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Abstract. In this paper, a new pair of higher-order nondifferentiable multiobjective symmetric dual
programs over arbitrary cones is formulated, where each of the objective functions contains a support
function of a compact convex set. We identify a function lying exclusively in the class of higher-order
K-η-convex and not in the class of K-η-bonvex function already existing in literature. Weak, strong and
converse duality theorems are then established under higher-order K-η-convexity assumptions. Self duality
is obtained by assuming the functions involved to be skew-symmetric. Several known results are also
discussed as special cases.

1. Introduction

Duality is used in many theoretical and computational developments in mathematical programming
and in solving different real life problems and mathematical models that require the relative comparison
of two magnitudes. In mathematical programming, a pair of primal and dual problem is called symmetric
if the dual of dual is primal problem. Unlike linear programming, the majority of dual formulations in
nonlinear programming do not possess the symmetry property.

The concept of symmetric duality in quadratic programming was introduced by Dorn [6]. His results
were extended to nonlinear convex programming problems in Dantzig et al.[5] and then in Bazaraa and
Goode [3] over arbitrary cones by assuming the kernel function f (x, y) to be convex in x and concave in y.
Subsequently, Mond and Weir [19] presented a distinct pair of symmetric dual nonlinear programs which
admits the relaxation of the convexity/concavity assumption to pseudoconvexity/pseudoconcavity.

Mangasarian [15] formulated a class of higher-order dual problems for the nonlinear programming
problems. He has also indicated that the study of higher-order duality is significant due to the computational
advantage over the first-order duality as it provides tighter bounds for the value of the objective function
when approximations are used. Higher-order duality in nonlinear programs has been studied by several
researchers [2, 4, 7, 9, 10, 20].

Mond and Zhang [20] obtained duality results for various higher-order dual problems under invexity
assumptions. Chen [4] considered a pair of nondifferentiable programs and established duality theorems
under higher-order generalized F-convexity. Wolfe type higher-order nondifferentiable symmetric dual
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programs and their duality relations were discussed by Gulati and Gupta [9]. Later on, Ahmad et al. [2]
formulated a general Mond-Weir type higher-order dual for nondifferentiable multiobjective programming
problem and established higher-order duality theorems. Scott and Jefferson [22] proved duality results for
square root convex programs. Optimality conditions for nonconvex quadratic-exponential minimization
problems were discussed by Gao and Ruan [8]. Mishra et al. [16] obtained optimality conditions and rela-
tions between primal and dual models for a nonsmooth multiobjective optimization involving generalized
type I functions. Usual duality relations has been proved in Saini and Gulati [21] for a pair of Wolfe type
multiobjective second-order symmetric dual programs over arbitrary cones for nondifferentiable functions.

Thakur and Priya [25] discussed second-order duality results for nondifferentiable multiobjective
programming problems with (φ, ρ)-univexity. A new pair of second-order multiobjective symmetric dual
programs over arbitrary cones were introduced by Gupta and Kailey [11] and appropriate duality theorems
were derived under K-η-bonvexity assumptions. Efficient solutions and optimality conditions for vector
equilibrium problems were studied by Luu and Hang [14]. Recently, Gao [7] formulated a pair of Mond-
Weir type higher-order symmetric dual programs over arbitrary cones and established duality results under
higher-order (strongly) cone pseudoinvexity assumptions. Motivated by [7, 11, 25], we formulate a new
pair of symmetric higher-order nondifferentiable multiobjective dual programs over arbitrary cones and
establish weak, strong and converse duality theorems under higher-order K-η-convexity assumptions. An
example of a non trivial function has been given to show the existence of higher-order K-η-convex functions.
Self duality has been discussed by assuming the functions involved to be skew-symmetric. Some special
cases are also obtained to show that this paper extends known results of the literature.

2. Notations and preliminaries

Consider the following multiobjective programming problem:

(P) K-Minimize φ(x)
subject to x ∈ X0 = {x ∈ S : −1(x) ∈ Q},

where S ⊆ Rn, φ : S→ Rk, 1 : S→ Rm, K is a closed convex pointed cone in Rk with int K , φ and Q is
closed convex cone with a nonempty interior in Rm.

Definition 2.1. [13, 23] A point x̄ ∈ X0 is a weakly efficient solution of (P) if there exists no other x ∈ X0 such that

φ(x̄) − φ(x) ∈ int K.

Definition 2.2. [13] A point x̄ ∈ X0 is an efficient solution of (P) if there exists no other x ∈ X0 such that

φ(x̄) − φ(x) ∈ K \ {0}.

Definition 2.3. [13, 23] The positive polar cone of C∗ of C is defined as

C∗ = {z : ξTz = 0, for all ξ ∈ C}.

Definition 2.4. [26] Let D be a compact convex set in Rn. The support function of D is defined by

S(x|D) = max{xT y : y ∈ D}.

A support function, being convex and everywhere finite, has a subdifferential, that is, there exists z ∈ Rn

such that
S(y|D) = S(x|D) + zT(y − x) for all y ∈ D.

The subdifferential of S(x|D) is given by

∂S(x|D) = {z ∈ D : zTx = S(x|D)}.
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For any convex set S ⊂ Rn, the normal cone to S at a point x ∈ S is defined by

NS(x) = {y ∈ Rn : yT(z − x) 5 0 for all z ∈ S}.

It can be easily seen that for a compact convex set D, y is in ND(x) if and only if S(y|D) = xT y, or equivalently,
x is in ∂S(y|D).

Let C1 and C2 be closed convex cones with nonempty interiors in Rn and Rm, respectively and S1 ⊆ Rn

and S2 ⊆ Rm be open sets such that C1 × C2 ⊂ S1 × S2.

Definition 2.5. A differentiable function f : S1×S2 → Rk is said to be higher-order K-η1-convex in the first variable
at u ∈ S1 for fixed v ∈ S2 with respect to 1 : S1 × S2 ×Rn

→ Rk, if there exists a function η1 : S1 × S1 → Rn such that
for x ∈ S1, qi ∈ Rn, i = 1, 2, . . . , k,(

f1(x, v) − f1(u, v) − 11(u, v, q1) + qT
1∇q111(u, v, q1) − ηT

1 (x,u)[∇x f1(u, v) + ∇q111(u, v, q1)], . . . ,

fk(x, v) − fk(u, v) − 1k(u, v, qk) + qT
k∇qk1k(u, v, qk) − ηT

1 (x,u)[∇x fk(u, v) + ∇qk1k(u, v, qk)]
)
∈ K,

and f (x, y) is said to be higher-order K-η2-convex in the second variable at v ∈ S2 for fixed u ∈ S1 with respect
to h : S1 × S2 × Rm

→ Rk, if there exists a function η2 : S2 × S2 → Rm such that for y ∈ S2, pi ∈ Rm, i = 1, 2, . . . , k,(
f1(u, y) − f1(u, v) − h1(u, v, p1) + pT

1∇p1 h1(u, v, p1) − ηT
2 (y, v)[∇y f1(u, v) + ∇p1 h1(u, v, p1)], . . . ,

fk(u, y) − fk(u, v) − hk(u, v, pk) + pT
k∇pk hk(u, v, pk) − ηT

2 (y, v)[∇y fk(u, v) + ∇pk hk(u, v, pk)]
)
∈ K.

Remark 2.1. (i) If we take 1i(u, v, qi) = 1
2 qT

i ∇xx fi(u, v)qi and hi(u, v, pi) = 1
2 pT

i ∇yy fi(u, v)pi, i = 1, 2, . . . , k then
higher order K-η1-convexity and K-η2-convexity reduces to K-η1-bonvexity and K-η2-bonvexity [11] respec-
tively.
(ii) The above definition can be reduced to η-convexity/invexity [18], η-bonvexity [12, 24] and K-convexity
[23] as given in Remark 1 of [11].

Example 2.1. Let X = (1.95, 2.4) ⊂ R, n = m = 1, k = 2 and K = {(x, y) : x ≥ 0, y ≥ 0}. Consider the
function f : X→ R2 be defined by f (x) = ( f1, f2), where
f1(x) = 8 cos2 x, f2(x) = cos 3x,

and η : X × X → R be defined by η(x,u) = −1 − u. Suppose 1 : X × R → R2 is defined by 1(u, q) =
(11(u, q1), 12(u, q2)), where
11(u, q1) = q1(u2 + 1), 12(u, q2) = q2(u2

− 1).

To show that f is higher order K-η-convex, we have to prove that(
f1(x) − f1(u) − 11(u, q1) + qT

1∇q111(u, q1) − ηT(x,u)[∇x f1(u) + ∇q111(u, q1)],

f2(x) − f2(u) − 12(u, q2) + qT
2∇q212(u, q2) − ηT(x,u)[∇x f2(u) + ∇q212(u, q2)]

)
∈ K,

or
(8 cos2 x − 8 cos2 u + (1 + u)(−8 sin 2u + u2 + 1), cos 3x − cos 3u + (1 + u)(−3 sin 3u + u2

− 1)) ∈ K

Let L = (8 cos2 x − 8 cos2 u + (1 + u)(−8 sin 2u + u2 + 1), cos 3x − cos 3u + (1 + u)(−3 sin 3u + u2
− 1))

= (L1,L2),

where
Ł1 = 8 cos2 x − 8 cos2 u + (1 + u)(−8 sin 2u + u2 + 1)
≥ 0 ∀x, u ∈ X as can be seen from Figure 1

and
L2 = cos 3x − cos 3u + (1 + u)(−3 sin 3u + u2

− 1)
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≥ 0 ∀x, u ∈ X as can be seen from Figure 2

Therefore, f is higher-order K-η-convex with respect to 1.

Figure 1: graph of L1

Figure 2: graph of L2
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Next, we need to show that f is not K-η-bonvex. To prove it, we will show that

M =
(

f1(x) − f1(u) +
1
2

qT
1 (∇xx f1(u)q1) − ηT(x,u)[∇x f1(u) + ∇xx f1(u)q1],

f2(x) − f2(u) +
1
2

qT
2 (∇xx f2(u)q2) − ηT(x,u)[∇x f2(u) + ∇xx f2(u)q2]

)
< K,

i.e., either

f1(x) − f1(u) +
1
2

qT
1 (∇xx f1(u)q1) − ηT(x,u)[∇x f1(u) + ∇xx f1(u)q1] � 0

or
f2(x) − f2(u) +

1
2

qT
2 (∇xx f2(u)q2) − ηT(x,u)[∇x f2(u) + ∇xx f2(u)q2] � 0.

Since
f2(x) − f2(u) +

1
2

qT
2 (∇xx f2(u)q2) − ηT(x,u)[∇x f2(u) + ∇xx f2(u)q2]

= cos 3x − cos 3u −
9
2

q2
2 cos 3u + (1 + u)(−3 sin 3u − 9q2 cos 3u)

≤ 0 ( for x = 2, u = 2.1 and q2 ∈ (−1018, 1018))

Therefore M < K. Hence f is not K-η-bonvex function.

3. Problem Formulation

Consider the following pair of higher-order nondifferentiable multiobjective symmetric dual pro-
grams:
Primal Problem (PP)
K-minimize

S(x, y, λ, p) =
(

f (x, y) + S(x|E)ek − yT
k∑

i=1

λi(∇y fi(x, y) + ∇pi hi(x, y, pi))ek

+

k∑
i=1

λihi(x, y, pi)ek −

k∑
i=1

λi(pT
i ∇pi hi(x, y, pi))ek

)
subject to −

k∑
i=1

λi(∇y fi(x, y) − z + ∇pi hi(x, y, pi)) ∈ C∗2, (1)

z ∈ D (2)
λTek = 1 (3)
λ ∈ int K∗, x ∈ C1 (4)

Dual Problem (DP)
K-maximize

T(u, v, λ, q) = f (u, v) − S(v|D)ek − uT
k∑

i=1

λi(∇x fi(u, v) + ∇qi1i(u, v, qi))ek

+

k∑
i=1

λi1i(u, v, qi)ek −

k∑
i=1

λi(qT
i ∇qi1i(u, v, qi))ek

subject to
k∑

i=1

λi(∇x fi(u, v) + w + ∇qi1i(u, v, qi)) ∈ C∗1, (5)

w ∈ E (6)
λTek = 1 (7)
λ ∈ int K∗, v ∈ C2 (8)
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where

(i) fi : S1 × S2 → R, hi : S1 × S2 × Rm
→ R and 1i : S1 × S2 × Rn

→ R, i = 1, 2, . . . , k are differentiable
functions, where h(x, y, p) denotes (h1(x, y, p1), h2(x, y, p2),
. . . , hk(x, y, pk)) and 1(u, v, q) denotes (11(u, v, q1), 1(u, v, q2), . . . , 1(u, v, qk)), ek = (1, . . . , 1)T

∈ Rk, λ =
(λ1, λ2, . . . , λk),

(ii) C∗1 and C∗2 are positive polar cones of C1 and C2 respectively,
(iii) qi and pi are vectors in Rn and Rm, respectively for i = 1, 2, . . . , k.
(iv) E and D are compact convex sets in Rn and Rm, respectively, and
(v) S(x|E) and S(x|D) are the support functions of E and D, respectively.

Theorem 3.1. (Weak Duality) Let (x, y, λ, z, p) be feasible for (PP) and (u, v, λ,w, q) be feasible for (DP). Let

(i) f (·, v) + (·)Twek be higher-order K − η1-convex at u with respect to 1(u, v, q) for fixed v,
(ii) − f (x, ·) + (·)Tzek be higher-order K − η2-convex at y with respect to −h(x, y, p) for fixed x,

(iii) Rk
+ ⊆ K,

(iv) η1(x,u) + u ∈ C1, for all x ∈ C1,
(v) η2(v, y) + y ∈ C2, for all v ∈ C2.

Then
S(x, y, λ, p) − T(u, v, λ, q) < −K \ {0}.

Proof. Suppose, to the contrary, that

S(x, y, λ, p) − T(u, v, λ, q) ∈ −K \ {0}.

that is {[
f (x, y) + S(x|E)ek − yT

k∑
i=1

λi(∇y fi(x, y) + ∇pi hi(x, y, pi))ek

+

k∑
i=1

λihi(x, y, pi)ek −

k∑
i=1

λi(pT
i ∇pi hi(x, y, pi))ek

]
−

[
f (u, v) − S(v|D)ek − uT

k∑
i=1

λi(∇x fi(u, v) + ∇qi1i(u, v, qi))ek

+

k∑
i=1

λi1i(u, v, qi)ek −

k∑
i=1

λi(qT
i ∇qi1i(u, v, qi))ek

]}
∈ −K \ {0}

Since λ ∈ int K∗ ⊆ int Rk
+ (by hypothesis (iii)), hence λ > 0. Therefore, we get

k∑
i=1

λi fi(x, y) + S(x|E) − yT
k∑

i=1

λi(∇y fi(x, y) + ∇pi hi(x, y, pi))

+

k∑
i=1

λihi(x, y, pi) −
k∑

i=1

λi(pT
i ∇pi hi(x, y, pi))

−(
k∑

i=1

λi fi(u, v) − S(v|D) − uT
k∑

i=1

λi(∇x fi(u, v) + ∇qi1i(u, v, qi))

+

k∑
i=1

λi1i(u, v, qi) −
k∑

i=1

λi(qT
i ∇qi1i(u, v, qi))) < 0. (9)
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By higher-order K − η1-convexity of f (·, v) + (·)Twek with respect to 1(u, v, q), we have

(
f1(x, v) + xTw − f1(u, v) − uTw − 11(u, v, q1) + qT

1∇q111(u, v, q1)

−ηT
1 (x,u)[∇x f1(u, v) + w + ∇q111(u, v, q1)], . . . ,

fk(x, v) + xTw − fk(u, v) − uTw − 1k(u, v, qk) + qT
k∇qk1k(u, v, qk)

−ηT
1 (x,u)[∇x fk(u, v) + w + ∇qk1k(u, v, qk)]

)
∈ K.

Using λ ∈ int K∗, we get

k∑
i=1

λi

{
fi(x, v) + xTw − fi(u, v) − uTw − 1i(u, v, qi) + qT

i ∇qi1i(u, v, qi)

−ηT
1 (x,u)[∇x fi(u, v) + w + ∇qi1i(u, v, qi)]

}
= 0. (10)

Since (u, v, λ,w, q) is feasible for (DP), from the dual constraint (5) and hypothesis (iv), it follows that

[η1(x,u) + u]T
k∑

i=1

λi(∇x fi(u, v) + w + ∇qi1i(u, v, qi)) = 0.

which implies

ηT
1 (x,u)

k∑
i=1

λi(∇x fi(u, v) + w + ∇qi1i(u, v, qi))

= −uT
k∑

i=1

λi(∇x fi(u, v) + w + ∇qi1i(u, v, qi)). (11)

Using (10), (11) and λTek = 1, we obtain

k∑
i=1

λi( fi(x, v) − fi(u, v) − 1i(u, v, qi) + qT
i ∇qi1i(u, v, qi)) + xTw − uTw

= −uT
k∑

i=1

λi(∇x fi(u, v) + ∇qi1i(u, v, qi)) − uTw. (12)

Similarly, by higher-order K − η2-convexity of − f (x, ·) + (·)Tzek with respect to −h(x, y, p), from (1) and
hypothesis (v), we get

k∑
i=1

λi( fi(x, y) − fi(x, v) + hi(x, y, pi) − pT
i ∇pi hi(x, y, pi)) − yTz + vTz

= yT
k∑

i=1

λi(∇y fi(x, y) + ∇pi hi(x, y, pi)) − yTz. (13)
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Adding inequalities (12) and (13), we have( k∑
i=1

λi fi(x, y) + xTw − yT
k∑

i=1

λi(∇y fi(x, y) + ∇pi hi(x, y, pi))

+

k∑
i=1

λihi(x, y, pi) −
k∑

i=1

λi(pT
i ∇pi hi(x, y, pi))

)
=

( k∑
i=1

λi fi(u, v) − vTz − uT
k∑

i=1

λi(∇x fi(u, v) + ∇qi1i(u, v, qi))

+

k∑
i=1

λi1i(u, v, qi) −
k∑

i=1

λi(qT
i ∇qi1i(u, v, qi))

)
,

By using xTw 5 S(x|E) and vTz 5 S(v|D) in above inequality, we obtain( k∑
i=1

λi fi(x, y) + S(x|E) − yT
k∑

i=1

λi(∇y fi(x, y) + ∇pi hi(x, y, pi))

+

k∑
i=1

λihi(x, y, pi) −
k∑

i=1

λi(pT
i ∇pi hi(x, y, pi))

)
−

( k∑
i=1

λi fi(u, v) − S(v|D) − uT
k∑

i=1

λi(∇x fi(u, v) + ∇qi1i(u, v, qi))

+

k∑
i=1

λi1i(u, v, qi) −
k∑

i=1

λi(qT
i ∇qi1i(u, v, qi))

)
= 0,

which contradicts (9). Hence the result.

If the variable λ in the problems (PP) and (DP) is fixed to be λ̄, we shall denote these problems by
(PP)λ̄ and (DP)λ̄, respectively.

Theorem 3.2. (Strong Duality) Let (x̄, ȳ, λ̄, z̄, p̄) be a weak efficient solution of (PP). Suppose that

(i) the Hessian matrix ∇pipi hi, ∀ i = 1, 2, . . . , k, is positive or negative definite.
(ii) the set of vectors ∇y f1(x̄, ȳ), . . . ,∇y fk(x̄, ȳ) is linearly independent,

(iii)
k∑

i=1
λ̄i∇yy fip̄i < span{∇y fi + ∇pi hi − ∇yhi,∇y fi, i = 1, 2, . . . , k} \ {0},

(iv) p̄i , 0, for some i ∈ {1, 2, . . . , k} imply that
k∑

i=1
λ̄i∇yy fip̄i , 0,

(v)
k∑

i=1
λ̄ihi(x̄, ȳ, 0) =

k∑
i=1
λ̄i1i(x̄, ȳ, 0),

k∑
i=1
λ̄i∇yhi(x̄, ȳ, 0) = 0,

k∑
i=1
λ̄i∇pi hi(x̄, ȳ, 0) = 0,

k∑
i=1
λ̄i∇xhi(x̄, ȳ, 0) =

k∑
i=1
λ̄i∇qi1i(x̄, ȳ, 0)

and
(vi) K is a closed convex pointed cone with Rk

+ ⊆ K.

Then,

(I) there exists w̄ ∈ E such that (x̄, ȳ, λ̄, w̄, q̄ = 0) is feasible for (DP)λ̄, and
(II) S(x̄, ȳ, λ̄, p̄) = T(x̄, ȳ, λ̄, q̄).

Furthermore, if the hypotheses of Theorem 3.1. are satisfied for all feasible solutions of (PP) and (DP)λ̄, then
(x̄, ȳ, λ̄, w̄, q̄ = 0) is an efficient solution for (DP)λ̄.
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Proof. Since (x̄, ȳ, λ̄, z̄, p̄) is a weakly efficient solution of (PP), there exist ᾱ ∈ K∗, β̄ ∈ C2, η̄ ∈ R, such that the
following by Fritz-John optimality conditions ([23], Lemma 1) are satisfied at (x̄, ȳ, λ̄, z̄, p̄) (for simplicity, we
write ∇x fi, ∇xy fi instead of ∇x fi(x̄, ȳ), ∇xy fi(x̄, ȳ) etc.):

(x − x̄)T
{ k∑

i=1

ᾱi(∇x fi + γ̄) +

k∑
i=1

λ̄i(∇xy fi)T[β̄ − (ᾱTek)ȳ]

+

k∑
i=1

λ̄i∇xhi(ᾱTek) +

k∑
i=1

λ̄i(∇xpi hi)T
[
β̄ − (ᾱTek)(ȳ + p̄i)

]}
= 0, for all x ∈ C1, (14)

k∑
i=1

ᾱi∇y fi +

k∑
i=1

λ̄i(∇yy fi)T[β̄ − (ᾱTek)ȳ] +

k∑
i=1

λ̄i∇yhi(ᾱTek)

+

k∑
i=1

λ̄i(∇ypi hi)T
[
β̄ − (ᾱTek)(ȳ + p̄i)

]
−

k∑
i=1

λ̄i[∇y fi + ∇pi hi](ᾱTek) = 0, (15)

(∇y fi)T[β̄ − (ᾱTek)ȳ] + hi(x̄, ȳ, p̄i)(ᾱTek) + (∇pi hi(x̄, ȳ, p̄i))T
[
β̄ − ᾱTek(ȳ + p̄i)

]
+η̄ = 0, i = 1, 2, . . . , k, (16)
[(β̄ − (ᾱTek)(ȳ + p̄i))λ̄i]T

∇pipi hi = 0, i = 1, 2, . . . , k, (17)

β̄T
k∑

i=1

λ̄i(∇y fi − z̄ + ∇pi hi) = 0, (18)

η̄T[λ̄Tek − 1] = 0, (19)
β̄ ∈ ND(z̄), (20)
γ̄ ∈ E, γ̄Tx̄ = S(x̄|E) (21)
(ᾱ, β̄, η̄) , 0. (22)

Since Rk
+ ⊆ K⇒ K∗ ⊆ Rk

+ which implies int(K∗) ⊆int(Rk
+).

As λ̄ ∈ int(K∗), therefore λ̄ > 0.
Now hypothesis (i), λ̄i > 0 for i = 1, 2, . . . , k, and (17) imply that

β̄ = (ᾱTek)(ȳ + p̄i), i = 1, 2, . . . , k, (23)

If ᾱ = 0 then (23) yields β̄ = 0. Further, the Eq. (16) gives η̄ = 0. Consequently (ᾱ, β̄, η̄) = 0, contradicting
(22). Hence ᾱ , 0. Further, ᾱ ∈ K∗ ⊆ Rk

+ implies
ᾱTek > 0. (24)

Using (23) and (24) in (15), we get
k∑

i=1
λ̄i∇yy fip̄i =

k∑
i=1
λ̄i(∇y fi + ∇pi hi − ∇yhi) −

1
(ᾱTek)

k∑
i=1
ᾱi∇y fi, (25)

which yields
k∑

i=1
λ̄i∇yy fip̄i ∈ span{∇y fi + ∇pi hi − ∇yhi,∇y fi, i = 1, 2, . . . , k}. (26)

Now we claim p̄i = 0 for all i = 1, 2, . . . , k. On the contrary, suppose that for some i ∈ {1, 2, . . . , k}, p̄i , 0,
then using hypothesis (iv), we have

k∑
i=1
λ̄i∇yy fip̄i , 0. (27)

This contradicts hypothesis (iii) (by (26) and (27)). Hence
p̄i = 0 for i = 1, 2, . . . , k, (28)

and thus relation (23) gives
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β̄ = (ᾱTek)ȳ. (29)

Using hypothesis (v) and (28) in (25) yields

k∑
i=1
∇y fi[ᾱi − (ᾱTek)λ̄i] = 0,

which on using hypothesis (ii) gives

ᾱi = (ᾱTek)λ̄i, i = 1, 2, . . . , k, (30)

Using (24), (28) − (30) in (14), we have

(x − x̄)T
{ k∑

i=1

λ̄i(∇x fi(x̄, ȳ) + γ̄) +

k∑
i=1

λ̄i∇xhi(x̄, ȳ, p̄i)
}
= 0, for all x ∈ C1.

For q̄i = 0, it follows from the hypothesis (v) and (28) that

(x− x̄)T
{ k∑

i=1

λ̄i(∇x fi(x̄, ȳ) + γ̄) +

k∑
i=1

λ̄i∇qi1i(x̄, ȳ, q̄i)
}
= 0. (31)

Let x ∈ C1. Then x + x̄ ∈ C1 and so (31) implies

xT
{ k∑

i=1

λ̄i(∇x fi + γ̄) +

k∑
i=1

λ̄i∇qi1i

}
= 0, for all x ∈ C1.

Therefore,
k∑

i=1
λ̄i(∇x fi + γ̄) +

k∑
i=1
λ̄i∇qi1i ∈ C∗1. (32)

Also from (24) and (29), we have

ȳ =
β̄

ᾱTek
∈ C2.

Thus (x̄, ȳ, λ̄, w̄ = γ̄, q̄ = 0) satisfies the constraints of (DP)λ̄ and so it is a feasible solution for the dual
problem (DP)λ̄.
Now, letting x = 0 and x = 2x̄ in (31), we get

x̄T
{ k∑

i=1
λ̄i(∇x fi + γ̄) +

k∑
i=1
λ̄i∇qi1i

}
= 0

or

x̄T
{ k∑

i=1
λ̄i∇x fi + ∇qi1i

}
= −x̄Tγ̄ = −S(x̄|E). (33)

From (20) and (29), (ᾱTek)ȳ ∈ ND(z̄). Since ᾱTek > 0, ȳ ∈ ND(z̄). Also, as D is a compact convex set in Rm,
ȳT z̄ = S(ȳ|D).
Further from (18), (24) and (29) and the above relation, we obtain

ȳT
k∑

i=1
λ̄i(∇y fi + ∇pi hi) = ȳT z̄ = S(ȳ|D). (34)
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Therefore, using (28), (33), (34) and the hypothesis (v), for q̄i = 0, we get

f (x̄, ȳ) + S(x̄|E)ek − ȳT
k∑

i=1

λ̄i(∇y fi(x̄, ȳ) + ∇pi hi(x̄, ȳ, p̄i))ek

+

k∑
i=1

λ̄ihi(x̄, ȳ, p̄i)ek −

k∑
i=1

λ̄i(p̄T
i ∇pi hi(x̄, ȳ, p̄i))ek

= f (x̄, ȳ) − S(ȳ|D)ek − x̄T
k∑

i=1

λ̄i(∇x fi(x̄, ȳ) + ∇qi1i(x̄, ȳ, q̄i))ek

+

k∑
i=1

λ̄i1i(x̄, ȳ, q̄i)ek −

k∑
i=1

λ̄i(q̄T
i ∇qi1i(x̄, ȳ, q̄i))ek

that is, the two objective values are equal.
Now let (x̄, ȳ, λ̄, w̄, q̄ = 0) be not an efficient solution of (DP)λ̄, then there exists (ū, v̄, λ̄, w̄, q̄ = 0) feasible for
(DP)λ̄ such that

{
f (x̄, ȳ) − S(ȳ|D)ek − x̄T

k∑
i=1

λ̄i(∇x fi(x̄, ȳ) + ∇qi1i(x̄, ȳ, q̄i))ek

+

k∑
i=1

λ̄i1i(x̄, ȳ, q̄i)ek −

k∑
i=1

λ̄i(q̄T
i ∇qi1i(x̄, ȳ, q̄i))ek

}
−

{
f (ū, v̄) − S(v̄|D)ek − ūT

k∑
i=1

λ̄i(∇x fi(ū, v̄) + ∇qi1i(ū, v̄, q̄i))ek

+

k∑
i=1

λ̄i1i(ū, v̄, q̄i)ek −

k∑
i=1

λ̄i(q̄T
i ∇qi1i(ū, v̄, q̄i))ek

}
∈ −K \ {0},

Using (28), (33), (34) and the hypothesis (v), for q̄i = 0, we obtain

{ f (x̄, ȳ) + S(x̄|E)ek − ȳT
k∑

i=1

λ̄i(∇y fi(x̄, ȳ) + ∇pi hi(x̄, ȳ, p̄i))ek

+

k∑
i=1

λ̄ihi(x̄, ȳ, p̄i)ek −

k∑
i=1

λ̄i(p̄T
i ∇pi hi(x̄, ȳ, p̄i))ek}

−{ f (ū, v̄) − S(v̄|D)ek − ūT
k∑

i=1

λ̄i(∇x fi(ū, v̄) + ∇qi1i(ū, v̄, q̄i))ek

+

k∑
i=1

λ̄i1i(ū, v̄, q̄i)ek −

k∑
i=1

λ̄i(q̄T
i ∇qi1i(ū, v̄, q̄i))ek} ∈ −K \ {0},

that is
S(x̄, ȳ, λ̄, p̄) − T(ū, v̄, λ̄, q̄) ∈ −K \ {0}.

which contradicts Theorem 3.1. Hence (x̄, ȳ, λ̄, w̄, q̄ = 0) is an efficient solution of (DP)λ̄.

Theorem 3.3. (Converse Duality) Let (ū, v̄, λ̄, w̄, q̄) be a weak efficient solution of (DP). Suppose that

(i) the Hessian matrix ∇qiqi1i, ∀ i = 1, 2, . . . , k is positive or negative definite.
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(ii) the set of vectors ∇x f1(ū, v̄), . . . ,∇x fk(ū, v̄) is linearly independent,

(iii)
k∑

i=1
λ̄i∇xx fiq̄i < span{∇x fi + ∇qi1i − ∇x1i,∇x fi, i = 1, 2, . . . , k} \ {0},

(iv) q̄i , 0, for some i ∈ {1, 2, . . . , k} imply that
k∑

i=1
λ̄i∇xx fiq̄i , 0,

(v)
k∑

i=1
λ̄i1i(ū, v̄, 0) =

k∑
i=1
λ̄ihi(ū, v̄, 0),

k∑
i=1
λ̄i∇x1i(ū, v̄, 0) = 0,

k∑
i=1
λ̄i∇qi1i(ū, v̄, 0) = 0,

k∑
i=1
λ̄i∇y1i(ū, v̄, 0) =

k∑
i=1
λ̄i∇pi hi(ū, v̄, 0)

and

(vi) K is a closed convex pointed cone with Rk
+ ⊆ K.

Then,

(I) there exists z̄ ∈ D such that (ū, v̄, λ̄, z̄, p̄ = 0) is feasible for (PP)λ̄, and

(II) S(ū, v̄, λ̄, p̄) = T(ū, v̄, λ̄, q̄).

Furthermore, if the hypotheses of Theorem 3.1. are satisfied for all feasible solutions of (PP)λ̄ and (DP), then
(ū, v̄, λ̄, z̄, p̄ = 0) is an efficient solution for (PP)λ̄.

4. Self-duality

A mathematical programming problem is said to be self-dual if it is formally identical with its dual
i.e. the dual can be recast in the form of the primal. Mond and Cottle [17] observed that the symmetric dual
programs of Dantzig et al. [5] are self duals if H(x, y) is skew symmetric and gave self duality results. In
general (PP) and (DP) are not self dual without an added restriction on f , 1 and h. For the programs (PP)
and (DP), self duality exists under the following assumptions:
(i) m = n, (ii) C1 = C2, (iii) D = E, (iv) the vector functions f : Rn

× Rm
→ Rk and 1 : Rn

× Rm
× Rn

→ Rk to be
skew symmetric, i.e., fi(x, y) = − fi(y, x) and 1i(u, v, qi) = −1i(v,u, qi), i ∈ {1, 2, . . . , k}.
Now recasting the dual problem (DP) as a minimization problem:
(DP1) K-minimize

(
− f (u, v) + S(v|D)ek + uT

k∑
i=1

λi(∇x fi(u, v) + ∇qi1i(u, v, qi))ek

−

k∑
i=1

λi1i(u, v, qi)ek +

k∑
i=1

λi(qT
i ∇qi1i(u, v, qi))ek

)
subject to

k∑
i=1

λi(∇x fi(u, v) + w + ∇qi1i(u, v, qi)) ∈ C∗1,

w ∈ E
λTek = 1
λ ∈ int K∗, v ∈ C2

Now f and 1 are skew symmetric,
i.e., ∇x fi(u, v) = −∇y fi(v,u) and ∇qi1i(u, v, qi) = −∇qi1i(v,u, qi) for i = 1, . . . , k. Therefore, the problem (DP1)
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reduces to, K-minimize(
f (v,u) + S(v|E)ek − uT

k∑
i=1

λi(∇y fi(v,u) + ∇qi1i(v,u, qi))ek

+

k∑
i=1

λi1i(v,u, qi)ek −

k∑
i=1

λi(qT
i ∇qi1i(v,u, qi))ek

)
subject to −

k∑
i=1

λi(∇y fi(v,u) − w + ∇qi1i(v,u, qi)) ∈ C∗2,

w ∈ D
λTek = 1
λ ∈ int K∗, v ∈ C1

This shows that (DP1) is formally identical to (PP), that is, the objective and the constraint functions are
identical. Hence (PP) is self dual. Consequently, the feasibility of (x, y, λ, z, p) for (PP) implies the feasibility
of (y, x, λ, z, p) for (DP) and conversely.

5. Special Cases

In all these cases, if
k∑

i=1
λihi(x, y, pi) =

k∑
i=1
λi

1
2 pi∇yy fi(x, y)pi and

k∑
i=1
λi1i(u, v, qi) =

k∑
i=1
λi

1
2 qi∇xx fi(u, v)qi.

(i) If E = {0} and D = {0}, then our problems (PP) and (DP) become the problems studied in Gupta and
Kailey [11].

(ii) For K = Rk
+, C1 = Rn

+, C2 = Rm
+ , k = 1, qi = q, pi = p, E = {By : yTBy 5 1}, D = {Cx : xTCx 5 1}, where B

and C are positive semidefinite matrices, (xTBx)
1
2 = S(x|E) and (yTCy)

1
2 = S(y|D), (PP) and (DP) reduce

to the problems considered in Ahmad and Hussain [1].
(iii) If K = Rk

+, C1 = Rn
+, C2 = Rm

+ , k = 1, qi = q, pi = p, then our problems (PP) and (DP) reduce to the
programs studied in Yang et al. [26].

(iv) The cases given in Gupta and Kailey [11] can also be extracted from our problems.

6. Conclusions

A new pair of multiobjective higher-order symmetric dual programs involving support functions over
arbitrary cones has been formulated. We have given an example of a non trivial function to show the
existence of higher-order K-η-convex functions. Weak, strong and converse duality theorems under higher-
order K-η-convexity assumptions have also been established. It is to be noted that some of the known
results, including Ahmad and Hussain [1], Gupta and Kailey [11] and Yang et al. [26], are special cases
of our study. This work can be further extended to study mixed symmetric higher-order nondifferentiable
multiobjective dual programs over arbitrary cones.
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