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Abstract. In previous papers there are given numerous cases of groups with truncated simplices as
fundamental domains. These groups will be reconsidered here, in order to finish the classification of the
supergroups for 44 group series with trunc-simplex domains. There are given 7 new series of groups
here, belonging to different families. We also consider 12 new cases of groups of 20 series from families
F13 - F32, called maximal series. These results complete the investigation of groups with fundamental
trunc-simplices.

1. Introduction

1.1.
Hyperbolic space groups are isometry groups, acting discontinuously on hyperbolic 3-space H3 with

compact fundamental domains. It will be investigated some series of such groups by looking for their
fundamental domains. Face pairing identifications on a given polyhedron may give us generators and
relations for a space group by the Poincaré Theorem [2].

The simplest fundamental domains are 3-simplices (tetrahedra) and their integer parts. In the process of
classifying the fundamental simplices, 64 combinatorially different face pairings of fundamental simplices
were determined [6, 19], and also 35 solid transitive non-fundamental simplex identifications [6]. I. K.
Zhuk [19] classified Euclidean and hyperbolic fundamental simplices of finite volume up to congruence.
An algorithmic procedure was given by E. Molnár and I. Prok [5]. In [6–8] the authors summarized all
those results, arranging identified simplices into 32 families. Each of them is characterized by the so-called
maximal series of simplex tilings, i.e. maximal symmetry groups with smallest fundamental domains.
Some complete cases of supergroups with fundamental truncated simplices (shorty trunc-simplices) are
discussed in [3, 9–17]. Investigation of such hyperbolic space groups, especially with fundamental domains
of truncated simplices found applications in newer packing and covering problems, e.g. in [18].

In the first 12 families from the above 32 ones, appear 44 series of basic simplices, while the remaining
20 families contain only maximal series of the simplices. Possible supergroups of the mentioned 44 group
series, that have trunc-simplices as fundamental domains, will be reconsidered in this paper. Together with
these new results, there are also presented 12 new series in maximal families 13 - 32, as it will be formulated
in Theorem 1.1.
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1.2.
For a given fundamental simplex and a given equivalence class of edges, the sum of dihedral angles is

always 2π/ν, with natural ν. That is the reason why we shall have parameters for equivalence classes of
edges. In [8] there is given space of realization for every value of parameters of simplices investigated here.
In all cases of the investigated simplices, if parameters are large enough, the simplex is always realizable in
hyperbolic space with vertices out of the absolute, but the fine discussion is not detailed here, see e.g. [8].

If the vertices are outer ones, the simplex is not compact and it is possible to truncate it with polar planes
of the vertices. The new compact polyhedron obtained in that way is the fundamental domain of a larger
group. It has new triangular faces whose pairing gives us new generators. Dihedral angles around the new
edges are π/2, i.e., there are four congruent trunc-simplices around them in the fundamental space filling.

1.3.
We use the generalized Poincarè theorem [4] to obtain generators and relations for a space group G with

a combinatorially given polyhedron P as a fundamental domain, in the way briefly described below. In this
paper such polyhedra will be trunc-simplices.

It is necessary to consider all face pairing identifications of such domains. These are isometries which
generate a group G and induce subdivision of directed edge segments of P into equivalence classes, such
that an edge segment does not contain two G-equivalent points in its interior. The Poincarè algorithm gives
us for each edge segment class one cycle transformation of the form c = 1112 . . . 1r, where 1i, i = 1, 2, · · · r are
face pairing identifications. Each of these transformations will be a rotation of order ν, so the cycle relations
are of the form

(
1112 . . . 1r

)ν = 1. The Poincarè theorem guarantees us that these cycle relations, together
with relations 12

i = 1 to the occasional involutive generators 1i = 1−1
i , form a complete set of defining

relations for G. Details will be given at our examples.

1.4.
In order to obtain all possibilities of the face pairings for the new triangular faces of trunc-simplices,

we have to consider the stabilizer groups of the corresponding vertex figures. Case-by-case analysis of the
orbits and their symmetries for the whole tessellation in the polar plane of vertex figure will be the way
to get all possible face pairings. Besides that, it was also established that the possible number of different
cases can be 1, 2, 4, 8 or 16(= 4 × 4).

After reconsidering supergroups for all investigated groups in [3, 9–17] using this method, we have
found some new cases. In this way investigation of trunc-simplex families, for general case of parameters,
has been completed.

In this paper there are also considered 12 new maximal group series with trunc-simplex domains. These
results together with those in previous papers are completing this part of investigation.

Total numbers of hyperbolic space group series with trunc-simplex fundamental domains are given in
the following summarizing theorem. In Table data for each family are indicated separately.

Theorem 1.1. There are 187 group extension, making totally 212 hyperbolic space group series with truncated
simplices as fundamental domains.

Family F1 F2 F3 F4 F5 F6 F7
References [3] [17] [13, 16] [13, 16] - [13, 16] [9, 10]
Number of simplex series 7 3 2 6 0 4 4
Number of group extension series 13 13 7 38 - 24 7
Number of trunc-simplex series 13 13 6 68 - 32 7

Family F8 F9 F10 F11 F12 F13 - F32 Σ
References [12] [15] [15] [9, 10] [10, 14] [9–12, 14, 15]
Number of simplex series 6 2 3 4 3 20 64
Number of group extension series 24 8 6 7 6 34 187
Number of trunc-simplex series 24 8 6 7 6 22 212
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Notations used here are according to those given in [8], but may differ of the notations in original papers.

1.5.
The existence proof for some families from 13-32 are missing yet. This needs careful computations,

illustrated in [8], and also in [11] for e.g. Zhuk’s families F26, F30.
So for a while, simplices in fibred spaces H2

× R and more S̃L2R cannot be excluded yet, although H3

seems to be very probable. We intend to turn back to this problem later.

2. Truncated simplices from non-maximal simplex schemes

2.1. Simplex T62 from Family F1
The trunc-simplices to the simplices from family F1 were considered in [3]. To the simplex T62 (Fig. 1)

in Family 1 we can give 4 face pairings of the new triangular faces of trunc-simplex O62, and no more. After
searching for more symmetries of the vertex figure tilling and its hyperbolic plane group with fundamental
domain F0 = PA0 and signature Γ0 = uu ×× by [1], we find additional symmetry by half-turn indicated as
O2

62. For completeness we repeat all domains in Fig. 1.
The group for T62 is

Γ(T62, 6u) = (z1, z2 − (z−1
2 z2

1z2
2z−1

1 )u = 1,u ≥ 1),

while the supergroups with fundamental trunc-simplex O62 are

Γ(O1
62, 6u) = Γ(T62, 6u) and (m̄0, m̄1, m̄2, m̄3 − m̄2

0 = m̄2
1 = m̄2

2 = m̄2
3 = m̄0z2m̄0z−1

2 =

= m̄0z−1
1 m̄2z1 = m̄1z2m̄2z−1

2 = m̄1z−1
2 m̄3z2 = m̄1z1m̄2z−1

1 = m̄3z1m̄3z−1
1 = 1,u ≥ 2),

Γ(O2
62, 6u) = Γ(T62, 6u) and (h̄0, h̄1, h̄2, h̄3 − h̄2

0 = h̄2
1 = h̄2

2 = h̄2
3 =

= h̄0z−1
1 h̄2z1 = h̄0z2h̄2z2 = h̄1z−1

2 h̄3z2 = h̄2z−1
1 h̄1z2 = h̄3z1h̄3z1 = 1,u ≥ 2),

Γ(O3
62, 6u) = Γ(T62, 6u) and (1̄1, 1̄2 − 1̄2z11̄1z2 = 1̄1z11̄

−1
1 z2 = 1̄2z−1

1 1̄2z−1
2 = 1,u ≥ 2),

Γ(O4
62, 6u) = Γ(T62, 6u) and (s̄1, s̄2 − s̄1z2s̄2z1 = s̄1z1s̄−1

1 z−1
2 = s̄2z−1

1 s̄2z−1
1 = s̄2z−1

2 s̄2z−1
2 = 1,u ≥ 2).

2.2. Simplex T36 from Family F11
In [9, 10] there has been considered simplex T36 from family F11 (Fig. 2). There wasn’t obtained jet any

symmetry of the fundamental domain for the stabilizer subgroup of vertex figure and its hyperbolic plane
group 22uvv ([1]). So, there was given only the trivial supergroup with fundamental trunc-simplex O36, i.e.
the group with plane reflections as new generators. But after reconsidering symmetries of the vertex figure
tiling and recomposing its fundamental domain, we find new point reflection face pairings (Fig. 2), giving
O2

36.
The group for T36 is

Γ(T36, 2u, 5v) = (r2, r3, s − (r2r3)u = (s2r2sr3)v = 1,u ≥ 2, v ≥ 1, 2u , 5v)

and the supergroups for O36 are

Γ(O1
36, 2u, 5v) = Γ(T36, 2u, 5v) and (m̄0, m̄1, m̄2, m̄3 − m̄2

0 = m̄2
1 = m̄2

2 = m̄2
3 = m̄0r2m̄1r2 =

= m̄0r3m̄1r3 = m̄0s−1m̄3s = m̄2r3m̄2r3 = m̄3r2m̄3r2 = m̄1sm̄2s−1 = m̄2sm̄3s−1 = 1),

Γ(O2
36, 2u, 5v) = Γ(T36, 2u, 5v) and (1̄1, 1̄2 − r31̄2r21̄

−1
2 = s1̄1s1̄2 = s1̄−1

2 s1̄−1
2 = r21̄1r31̄1 = 1).
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Figure 1: Simplex T62, its vertex figure and trunc-simplices Oi
62, i = {1, 2, 3, 4}

Figure 2: Simplex T36, its vertex figure and trunc-simplices O1
36, O2

36
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2.3. Simplices T17 and T38 from Family F4
The supergroups of the groups with fundamental simplices T17 and T38 (Fig. 3) from family F4 were

investigated in [13, 16]. For these simplices there are two classes of equivalence for vertices {A0,A1}, {A2,A3}.
It means that truncating vertices in different classes are independent. That is the reason to give for these
truncating only the extensions to the original groups

Γ(T17, 2u, 4v, 2w) = (r0, r1, r2, r3 − (r2r3)u = (r1r2r0r3)v = (r0r1)w = r2
0 = r2

1 = r2
2 = r2

3 = 1, 2 ≤ u , w, 1 ≤ v),

Γ(T38, 2u, 4v, 2w) = (r0, r1, z − (zz)u = (r1zr0z)v = (r0r1)w = r2
0 = r2

1 = 1, 2 ≤ u , w, 1 ≤ v).

Figure 3: Simplices T17 and T38

In [13, 16] are considered group extensions for T17 and T38 after truncating. For both simplex-series if
conditions 1

2 + 1
2u + 1

2v < 1, 1
2 + 1

2v + 1
2w < 1 are satisfied, vertices from both edge class {A0,A1} and {A2,A3}

are outer. Reconsidering is giving four extensions for each of edge classes, of both trunc-simplices. Here is
given complete list of these extensions.

• For O17, class of vertices A0,A1:

m̄2
0 = m̄2

1 = (m̄0r1)2 = (m̄1r0)2 = m̄0r2m̄1r2 = m̄0r3m̄1r3 = 1; h̄2
0 = h̄2

1 = (h̄0r1)2 = h̄0r2h̄1r3 = (h̄1r0)2 = 1;
z̄1r3z̄1r2 = z̄1r0z̄−1

1 r1 = 1; s̄1r0s̄−1
1 r1 = (s̄1r2)2 = (s̄1r3)2 = 1.

• For O17, class of vertices A2,A3:

m̄2
2 = m̄2

3 = (m̄2r3)2 = (m̄3r2)2 = m̄2r1m̄3r1 = m̄2r0m̄3r0 = 1; h̄2
2 = h̄2

3 = (h̄2r3)2 = h̄2r1h̄3r0 = (h̄3r2)2 = 1;
z̄2r1z̄2r0 = z̄2r2z̄−1

2 r3 = 1; s̄2r2s̄−1
2 r3 = (s̄2r0)2 = (s̄2r1)2 = 1.

• For O38, class of vertices A0,A1:

m̄2
0 = m̄2

1 = (m̄0r1)2 = (m̄1r0)2 = m̄1zm̄0z−1 = m̄0zm̄1z−1 = 1; h̄2
0 = h̄2

1 = (h̄0r1)2 = h̄0zh̄1z = (h̄1r0)2 = 1;
(z̄1z)2 = (z̄1z−1)2 = z̄1r0z̄−1

1 r1 = 1; s̄1r0s̄−1
1 r1 = s̄1zs̄1z−1 = 1.

• For O38, class of vertices A2,A3:

m̄2
2 = m̄2

3 = m̄2r1m̄3r1 = m̄2r0m̄3r0 = m̄3zm̄2z−1 = 1; h̄2
2 = h̄2

3 = h̄2r1h̄3r0 = h̄3zh̄2z−1 = 1; (z̄2z)2 = z̄2r0z̄2r1 =

1; (s̄2r1)2 = (s̄2r0)2 = s̄2zs̄2z = 1.

Remark 2.1. Since truncations of vertices in different equivalence classes are independent, we can combine appro-
priate group extensions. It means, if there is p different extensions for the first equivalence classes and q extensions
for the second one, then total number of different group series for truncated simplex is pq. Similarly, if there are three
equivalence classes for vertices with resp. p, q, r group extensions, then total number of group series is pqr.
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There is also possibility to truncate vertices only in some of the equivalence classes, but that is not the topic of this
paper.

So, for the both simplices T17 and T38 there are 16 possibilities to create supergroups with fundamental trunc-
simplices.

In Fig. 4 there are given vertex figures of T17 and T38 resp., for classes of vertices {A0,A1} and {A2,A3},
whose hyperbolic plane groups (by [1]) are 22uv, 22vw, and 22uv, vw×, resp.

Figure 4: Vertex figures of simplices T17 and T38

2.4. Simplex T53 from Family F7
By printing mistake in [9] are omitted results for T53 from family F7. There are only given in [10]. Here,

the simplex T53, its vertex figure with hyperbolic plane group 22uv× (by [1]) and the trunc-simplices O1
53,

O2
53 are given if Fig. 5. The group for T53 from [8] is

Γ(T53, 2u, 10v) = (r0, r1, z − (zz)u = (r1zr0r1z−1r0zr1r0z−1)v = 1,u ≥ 2, v ≥ 1, 2u , 10v).

One fundamental domain of vertex figure is

PA2 := TA2 ∪ Tz−1

A3
∪ Tr1z−1

A0
∪ Tr0z−1

A1
,

and the groups for O1
53, O2

53 are

Γ(O1
53, 2u, 10v) = Γ(T53, 2u, 10v) and (m̄0, m̄1, m̄2, m̄3 − m̄2

0 = m̄2
1 = m̄2

2 = m̄2
3 = m̄0r1m̄3r1 =

= m̄0zm̄1z−1 = m̄0z−1m̄1z = m̄1r0m̄3r0 = m̄3zm̄2z−1 = m̄2r0m̄2r0 = m̄2r1m̄2r1 = 1),

Γ(O2
53, 2u, 10v) = Γ(T53, 2u, 10v) and (h̄2, h̄3, s̄ − h̄2

2 = h̄2
3 = s̄zs̄z−1 = s̄r0h̄3r1 = h̄2z−1h̄3z = h̄2r1h̄2r0 = 1).

3. Truncated simplices from maximal group series

In each of families F13 - F32 there is a single simplex series and all of them are the maximal ones for
general parameters. In the previous papers [9–12, 14, 15] there are investigated simplices from families
F21, F23, F25, F26, F27, F29, F30, F32. So, it remains to investigate 12 families. Data for these families
are given in [8]. In all here considered cases, for all equivalence classes of vertices, only trivial extensions
are possible. So, for each of the trunc-simplices there is only one group series and the number of group
extensions is equal to number of equivalence classes of vertices. Note that situation is similar for previously
considered trunc-simplices from maximal group series, except in cases of Zhuk’s simplices from families
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Figure 5: Simplex T53, its vertex figure and trunc-simplices O1
53, O2

53

F26 and F30 considered in [11]. There, in class of vertex {A1} there are two different group extensions and
so, two different groups for each of these trunc-simplices.

Families F13, F14, F15 (with trunc-simplices O1, O2, O3, respectively):

Γ(O1, 2a, 2b, 2c, 2d, 2e, 2 f ) = (m0,m1,m2,m3, m̄0, m̄1, m̄2, m̄3,−(m0m1)a = (m1m2)b = (m2m0)c = (m2m3)d =

= (m0m3)e = (m1m3) f = (m̄im j)2 = m2
k = m̄2

l = 1, i, j, k, l ∈ {0, 1, 2, 3}, i , j,

1
a

+
1
b

+
1
c
< 1,

1
a

+
1
e

+
1
f
< 1,

1
c

+
1
d

+
1
e
< 1,

1
b

+
1
d

+
1
f
< 1, 2 ≤ a, b, c, d, e, f )

Γ(O2, 4a, 4b, 2c, 2d, 2e) = (m0, r1,m2,m3, m̄0, m̄1, m̄2, m̄3,−(m0r1m0r1)a = (m2r1m3r1)b = (m2m3)c = (m0m3)d

= (m0m2)e = (m̄i f j)2 = f 2
k = m̄2

l = 1, i, j, k, l ∈ {0, 1, 2, 3}, i , j, f0 ≡ m0, f1 ≡ r1, f2 ≡ m2, f3 ≡ m3,

1
b

+
1
c
< 1,

1
c

+
1
d

+
1
e
< 1,

1
a

+
1
b

+
1
d

+
1
e
< 1, 1 ≤ a, b, 2 ≤ c, d, e)

Γ(O3, 2a, 6b, 4c, 4d) = (m0,m1, r2, r3, m̄0, m̄1, m̄2, m̄3,−(m0m1)a = (m1r2r3m1r3r2)b = (m0r2m0r2)c = (m0r3m0r3)d

= m̄0r2m̄0r2 = m̄0r3m̄0r3 = m̄1r3m̄2r3 = m̄1r2m̄3r2 = (m̄im0)2 = (m̄ jm1)2 = m2
0 = m2

1 = r2
2 = r2

3 = m̄2
k = 1,

i ∈ {1, 2, 3}, j ∈ {0, 2, 3}, k ∈ {0, 1, 2, 3},
2
a

+
1
b

+
1
c

+
1
d
< 3, 2 ≤ a, 2 ≤ b, 1 ≤ c ≤ d)
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Figure 6: Trunc-simplices from maximal group series
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Families F16, F17, F18 (with trunc-simplices O4, O5, O7, respectively):

Γ(O4, 2a, 6b, 4c, 4d) = (m0,m1, r2, r3, m̄0, m̄1, m̄2, m̄3,−(m0m1)a = (m1r2r3m0r3r2)b = (m1r3m1r3)c =

= (m0r2m0r2)d = m̄0r2m̄0r2 = m̄0r3m̄2r3 = m̄1r3m̄1r3 = m̄1r2m̄3r2 = (m̄im0)2 = (m̄ jm1)2 = m2
0 = m2

1 = r2
2 = r2

3

= m̄2
k = 1, i ∈ {1, 2, 3}, j ∈ {0, 2, 3}, k ∈ {0, 1, 2, 3},

1
a

+
1
b

+
1
c
< 2,

1
a

+
1
b

+
1
d
< 2, 2 ≤ a, 1 ≤ b, 1 ≤ c ≤ d)

Γ(O5, 2a, 8b, 4c, 4d) = (m0,m1, r2, r3, m̄0, m̄1, m̄2, m̄3,−(m0m1)a = (m1r2r3r2m1r2r3r2)b = (m0r2m0r2)c =

= (m0r3m1r3)d = m̄0r2m̄0r2 = m̄0r3m̄1r3 = m̄1r2m̄3r2 = m̄2r3m̄2r3 = (m̄im0)2 = (m̄ jm1)2 = m2
0 = m2

1 = r2
2 = r2

3

= m̄2
k = 1, i ∈ {1, 2, 3}, j ∈ {0, 2, 3}, k ∈ {0, 1, 2, 3},

1
a

+
1
d
< 1,

1
a

+
1
b

+
1
c

+
1
d
< 3, 2 ≤ a, 1 ≤ b, 1 ≤ c, 1 ≤ d)

Γ(O7, 4a, 16b, 4c) = (m0, r1, r2, r3, m̄0, m̄1, m̄2, m̄3,−(m0r1m0r1)a = (m0r3r1r2r3r2r1r3m0r3r1r2r3r2r1r3)b =

= (m0r2m0r2)c = m̄0r1m̄0r1 = m̄0r2m̄0r2 = m̄0r3m̄1r3 = m̄1r2m̄3r2 = m̄2r3m̄2r3 = m̄2r1m̄3r1 = (m̄im0)2 = m2
0 =

= r2
1 = r2

2 = r2
3 = m̄2

k = 1, i ∈ {1, 2, 3}, k ∈ {0, 1, 2, 3}, 1 ≤ a, b, c)

Families F19, F20, F22 (with trunc-simplices O8, O11, O13, respectively):

Γ(O8, 4a, 12b, 8c) = (m0, r1, r2, r3, m̄0, m̄1, m̄2, m̄3,−(m0r1m0r1)a = (m0r3r1r2r1r3m0r3r1r2r1r3)b =

= (m0r2r3r2m0r2r3r2)c = m̄0r1m̄0r1 = m̄0r3m̄1r3 = m̄0r2m̄3r2 = m̄1r2m̄1r2 = m̄2r3m̄2r3 = m̄2r1m̄3r1 = (m̄im0)2 =

m2
0 = r2

1 = r2
2 = r2

3 = m̄2
k = 1, i ∈ {1, 2, 3}, k ∈ {0, 1, 2, 3}, 1 ≤ a, b, c)

Γ(O11, 4a, 4b, 4c, 3d) = (m0, r1, r2, r3, m̄0, m̄1, m̄2, m̄3,−(m0r1m0r1)a = (m0r3m0r3)b = (m0r2m0r2)c =

= (r1r2r3)d = m̄0r1m̄0r1 = m̄0r2m̄0r2 = m̄0r3m̄0r3 = m̄1r3m̄2r3 = m̄1r2m̄3r2 = m̄2r1m̄3r1 = (m̄im0)2 =

= m2
0 = r2

1 = r2
2 = r2

3 = m̄2
k = 1, i ∈ {1, 2, 3}, k ∈ {0, 1, 2, 3},

1
a

+
1
b

+
1
c

+
2
d
< 3, 1 ≤ a ≤ b ≤ c, 3 ≤ d)

Γ(O13, 8a, 8b, 8c) = (m0, r1, r2, r3, m̄0, m̄1, m̄2, m̄3,−(m0r1r3r1)2a = (m0r2r1r2)2b = (m0r3r2r3)2c =

= m̄0r2m̄1r2 = m̄0r3m̄2r3 = m̄0r1m̄3r1 = m̄1r3m̄1r3 = m̄2r1m̄2r1 = m̄3r2m̄3r2 = (m̄im0)2 =

= m2
0 = r2

1 = r2
2 = r2

3 = m̄2
k = 1, i ∈ {1, 2, 3}, k ∈ {0, 1, 2, 3}, 1 ≤ a ≤ b ≤ c)

Families F24, F28, F31 (with trunc-simplices O18, O32, O43, respectively):

Γ(O18, 4a, 8b) = (r0, r1, r2, r3, m̄0, m̄1, m̄2, m̄3,−(r0r1r3r1)a = (r1r2r3r0r2r0r3r2)b = m̄0r2m̄0r2 = m̄0r3m̄2r3 =

= m̄0r1m̄3r1 = m̄1r0m̄1r0 = m̄1r3m̄1r3 = m̄1r2m̄3r2 = m̄2r1m̄2r1 = m̄2r0m̄3r0 =

= r2
0 = r2

1 = r2
2 = r2

3 = m̄2
k = 1, k ∈ {0, 1, 2, 3},

1
a

+
1
b
< 2, 1 ≤ a, b)
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Γ(O32, 4a, 16b) = (m0, r1, z, m̄0, m̄1, m̄2, m̄3,−(m0z−1m0z)a = (m0r1z−2r1z2r1)2b = m̄0zm̄0z−1 = m̄0r1m̄3r1 =

= m̄1zm̄2z−1 = m̄1z−1m̄3z = m̄2r1m̄2r1 = (m̄im0)2 = m2
0 = r2

1 = m̄2
k = 1, i ∈ {1, 2, 3}, k ∈ {0, 1, 2, 3},

2
a

+
1
b
< 4, 1 ≤ a, 1 ≤ b)

Γ(O43, 4a, 8b) = (r0, r1, z, m̄0, m̄1, m̄2, m̄3,−(zr0zr0)a = (r0r1z−2r1z2r1)b = m̄0zm̄0z−1 = m̄0r1m̄3r1 =

= m̄1r0m̄1r0 = m̄1zm̄2z−1 = m̄1z−1m̄3z = m̄2r1m̄2r1 = m̄2r0m̄3r0 = r2
0 = r2

1 = m̄2
k = 1,

k ∈ {0, 1, 2, 3},
1
a

+
1
b
< 2, 1 ≤ a, 1 ≤ b)
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