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Abstract. This paper characterizes the boundedness and compactness of the differences of weighted differ-
entiation composition operators acting from the a-Bloch space %“ to the space H* of bounded holomorphic
functions on the unit disk D.

1. Introduction

Let H(ID) denote the space of all holomorphic functions on ID and S(ID) the class of all holomorphic
functions from D in itself, where ID is the open unit disk in the complex plane C. Denote by H* = H*(ID)
the space of all bounded holomorphic functions on ID with the supremum norm ||f|lc = sup,p, |f(2)l.

For 0 < a < 00, a holomorphic function f is said to be in the Bloch-type space %“ or a—Bloch space, if

Iflle = sup(1 = [2P)*1f(2)| < oo.

zeD

The little Bloch-type space %, consists of all f € %, such that

lim (1 - 1211 (2)] = 0.

As we all know, both 2* and %} are Banach spaces under the norm

I/ llzze = 1) + I flla-

Moreover, the % is the closure of polynomials in 2*. When 0 < a < 1, #* is the analytic Lipschitz space
Lip1_,, which consists of all f € H(ID) satisfying

If(z) - f(w)| < Clz — w|'™9,
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for some constant C > 0 and all z,w € ID. When a = 1, #“ becomes the classical Bloch space . When a > 1,
2 is equivalent to the weighted Banach space H?’,, where Hy is the weighted Banach space consisting
of all analytic functions f on DD satisfying sup(1 — |z[*)?|f(z)| < co. We refer the readers to the excellent

zeD
monograph [1], and the article [21] about the Bloch-type spaces.

Let ¢ € S(D), u € H(D), n € N, we consider the weighted differentiation composition operator Dg ,,,
Dg.f = u@)f "(p(z)), which is the product of three operators, the composition operator C,, the order
n derivative operator D", and the multiplication by u operator M,. If n = 0 and u = 1, Df;,, becomes
the composition operator C, on H(ID). If n = 0, we get the weighted composition operator uC,, defined
as uCpf = uf(p). lf u = 1and ¢(z) = z, then D, reduces to the the differentiation operator D". The
boundedness and compactness of differentiation composition operator between spaces of holomorphic
functions have been studied extensively. For example, Hibschweiler and Portnoy [4] studied C,D between
Bergman and Hardy spaces. Wu and Wulan [19] gave a new compactness criterion for C,D" on the Bloch
space. Recently, the weighted differentiation composition operator between different holomorphic function
spaces has also been investigated by several researchers [10, 13, 20].

Motivated by the research in the topological structure of the set C(H?) of composition operators on H?
with the operator norm topology, the difference of two composition operators, i.e. an operator of the form
Cp — Cy, where ¢, ¢ are analytic self-maps of D, was first investigated in the case of H* in [15]. Shortly after,
the differences of (weighted) composition operators were characterized by many researchers. MacCluer,
Ohno and Zhao [11] showed that the compactness of C, — Cy, : H* — H* is equivalent to the compactness
of Cy—Cy : #Z — H*. Also C, and Cy, are in the same path component of the space of composition operators
on H* if and only if C, = Cy : # — H* is bounded. Hosokawa and Ohno [7] not only provided new results
about the boundedness and compactness of the differences of two weighted composition operators from
% to H® on D, but also estimated the essential norms of the differences of two (weighted) composition
operators from % to H*. Soon after Song and Zhou [16] improved such characterizations for the high
dimensional cases. For further references and details about the difference of two (weighted) composition
operators, see [2, 3,5, 6,9, 14,17, 18].

In this paper, our goal is to investigate the boundedness and compactness of the differences of weighted
differentiation composition operators from % to H* on D, i.e. Dg , — Dy, #* = HY, where u, v € H(ID)
and ¢, € S(ID), n € N.

Throughout the remainder of this paper, C will denote a positive constant, the exact value of which
varies from one appearance to the next. A < B, A < B, A > B mean that there exist different positive
constants C such that B/C <A <CB, A<CB, CB<A.

2. Notations and Lemmas

In order to handle the differences of weighted differentiation composition operators we need the pseudo-

hyperbolic metric. Recall that, for any a, z € ID, 0,(z) = {=; is the M6bius transformation of ID which

interchanges the origin and a. The pseudo-hyperbolic metric is given by p(z, a) = |0,(z)|. Moreover, we have

-1
that o}(z) = Ji=p-

Our main results are based on the following lemmas.

Lemma 2.1. ([21]) The following asymptotic relationship holds

n-1
sup(1 — [21*)*|f'(2)| = Z FP(0)] + sup(1 = [z2)* "1 f(2)].

zeD =0 zeD

Lemma 2.2. ([12]) For f € HY and z,w € D, |(1 — |z7)* f(z) — (1 = [w)* f(w)| < |Ifllse p(z, w).

Remark 2.3. For more general weights, the result can be found in [9].
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Lemma 2.4. Forn € N, and z,w € D, there exists a constant C > 0 such that for all f € %,
(1= 2P F(z) = (1= [wlP)™ 7 f )] < Cplz, w).
Proof. From Lemma 2.1 and Lemma 2.2, we get this inequality obviously. [

The following criterion for the compactness is a useful tool and it follows from standard arguments, see
Proposition 3.11 of [1].

Lemma 2.5. Let u,v € H(D) and ¢,y € S(D), n € N. Then D, — D'L}W : #B% — H*™ is compact if and only if

D =Dy, : PB* — H* is bounded and for any bounded sequence (fi)ren in %" which converges to zero uniformly

on compact subsets of D, [|(Dy , — Dy, Millo = 0as k — oo.

Lemma 2.6. (i) Forz € D and a € D witha # 0, let

1 —|af?
@a---(a+n-1)>1A-az)""

fa(2) =

Then f,(z) € #* and

o L=laP
f;l (Z) - (1 _ ﬁz)ﬂ+n .
(ii) Forz€e Dand a € D with a # 0, let
_ (1 = laP)fa(2) (1 - laP)?
923) = 0@+ T T @@ e 1) (@t =

Then g,(z) € % and
7@ = 0. f" ).

Proof. (i) Differentiate the function, we get

o 1—laf
fa(2) = @Y a+1)---(a+n-1)1- ﬁz)M1
and 1—la?
(n) _ ___:_E___
f@ = gy

Using |1 —az| 21 —|a|, |1 —az| 2 1 — |z|, we obtain

Ifala = sup(1 = 12P)*If; (2)]

zeD
su (1 =1aP)A = 1zP)*
2D lal" Y@+ 1) (a+n-1)1-az|

a+l

. 1 L-of (1- P
T Pl ar ) (@rn—1) 1-ad [1-az
1 1—la? (1-zP)®

< sup —— . .

P e+ ) @rn-1) 1-ja (I-F)°

2a+1

la Y +1)--- (@ +n—-1)

< (oo

Suppose z = 0, we have
_ 1— |af?
T @ra---(@+n-1)

fa(0)
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Thus
lfallzze = 1faO)] + Il falla < 0.

So fa(z) € %°, it follows that there exists a constant C > 0 such that ||f,||z < C.
(ii) By Leibniz formula, we obtain

n ) 2 N C12)2
i) = kz:;c;;aén D29 L |ﬂ| )Z k(” ))(f)kﬂ 9z (1 —1al)

ﬁ(l — az)a+n+1

n—1 . ~
= G@f"E@)+ Y Col @ e + T '”'>Z (RN g (L —laPy
k=0

—az )n —k+1 a(l az)a+n+1

n—1 F\n—k—
= aef’+)C o r e

f9)

chm k>'(a"“<1 o) gy (L=l

az)” —k+1 d(l _ ﬁz)a+n+l

= 0@ ch (n— k)'(l — |al?)(@)" ! )

{ZZ)” —k+1

ch (n —k)\(@)"™* 1(1 — |a?) 9() - (1—la)?

L (1= azyk+ (1 = 2zt
_ ey, A=laPA@ (1 —laP)

= @@+ a(l - az) a(l — az)a+n+l
O . G el

{1(1 — az)a+n+1 {j(l — a-z)a+n+1

= 0@ @),

where Ck = k,(r’f'k),

Using the facts that |o,(z)| <1, [1 —adz| >1—|a] and |1 —az| >1 -z,
we obtain

Igalla = sup(1 — [zP*)*|g;(2)l

zeD
= sup(l - |z1°)%0.(2) £, (2)l

zeD
_ 2 0a(z)(1 — |al?)
- ilelﬂg(l 2 I(E)”‘l(a +1)-(@+n-1)(1-az)™ |
. j0(2) A-laP) (1-lP"
- Pl ar ) (@rn—1) N-az N-az

2a+1

la* Y +1)--- (@ +n—1)

< 00.

Taking z = 0, we have

1- Ialz) 1 - laP)

@ a+1)---(a+n)

94(0) = afa(0) - fa(0) -

Thus
1gallz= = 192(0)] + |galla < oo.
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S0 g4(z) € #“, in other words there exists a constant C > 0 such that [|g,/l, < C. O

In order to state our main results conveniently, we define some sets as follows.
u(z) 0(2)

NN 17 L(z) = PN TR

(1 - |p(z)R)e+n-1 2() (1 - [p(z))e+n1

Iy ={lzj} cD:lpz)l = 1}, Ty = {{zj} <D : [y(z))] — 1},

Gup = {zj} €Ty 1 Ii(zj) » 0}, Goy = {{zj} €Ty : Ia(z)) » O}

Li(z) =

3. The boundedness of D" — D" :2% — H®
Pu P,0

Theorem 3.1. Let u,v € H(ID) and @,y € S(ID), n € IN. Then the following statements are equivalent:

(i) D, — D’l}w : B* — H™ is bounded.
(i)

sup [[1(2)lp(¢(2), P(2)) < e,

zelD

sup [[1(z) — Lx(z)| < co.
zeD

(iii) Condition (2) and
su]g IL(2)p(p(z), P(z)) < oo.

765

1)

()

3)

Proof. (i) = (ii). Suppose that D, — D'l;v 1 B* — H* is bounded. We choose the test function k,(z) =

(z = P(w))™/(n + 1)!. Since
”km“a = Sup(1 — |Z|2)a|k:u(z)| — Sup(l _ |Z|2)alw| < 2_:1 < oo
zeD zeD n: n!

yields k,(z) € #*, meanwhile, D%/u - D:lb,v : % — H™ is bounded, it follows that
0o > Dy, — Dy kolleo = lu(@)(@(w) = P(w))l.

If p(w) =0, (4) shows
0 > |u@)P(w)l = h(@)pp(w), P(@)).

Next, we consider another case ¢(w) # 0. For a € ID with a # 0, set

1 —|af?
@"a---(a+n-1(01-az)"

fa(z) =

and (1= WP i) (1 - laPy?
—|a?) fa(z —|a
9:) = 0@ ful&) + = T @A D)@+ A —az
By Lemma 2.6, f,(z), g.(z) € #*. Fix w € D with p(w) # 0, we get

0o > “(Dg,u - Dz,v)f(p(w)noo

= |”(w)f(;r(li))((P(w)) - v(a))f(;’a))(lp(w)n
_ 2
= |h(w)- v(w)(1_|(P(w)| )
1- (P(w)¢(w))"+a
1- 2\a+n-1 1-— 2
> (@) = () @R~ lp@))

1 - p(@)P(w))r+

)

(5)
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and

8
%

“(DZ),u - DZ)/‘())“]‘P(CM)“OO

1(@)g0 (@) = 0(@)gn, (@)

[0(@) g0 (P(@)) oy W(@))]

o(@)(1 = lp(@)P)

= |—— Ip(p(@), Y(@))

TR T e
(1= [P@)P)™*"1(1 = lp(@)P)

()| il (@), P(@). )
O @@y L@

v

Multiplying (6) by p(@(w), {(w)), then adding (7) gives for all w € ID with ¢p(w) # 0

1L (w)lp(e(w), P(w))] < 0. 8)
Therefore, by (5) and (8), condition (1) holds. If we change () into ¢(w) for the function k,(z), ¢(w) into

Y(w) for the functions fy(w)(2), gp(w)(2), we can show that (3) holds.
To prove (2), using function f,(z) , by Lemma 2.6, we have

oo > “(Dn D?{;v)f(p(w)noo

> (@) fo (@) = 0(@) £, (@)
_ _ v(w) _ 2va+n—1 (1)
= @) - T mm @ - @D @)
= |h(@) - L@ - [P@)P)**" " £ @)l
= (@) = L(@) + b(@) = L@)(1 = [p@P) " £ (@)
= (o) - (o) + he) T2 D @)~ @B ()
= 2 2\ 1 - |p(w)R)a+-1 2w L4 p(w) 4
= (@) = L) + @)1 =~ lp@)P)** " £4 (@) = h@)(1 = [p@)P)" £5 @)
> (@) = L) = k@) (1= lp@P) ™ £ (@) = (1 = [P@)P) ™ £ @)
> (@)~ L(@) - Clh(@)lp(@(@), P(@)). 9)
(9) and (3) guarantee
|I1(w) — L(w)| < oo, forall weD with ¢(w) # 0. (10)

If p(w) =0and 1 > |P(w)| = %, then p(p(w), ¥(w)) = [P(w)| > 1. By conditions (1) and (3), we can deduce
directly

OZRO < @) - h@lpp), )
L (@)lp(p(@), P(@)) + IL(@)lp(p(@), P(w))

0. (11)

A IN A
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Let f(z) = %. Since Taylor expansion, 1 — (1 — [/(@)?)"**"! < Clg(w)|. If p(w) = 0 and [(w)| < 3, then
“(D$,u - DZ;,-())f“oo
(@) " (p(@)) = 0() f* (P (@))]
u(w) — v(w)|
L (@) = L(w)] = L(@)I(1 = (1= [P@)P)*)
Ih(w) = L(w)] = Cllh(w)P(w)|
IIi(w) = L(w)] = Cllz(w)|p(p(w), P(w)).
Applying the above inequality with (3), we obtain

Il (w) = L(w)] < 0. (12)
Thus by (10), (11) and (12), we conclude that (2) holds for all w € ID.

(ii) = (iii). Suppose that the conditions (1) and (2) hold. Then

sup |L(2)lp(p(2), Y(2))

zeD

< sup Ih(2)p(@(2), Y(2)) = L (2)p(@(2), ¥(2)) + L(2)p(@(2), P(2))]
< suplh(z) - L@)lp(e(), P(2)) + sup Ih@)p(p(2), P(2))

o0

v v I v Vv

zeD
< sup |(z) — L(2)| + sup [L(2)|p(e(2), ¥(2)
zeD zelD
< oo,
Thus (3) follows.

(iii) = (i). For Vf € #* with ||fll, < 1, by Lemma 2.1 and Lemma 2.4, we have
”(Dg),u - Dgly)f”oo

< sup u(2) f*(p(2)) - v(@) f (W)
- b '“(Z’(i |_<p|<(5>(;)>|2)11 fp(2) - U(fi(i Eé)(?)lz)ll fOWE)
= suplh(z)(1 - lp@P)* " f ) (@(2) - L)1 = W) D (@)
= suplh(z)(1 - lp@P)* " D (p(2) - L)1 = lp@) ) F(p(2))
+hLE)(1 - lp@)P)™*" fP(p@) - L)1 - [P FO ()
< suplh(a) ~ L1 - lp@)P)** " f " ()
+sup (@)1 - lp@ P f@(2) - (1 = [P @) D ()]
< sup |1(2) = LE)Iflla + Csup |L(2)lp(e(2), P(2))
< suE () ~ Ia(2)| + Csup G?(Dz)m«p(z), ¥(z))
< 00,

Therefore, Dy, , — DVLLU : $* - H* isbounded. O

Corollary 3.2. Let u € H(ID) and ¢ € S(D), n € N. Then Dg,, : 8% — H® is bounded if and only if

sup |I1(2)] < oo.
zelD
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Remark 3.3. In fact, if Dy, : %% — H® is bounded, choosing the test function f(z) = Z., then there exists a
constant C > 0 such that

sup |u(z)| < C.

zeD

Remark 3.4. While preparing the revisions, we found Theorem 3.1 has been obtained by Liang in [8]. Here we only
use different methods.

4. The compactness of D” — D" : %% — H*
pu P,o

Theorem 4.1. Let u € H(D) and ¢ € S(D), n € N. Then Dy, : #* — H® is compact if and only if
Dg, : #* — H® is bounded and

1 L(z)| = 13
|¢(1§n1|1(z)| (13)

Proof. Suppose that Df,, : 2" — H* is bounded and (13) holds. To establish the assertion, it suffices, in
view of Lemma 2.5, to show that for any bounded sequence { fi}en in * which converges to zero uniformly
on compact subsets of D, ||D$,u fillo = 0 ask — oo.

Without loss of generality, we assume that ||fill, < 1. (13) implies that, for any € > 0, there exists r € (0, 1),
such that when r < |p(z)| < 1, we have

|u(2)]
(1 - |p(z)2)+n-1 <

On the other hand, Lemma 2.1 gives

Ih(z)l =

sup U@ @@) < sup U2 il < (14)

r<lp(z)l<1 relpi<1 (1= o))+t
Since Dy, : #* — H® is bounded, Corollary 3.2 states that

sup |1(z)| < oo.
zeD

Also, since f; converges to 0 uniformly on compact subsets of ID, Cauchy’s estimate gives that fk(") converges
to 0 uniformly on compact subsets of ID. Therefore, there exists N € IN, such that k > N implies that

sup u(z)lf,f”)((p(z))l < e sup u(z) < Ce. (15)
lp@z)I<r lp@)I<r
By (14) and (15),
Dy fille = supu(z)| f,f”)((p(z))|
zeD
= sup u@If (@) + sup u@IL" (@)
lp(z)<r r<lp(z)l<1
< (C+1e.

It follows that the operator Dy, , : " — H* is compact.
To prove the converse, assume that Df, , : % — H* is compact. Then it is obvious that Df, , : #* — H*
is bounded. Let z; be a sequence in ID such that ¢(z) — 1 as k — oco. If we choose test funct1on

1 -zl
(@) (a+n—1)(1 - zp(z))*

fi(2) =
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since |1 — z@(zk)| = 1 — |z|, clearly f; converges to 0 uniformly on ID as k — co. Hence f; converges to 0
uniformly on compact subsets of ID. Lemma 2.5 implies

|u(ze)l
(1= lpP)r+n=’

0 IID%, fillo > @O (p(z))] = as k — oo.

Since z; € D is arbitrary, (13) follows. [

Theorem 4.2. Let u,v € H(D) and ¢, € S(D), n € N. Suppose that D, — Dﬁ/v 1 #B% — H™ is bounded and
that neither of Dy ,,, Dy, : #* — H® is compact. Then Dy, — Dy, + #* — H® is compact if and only if (a), (b),
(c) and (d) hold:

(a) Gu,q) = Gv,wz

(B) lim I (2)lp(pz), $(2)) = 0, V2 € Ty T,
(©) lim [(z)lp(p(z)), () = 0,¥z; € Ty (1 Ty,
(

d) ,hjg Ili(zj) — I(zj)l = 0,Vz; € T, N Ty.

Proof. Sufficiency. Suppose that the four conditions hold. If D , — Dy, : #* — H*™ is not compact, via

Theorem 4.1, there exists a bounded sequence {f;} € % such that ||fj/[z. < 1 and converges to 0 uniformly
on every compact subset of ID. However ||(D;’W - Dz ) fjlle = 0 as j — oo. Then for ¥ ¢ > 0, there exists

K > 0, such that when j > K, ||(D%, , - Dz,v) fillo > € . Obviously there exists {z;} C ID such that

Q,u
”(D$,M - Dﬁrv)f]”oo
u(z)( - o)t o(z)(1 - [P(z)P)*+
A=Tpypyrem ) @ED ~ = pepem S W)
L)1 = lp@E)P) ™ £ (7)) = L) = [pE)D)* " 7 ()]
> e as)

This implies that either |¢(z;)| or [{(z;)| tends to 1. In order to prove this, assume that |¢(z;)] — 1. Letw € D
be a limit point of [{(z)|. Passing to a subsequence, if necessary, we may assume that [{(z;)| — w.
If |w| <1, then {z;} £ T, N Ty. Since G,,, C Ty Ty, {z;} € Gup. By the definition of G, , clearly, |I1(z;)] — 0.

Moreover, by Cauchy’s estimate, |w| < 1 yields | f],(”)((p(z )l — 0as j — oco. Therefore

)1 =lp@E)P) " P pE )] — 0, as j— oo (17)
By (a), we have {z;} £ G,. Using Cauchy’s estimate again, it follows that
e = @) P @E) — 0, as j— . (18)

Combining (17) and (18), we get a contradiction to (16). Thus |w| can only be 1. Hence |p(z;)|, [{(z)| tend to
1, and so {zj} C I'y, (1 Ty. The assumptions (b) and (d) imply that

LGN = oGP £ () = D) = )P £ (@)
= @)1 - eGP () — RE)A = e £ ()
+LE)(1 = lpE)P) " () = RE)A = [pE)P) " @ E )]

< () - RE)IA - eGP (E))]

HLEIA - lpE@P " F o) = 1= )P @ E))
< 1h(@) - LEIflle + CLE)p(E), )
< h(z)) = L)l + ClL(z)lp(e(z)), P(z))) = 0, as j— oo.
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770

We arrive at a contradiction to (16) again. So under the assumption and conditions (a) — (d), Dg. - Dz,v :

%% — H* is compact.

Necessity. If Dg , : 2% — H® is not compact, by Theorem 4.1, there exists a sequence {z;} € G, with
lp(zj)l — 1 such that |I1(z;)| + 0. For w; = ¢(z;), define f,;, go; as in Lemma 2.6. For |1 - zwj[ > 1 - 2],
it is easy to check that f,, g.; converge to 0 uniformly on every compact subset of ID as j — oco. Since

Dg. - D:L , - #% — H® is compact, by Lemma 2.5, as j — oo, we obtain

0 « “(DZ),u _Drlz;,v)fw/-”oo

> |uz)f)) (@) - o) fo (W)
- uz) o)A - lwiP)
A=l (o))
o(z)(1 — |w;P)
= I ) -——
e T Ty
N (1 - [pz))™ (1 - wP)

I1(z))] = 112(z))]

and

0 — “(DZ/” - Dzly)gw]‘”w

> |M(Zj)g£’jj)(wj) - U(Zj)ggf)(kl’(zj))'

= [o(z)ow,@E) 2 (E))

(1~ @)

(1= 1)) (1 - o))

= e Ty

Multiplying (19) by p(w;, {(zj)), and combining it with (20), we find

lim I 2)lp(w;, Y(27) = 0.
Since [[1(zj)| + 0, we see that

plwj, P(zj) =0

as j — oo. Because D%/u - D;’}v : B* — H* is bounded, by (22) and (3), we have

lim [ (z)lp(wj, (7)) = 0.

In addition, we know

0 < [I(Dg,, = Dy ) fu lleo 2 (1(z)) = L(z))] = I2(z))p(@), Y(z))))

as j — oo. Hence by (23) and (24), we get

llg?o [l1(zj) — Ia(z))| = 0.

P(CU]', lal}(z]))

(19)

(20)

(21)

(22)

(23)

(24)

(25)

Hence, from (22) and (25), we have G,, C G,y. Similar to the above proof, we conclude that G, 2 Gy,y.
Therefore G, = Gyy. Meanwhile, (b), (c) and (d) can be got from (21), (23) and (25), respectively, where

{Z]} C Fq, m Fw with |11(Z])| - 0.

Next, for ¥{z;} C T, (N T'y with [I[1(z})] — 0 as j — oo, we will prove (b), (c) and (d). First we can easily get

lim |1 (z))lp(p(z)), Y (z))) = 0.

(26)
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On the other hand, using fy,) which defined as Lemma 2.6, for [1 — zi(zj)| > 1 - |z| and {z;} c T, Ty, it
is easy to check that f ) converge to 0 uniformly on every compact subset of ID as j — co. Lemma 2.5
implies that

0 — DL, = D% ) foelleo
> u@)fj,) () ~ 0@ fy, WE))
u(z;)

(1 - lp(z))P)r+n-T

= L&) - lpE)P) " £ (@) - L))

= ()~ lp@E)P) " fil @E) ~ B(z) + 1) ~ L)l

(1= lpE)D)™" fl (9) ~ Ia(z)

vant ol (1 _ |¢(z,)|2)a+n—1
= |11(Zj)(1 - |(P(Zj)|2) 1f( ) (P(Z])) IQ(Z]) + Il(ZJ) Il(zf) (1- |¢(Z;)|2)a+n—1

I (z))(1 = lp(z)) ) 1f(") () = Ia(z) + 1iz) = hz)(A = [P £ W)
() = 2G| - G = pE)PY ) @) = 0= )P £ @E))
> h(z) - L)l - L@)lplp(), pE)) as j— oo

v

By (26), clearly we can obtain

jlgg IL(zj) — I(z))| = 0

So, for ¥{z;} C T, Ty with [I1(z))] = 0 as j — oo, |I>(zj)| converges to 0 as j — oo, too. Therefore

lim I (2)lp(p(z), ¥(z7) = 0

The theorem is established. [
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