗1 and Π2.

Theorem 3.11. Let G be a connected graph with m (≥ 2) edges. Then

SDD ≥
4m4

(m − 1)(GA)2 −
m

(
Π∗1

) 2
m

(m − 1) (Π2)
1
m

− 2m (18)

with equality holding if and only if

di

d j
+

d j

di
=

dk

d`
+

d`
dk

for any edges viv j, vkv` ∈ E(G),

and

SDD ≤ 4(AG)2
−

m(m − 1)
(
Π∗1

) 2
m

(Π2)
1
m

− 2m. (19)

Moreover, the equality holds in (19) for

di

d j
+

d j

di
=

dk

d`
+

d`
dk

for any edges viv j, vkv` ∈ E(G).
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Proof. Lower bound: For ai := (di+d j)2

did j
, where summation goes over all edges in graph G, the inequality (2)

becomes ∑
i∼ j

di + d j√
did j


2

≤ (m − 1)
∑
i∼ j

(di + d j)2

did j
+ m

∏
i∼ j

(di + d j)2

did j


1
m

,

that is,

4(AG)2
≤ (m − 1)S + m

(
Π∗1

) 2
m

(Π2)
1
m

.

According to this and inequality (17) we get

4m4

(GA)2 ≤ (m − 1)S + m

(
Π∗1

) 2
m

(Π2)
1
m

.

The inequality (18) is obtained from the above inequality and equality (10). The first part of the proof is
done.

Suppose that equality holds in (18). Then all the above inequalities must be equalities. From the equality
in (17), we have

di

d j
+

d j

di
=

dk

d`
+

d`
dk

for any edges viv j, vkv` ∈ E(G).

Conversely, let
di

d j
+

d j

di
=

dk

d`
+

d`
dk

= p for any edges viv j, vkv` ∈ E(G).

Then one can easily see that √
di

d j
+

√
d j

di
=

√
p + 2 for any edge viv j ∈ E(G).

Now,

4m4

(m − 1)(GA)2 −
m

(
Π∗1

) 2
m

(m − 1) (Π2)
1
m

− 2m

=
m2 (p + 2)

(m − 1)
−

m
(m − 1)

∏
i∼ j

(di + d j)2

did j


1
m

− 2m

=
m2 (p + 2)

(m − 1)
−

m (p + 2)
(m − 1)

− 2m

= mp = SDD.

Upper bound: For ai := (di+d j)2

did j
, where summation goes over all edges in graph G, the inequality (3) becomes∑

i∼ j

di + d j√
did j


2

≥

∑
i∼ j

(di + d j)2

did j
+ m(m − 1)

∏
i∼ j

(di + d j)2

did j


1
m

,
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that is,

4(AG)2
≥ S + m(m − 1)

(
Π∗1

) 2
m

(Π2)
1
m

.

From this inequality and equality (10) we arrive at (19). Let

di

d j
+

d j

di
=

dk

d`
+

d`
dk

= p for any edges viv j, vkv` ∈ E(G).

Then √
di

d j
+

√
d j

di
=

√
p + 2 for any edge viv j ∈ E(G).

Now,

4(AG)2
−

m(m − 1)
(
Π∗1

) 2
m

(Π2)
1
m

− 2m

= m2 (p + 2) −m (m − 1) (p + 2) − 2m

= mp = SDD.

This completes the proof of the theorem.

Corollary 3.12. Let G be a connected graph with m (≥ 2) edges. Then

SDD ≥
m

m − 1

2(m + 1) −

(
Π∗1

) 2
m

(Π2)
1
m

 .
Equality holds if and only if G is a regular graph.

Proof. In [5], we have that GA ≤ m with equality holding if and only if G is a regular graph as G is connected.
Using this result with Theorem 3.11, we get the required result. Moreover, the equality holds if and only if
G is a regular graph.

In the following theorem we determine an upper bound for SDD in terms of parameters n, m, ∆e, δe and
topological index R−1.

Theorem 3.13. Let G be a connected graph with n (≥ 2) vertices and m edges. Then

SDD ≤ n(δe + ∆e) − δe∆eR−1 − 2m. (20)

Equality holds if and only if G is a regular graph or a semiregular bipartite graph, or di + d j = ∆e or δe for any edge
viv j ∈ E(G) (∆e , δe).

Proof. For pi := di+d j

ndid j
, ai := di + d j, r = δe, R = ∆e, where summation goes over all edges in graph G, the

inequality (4) becomes ∑
i∼ j

(di + d j)2

ndid j
+ δe∆e

∑
i∼ j

1
ndid j

≤ δe + ∆e,

that is,

S + δe∆eR−1 ≤ n(δe + ∆e). (21)
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The inequality (20) is obtained from this inequality and equality (10).

Moreover, the equality holds in (4) if and only if R = a1 = a2 = · · · = am = r, or for some k, 1 ≤ k ≤ m − 1,
R = a1 = a2 = · · · = ak ≥ ak+1 = · · · = am = r. It follows that equality holds in (21) if and only if di +d j = ∆e = δe
for any edge viv j ∈ E(G), or di + d j = ∆e or δe for any edge viv j ∈ E(G) (∆e , δe). Consequently, the equality
holds in (20) if and only if G is a regular graph or a semiregular bipartite graph [3], or di + d j = ∆e or δe for
any edge viv j ∈ E(G) (∆e , δe).

Corollary 3.14. Let G be a connected graph with n (≥ 2) vertices and m edges. Then

SDD ≤ n(δe + ∆e) −
m2δe∆e

M2
− 2m. (22)

Equality holds if and only if G is a regular graph or a semiregular bipartite graph.

Proof. By Cauchy-Schwarz inequality, we have

m2 =

∑
i∼ j

√
di d j

1√
di d j


2

≤

∑
i∼ j

did j

∑
i∼ j

1
did j

, that is, m2
≤M2 R−1 (23)

with equality holding if and only if did j = dkd`, for any edges viv j, vkv` ∈ E(G). By Theorem 3.13 with (23),
we get the required result in (22). The first part of the proof is done.

We have to prove that did j = dkd`, for any edges viv j, vkv` ∈ E(G) if and only if G is a regular graph
or a semiregular bipartite graph. For this we suppose that did j = dkd`, for any edges viv j, vkv` ∈ E(G).
From the equality did j = didk, viv j ∈ E(G) and vivk ∈ E(G), follows d j = dk. Similarly, from the equality
d jdi = d jdt, viv j ∈ E(G) and v jvt ∈ E(G), it follows that di = dt. Hence all the vertices adjacent to any vertex vi
(i = 1, 2, . . . , n) have the same degree. First we assume that G contains an odd cycle. Since G is connected,
then using the above result, we conclude that d1 = d2 = · · · = dn, that is, G is a regular graph. Next we
assume that G contains only even cycles. In this case G is semiregular bipartite graph as G is connected.
Hence G is a regular graph or a semiregular bipartite graph. Conversely, one can easily see that did j = dkd`,
for any edges viv j, vkv` ∈ E(G) holds for regular graph or semiregular bipartite graph.

By Theorem 3.13 with the above result, we conclude that the equality holds in (22) if and only if G is a
regular graph or a semiregular bipartite graph.

Corollary 3.15. Let G be a connected graph with n (≥ 2) vertices and m edges. Then

SDD ≤
n2

4R−1

(∆e + δe)2

∆eδe
− 2m, (24)

with equality holding if and only if G is a regular graph or a semiregular bipartite graph, or di + d j = ∆e or δe for any
edges viv j ∈ E(G) (∆e , δe) with

∆e

∑
viv j∈S

1
did j

= δe

∑
viv j∈W

1
did j

,

where S = {viv j ∈ E(G) : di + d j = ∆e} and W = {viv j ∈ E(G) : di + d j = δe}.

Moreover,

SDD ≤
n2M2

4m2

(∆e + δe)2

∆eδe
− 2m. (25)

Equality in (25) holds if and only if G is a regular graph or a semiregular bipartite graph.
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Proof. Using the arithmetic-geometric mean inequality for real numbers (see e.g. [18]), according to (21) we
have that

2
√

S ∆eδe R−1 ≤ S + δe∆e R−1 ≤ n(∆e + δe), that is, S ≤
n2(∆e + δe)2

4∆eδeR−1
.

According to this inequality and equality (10) we obtain (24).

By Theorem 3.13 with the above results, we conclude that the equality holds in (24) if and only if G is a
regular graph or a semiregular bipartite graph, or di + d j = ∆e or δe for any edges viv j ∈ E(G) (∆e , δe) with
S = δe∆e R−1, that is, if and only if G is a regular graph or a semiregular bipartite graph, or di + d j = ∆e or δe
for any edges viv j ∈ E(G) (∆e , δe) with

∆2
e

∑
viv j∈S

1
di d j

+ δ2
e

∑
viv j∈W

1
di d j

=
∑
i∼ j

(di + d j)2

di d j
= S = δe∆e

∑
i∼ j

1
di d j

= ∆e δe

∑
viv j∈S

1
di d j

+ ∆e δe

∑
viv j∈W

1
di d j

,

that is, if and only if G is a regular graph or a semiregular bipartite graph, or di + d j = ∆e or δe for any edges
viv j ∈ E(G) (∆e , δe) with

∆e

∑
viv j∈S

1
di d j

= δe

∑
viv j∈W

1
di d j

,

where S = {viv j ∈ E(G) : di + d j = ∆e} and W = {viv j ∈ E(G) : di + d j = δe}.

The inequality (25) is obtained from (24) and R−1M2 ≥ m2. Since R−1M2 = m2 if and only if G is a regular
graph or a semiregular bipartite graph (see proof of the Corollary 3.14). Hence the equality in (25) is attained
if and only if G is a regular graph or a semiregular bipartite graph.

In the following theorem we determine lower bound for SDD in terms of parameters n, m and invariant
R−1.

Theorem 3.16. Let G be a connected graph with n (≥ 2) vertices and m edges. Then

SDD ≥
n2

R−1
− 2m. (26)

Equality holds if and only if G is a regular graph or a bipartite semiregular graph.

Proof. By Cauchy-Schwarz inequality, we have

∑
i∼ j

1
did j

∑
i∼ j

(di + d j)2

did j
≥

∑
i∼ j

di + d j

did j


2

with equality holding if and only if di + d j = dk + d` for any edges viv j, vkv` ∈ E(G).
Since ∑

i∼ j

di + d j

did j
=

∑
i∼ j

(
1
di

+
1
d j

)
=

n∑
i=1

1 = n,

the inequality becomes
R−1S ≥ n2.

According to this inequality and equality (10), we obtain the inequality (26). Moreover, the equality holds
in (26) if and only if di + d j = dk + d` for any edges viv j, vkv` ∈ E(G). Since G is connected, the equality holds
in (26) if and only if G is a regular graph or a bipartite semiregular graph [3].

In the following theorem we prove an inequality opposite to the inequality (26).
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Theorem 3.17. Let G be a connected graph with n vertices and m (≥ 2) edges. Let S be a subset of I = {e1, e2, . . . , em}

which minimizes the expression∣∣∣∣∣∣∣∑e∈S 1
did j
−

1
2

R−1

∣∣∣∣∣∣∣ . (27)

Then

SDD ≤
n2

R−1
− 2m + (∆e − δe)2α(S)R−1, (28)

where

α(S) =

∑
e∈S

1
did j

R−1

1 −

∑
e∈S

1
did j

R−1

 . (29)

Equality holds in (28) if and only if G is a regular graph or a semiregular bipartite graph.

Proof. For pi := 1
did j

the expressions (5) and (7) become (27) and (29). Now, for pi := 1
did j

, ai = bi := di + d j,
R1 = R2 = ∆e, r1 = r2 = δe, where summation goes over all adjacent vertices in graph G, i.e., over all edges,
the inequality (6) becomes

∑
i∼ j

1
did j

∑
i∼ j

(di + d j)2

did j
−

∑
i∼ j

di + d j

did j


2

≤ (∆e − δe)2α(S)

∑
i∼ j

1
did j


2

,

i.e.

R−1S − n2
≤ (∆e − δe)2α(S)R2

−1. (30)

According to this inequality and (10) we obtain (28).

Moreover, the equality holds in (6) if and only if R1 = a1 = a2 = · · · = am = r1 or R2 = b1 = b2 = · · · = bm =
r2. It follows that equality holds in (30) if and only if ∆e = d(e1) + 2 = · · · = d(em) + 2 = δe, that is, if and only
if G is a regular graph or a semiregular bipartite graph [3]. Consequently, the equality holds in (28) if and
only if G is a regular graph or a semiregular bipartite graph.

Using the arithmetic-geometric mean inequality for real numbers (see e.g. [18]), we have that α(S) ≤ 1
4

for every subset S ⊂ I. Therefore, we have the following corollary of Theorem 3.17.

Corollary 3.18. Let G be a connected graph with n vertices and m (≥ 2) edges. Then

SDD ≤
n2

R−1
− 2m +

(∆e − δe)2R−1

4
.

Equality holds if and only if G is a regular graph or a semiregular bipartite graph.

We now give a relation between different topological indices of graphs:

Theorem 3.19. Let G be a graph of order n with m edges and maximum degree ∆, minimum degree δ. Then

SDD + 2m + R · r · ISI ≤ (r + R)

√
(m − 1) M1 + m

(
Π∗1

)1/m
, (31)

where

r =

√
8
∆
, R =

√
∆

δ2 +
1
∆

+
6
δ
.

Moreover, the equality holds if and only if G is a regular graph.
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Proof. We have√
(di + d j)3

d2
i d2

j

=

√
1
di

(
3 +

d j

di

)
+

1
d j

(
3 +

di

d j

)

≤
1
√
δ

√
6 +

d j

di
+

di

d j

=
1
√
δ

√√√√√
8 +


√

di

d j
−

√
d j

di


2

≤
1
√
δ

√√
8 +


√

∆

δ
−

√
δ
∆

2

=

√
∆

δ2 +
1
∆

+
6
δ

= R, (say) (32)

and √
(di + d j)3

d2
i d2

j

≥
1
√

∆

√
6 +

d j

di
+

di

d j
≥

√
8
∆

= r, (say), as
d j

di
+

di

d j
≥ 2. (33)

Setting ai := di + d j, where summation is performed over all edges, the inequality (2) becomes∑
i∼ j

√
di + d j


2

≤ (m − 1)
∑
i∼ j

(di + d j) + m

∏
i∼ j

(di + d j)


1/m

,

that is,

∑
i∼ j

√
di + d j ≤

√
(m − 1) M1 + m

(
Π∗1

)1/m
. (34)

Setting ai :=
√

di d j

di+d j
and bi :=

√
(di+d j)2

di d j
with r ≤ bi

ai
≤ R, where summation is performed over all edges, the

inequality (8) becomes

∑
i∼ j

(di + d j)2

di d j
+ r R

∑
i∼ j

di d j

di + d j
≤ (r + R)

∑
i∼ j

√
di + d j,

that is,

SDD + 2m + R · r · ISI ≤ (r + R)

√
(m − 1) M1 + m

(
Π∗1

)1/m
,

where

r =

√
8
∆
, R =

√
∆

δ2 +
1
∆

+
6
δ
, by (32), (33) and (34).
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The first part of the proof is done.

Suppose that equality holds in (31). Then all the above inequalities must be equalities. From the equality

in (8), we have that there exists at least one i, r = bi
ai

= R, that is,
√

8
∆ =

√
∆
δ2 + 1

∆ + 6
δ , that is, ∆ = δ. Hence G

is a regular graph.

Conversely, let G be a d-regular graph. Then SDD = m, ISI = md/2, M1 = nd2 and Π∗1 = 2m dm and hence

SDD + 2m + R · r · ISI = 8m = (r + R)

√
(m − 1) M1 + m

(
Π∗1

)1/m
.

Hence the equality holds in (31).
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[13] I. Gutman, B. Ruščić, N. Trinajstić, C. F. Wilcox, Graph theory and molecular orbitals. XII. Acyclic polyenes, J. Chem. Phys. 62
(1975) 3399–3405.

[14] I. Gutman, On the origin of two degree–based topological indices, Bull. Acad. Serbe Sci. Arts (Cl. Sci. Math. Natur.) 146 (2014)
39–52.

[15] I. Gutman, Multiplicative Zagreb indices of trees, Bull. Int. Math. Virt. Inst. 1 (2011) 13–19.
[16] H. Kober, On the arithmetic and geometric means and on Hölder’s inequality, Proc. Amer. Math. Soc. 9 (1958) 452–459.
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