
Filomat 33:4 (2019), 1125–1134
https://doi.org/10.2298/FIL1904125S

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. Conformal semi-invariant Riemannian maps from Kaehler manifolds to Riemannian manifolds
are introduced. We give examples, study the geometry of leaves of certain distributions and investigate cer-
tain conditions for such maps to be horizontally homothetic. Morever, we introduce special pluriharmonic
maps and obtain characterizations.

1. Introduction

Fischer introduced Riemannian maps between Riemannian manifolds in [7] as a generalization of the
notions of isometric immersions and Riemannian submersions, [6], [9], [13] and [23]. Let F : (M1, 11) −→
(M2, 12) be a smooth map between Riemannian manifolds such that 0 < rankF < min{dimM1, dimM2}. Then
the tangent bundle of M1 has the following decomposition:

TM1 = kerF∗ ⊕ (kerF∗)⊥.

Since rankF < min{dimM1, dimM2}, we always have (ran1eF∗)⊥. Thus tangent bundle TM2 of M2 has the
following decomposition:

TM2 = (ran1eF∗) ⊕ (ran1eF∗)⊥.

Now, a smooth map F : (Mm
1 , 11) −→ (Mm

2 , 12) is called Riemannian map at p1 ∈M1 if the horizontal restriction
Fh
∗p1

: (kerF∗p1 )⊥ −→ (ran1eF∗) is a linear isometry. Therefore Fischer stated in [7] that a Riemannian map
satisfies the equation

11(X,Y) = 12(F∗X,F∗Y) (1)

for X,Y ∈ Γ((kerF∗)⊥). So that isometric immersions and Riemannian submersions are particular Riemannian
maps with kerF∗ = {0} and (ran1eF∗)⊥ = {0}. There are many applications of this type maps in different
research areas such geometric modelling, computer vision and medical imaging [10, 21, 22].
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Let (M̄, 1) be a Kaehler manifold. This means [23] that M̄ admits a tensor field J of type (1,1) on M̄ such
that, ∀X,Y ∈ Γ(TM̄), we have

J2 = −I, 1(X,Y) = 1(JX, JY), (∇̄X J)Y = 0,

where 1 is the Riemannian metric and ∇̄ is the Levi-Civita connection on M̄. Certain Riemannian maps from
Kaehler manifolds to arbitrary Riemannian manifolds were introduced such as anti-invariant Riemannian
maps, semi-invariant Riemannian maps and slant Riemannian maps and such maps were studied widely,
see:[14] and references therein. On the other hand, conformal anti-invariant Riemannian maps from Kaehler
manifolds to Riemannian manifolds were recently introduced in [18].

In this paper, we introduce and investigate geometric structures for conformal semi-invariant Rieman-
nian maps from Kaehler manifolds to Riemannian manifolds.

2. Preliminaries

We recall useful results which are related to the second fundamental form and conformal Riemannian
maps from [4], [13] and [14]. Let (M, 1M ) and (N, 1N ) be Riemannian manifolds and suppose that F : M −→ N
is a smooth map between them. The second fundamental form of F is given by

(∇F∗)(X,Y) =
N

∇
F

XF∗(Y) − F∗(
M
∇XY) (2)

for X,Y ∈ Γ(TM). It is known that the second fundamental form is symmetric.
Let F be a Riemannian map from a Riemannian manifold (Mm, 1M) to a Riemannian manifold (Nn, 1N).

Then we define T andA as

AEF = H
M
∇HEVF +V

M
∇HEHF, TEF = H

M
∇VEVF +V

M
∇VEHF, (3)

for vector fields E,F ∈ Γ(TM), where
M
∇ is the Levi-Civita connection of 1M [19]. In fact, we can see that

these tensor fields are O’Neill’s tensor fields which were defined for Riemannian submersions. For any
E ∈ Γ(TM),TE andAE are skew-symmetric operators on (Γ(TM), 1) reversing the horizontal and the vertical
distributions. It is also easy to see that T is vertical, TE = TVE, and A is horizontal, AE = AHE. We note
that the tensor field T is symmetric on the vertical distribution [20]. On the other hand, from (3) we have

M
∇VW = TVW + ∇̂VW,

M
∇VX = H

M
∇VX + TVX,

M
∇XV = AXV +V

M
∇XV,

M
∇XY = H

M
∇XY +AXY, (4)

for X,Y ∈ Γ((ker F∗)⊥)and V,W ∈ Γ(kerF∗), where ∇̂VW =V∇
M

VW.
We say that F : (Mm, 1M) −→ (Nn, 1N) is a conformal Riemannian map at p ∈ M if 0 < rankF∗p ≤

min{m,n} and F∗p maps the horizontal spaceH(p) = ((ker(F∗p)⊥) conformally onto ran1e(F∗p), i.e., there exist
a numberλ2(p) , 0 such that

1N(F∗pX,F∗pY) = λ2(p)1M(X,Y)

for X,Y ∈ H(p). Also F is called conformal Riemannian if F is conformal Riemannian at each p ∈ M [15].
On the other hand, let F be a conformally Riemannian map between Riemannian manifolds (Mm, 1M ) and
(Nn, 1N ). Then, we have

(∇F∗)(X,Y) |ran1eF∗= X(lnλ)F∗(Y) + Y(lnλ)F∗(X) − 1M(X,Y)F∗(1rad(lnλ)), (5)

where X,Y ∈ Γ((kerF∗)⊥) [15].

Therefore from (5), we can write
N
∇

F
XF∗(Y) as

N

∇
F

XF∗(Y) = F∗(h
M
∇XY) + X(lnλ)F∗(Y) + Y(lnλ)F∗(X) − 1M(X,Y)F∗(1rad(lnλ)) + (∇F∗)⊥(X,Y) (6)

where (∇F∗)⊥(X,Y) is the component of (∇F∗)(X,Y) on (ran1eF∗)⊥ for X,Y ∈ Γ((kerF∗)⊥)[18].
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3. Conformal Semi-invariant Riemannian maps

Firstly, we give definition of conformal semi-invariant Riemannian maps.

Definition 3.1. Let F : (M, 1M, JM) −→ (N, 1N) be a conformal Riemannian map from a Kaehlerian manifold
(M, 1M, JM) to a Riemannian manifold (N, 1N) . Then we say that F is a conformal semi-invariant Riemannian map
if the following conditions are satisfied;

i- There exist a subbundle of kerF∗ such that J(D1) = D1.

ii- There exist a complementary subbundle D2 to D1 in kerF∗ such that J(D2) ⊂ (kerF∗)⊥.

From definition, we have

kerF∗ = D1 ⊕D2. (7)

We provide some examples of conformal semi-invariant Riemannian maps.

Example 3.2. Every conformal anti-invariant Riemannian submersion [3] from an almost Hermitian manifold to a
Riemannian manifold is a conformal semi-invariant Riemannian map with D2 = kerF∗.

We say that a conformal semi-invariant Riemannian map is proper if D1 , 0, D2 , 0 and µ , 0. Here,
there is an example of a proper conformal semi-invariant Riemannian map, where µ is the complementary
subbundle to D2 inH .

Example 3.3. Let F : (R8, 18, J) −→ (R4, 14) be a map from a Kaehlerian manifold (R8, 18, J) to a Riemannian
manifold (R4, 14) defined by

(ex1 cosx3,−ex1 cosx3, ex1 cosx6,−ex1 cosx6).

Then, we obtain horizontal distribution and vertical distribution,

H = (kerF∗)⊥ = {X1 = (ex1 cosx3
∂
∂x1
− ex1 sinx3

∂
∂x3

),X2 = (ex1 cosx6
∂
∂x1
− ex1 sinx6

∂
∂x6

)},

and

V = (kerF∗) = {V1 =
∂
∂x2

,V2 =
∂
∂x4

,V3 =
∂
∂x5

,V4 =
∂
∂x7

,V5 =
∂
∂x8

,V6 = (k
∂
∂x1

+ k cot x3
∂
∂x3

+ k cot x6
∂
∂x6

)},

respectively, k ∈ R. Hence, we get with J = (−a8,−a7,−a6,−a5, a4, a3, a2, a1)

F∗(X1) = (e2x1 ,−e2x1 , e2x1 cosx3cosx6,−e2x1 cosx3cosx6), F∗(X2) = (−e2x1 , e2x1 ,−e2x1 cosx3cosx6, e2x1 cosx3cosx6)

which show that F is a conformal Riemannian map with λ = ex1
√

2(1 + cos2x3 + cos2x6) and rankF = 2. By some
calculations, we get

JV1 = V4, JV2 = V3,

JX1 = ex1 cos x3V5 −
ex1 cot x6 sin x3

k(1 + cot2 x3 + cot2 x6)
V6 +

sin 2x3 sin 2x6

4(1 − cos2 x3 cos2 x6)
X1

+
sin x3 sin x6

1 − cos2 x3 cos2 x6
X2,

JX2 = ex1 cos x6V5 −
ex1 cot x3 sin x6

k(1 + cot2 x3 + cot2 x6)
V6 +

cos x3 sin x6

1 − cos2 x3 cos2 x6
X1

+
cos2 x3 sin 2x6

2(cos2 x3 cos2 x6 − 1)
X2.

One can easily see that F is a proper conformal semi-invariant Riemannian map with D1 = span{V1,V2,V3,V4},
D2 , 0, µ , 0 .
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We say that a conformal semi-invariant Riemannian map is anti-holomorphic if J(D2) = (kerF∗)⊥.Here, there
is an example of an anti-holomorphic conformal semi-invariant Riemannian map.

Example 3.4. Let F : (R6, 16, J) −→ (R4, 14) be a map from a Kaehlerian manifold (R6, 16, J) to a Riemannian
manifold (R4, 14) defined by

(ex1 cosx3, ex1 sinx3,−ex1 cosx3,−ex1 sinx3).

Then, we obtain horizontal distribution and vertical distribution,

H = (kerF∗)⊥ = {X1 = (ex1 cosx3
∂
∂x1
− ex1 sinx3

∂
∂x3

),X2 = (ex1 sinx3
∂
∂x1

+ ex1 cosx3
∂
∂x3

)},

and

V = (kerF∗) = {V1 =
∂
∂x2

,V2 =
∂
∂x4

,V3 =
∂
∂x5

,V4 =
∂
∂x6
},

respectively. Hence, we get with J = (−a2, a1,−a4, a3,−a6, a5)

F∗(X1) = e2x1
∂
∂x1
− e2x1

∂
∂x3

, F∗(X2) = e2x1
∂
∂x2
− e2x1

∂
∂x4

which show that F is a conformal Riemannian map with λ = ex1
√

2. On the other hand, by direct computations we
have

JV1 = −
∂
∂x1

= −e−x1 sinx3X1 − e−x1 cosx3X2, JV2 = −
∂
∂x3

= −e−x1 cosx3X1 + e−x1 sinx3X2,

JV3 =
∂
∂x6

= V4, JV4 = −
∂
∂x5

= −V3.

Thus, F is an anti-holomorphic conformal semi-invariant Riemannian map with D1 = span{V3,V4}, D2 = span{V1,V2}

and J(D2) = (kerF∗)⊥ = span{X1,X2}.

Let F be a conformal semi-invariant Riemannian map from a Kaehler manifold (M, 1M, J) to a Riemannian
manifold (N, 1N). Then for V ∈ Γ(kerF∗), we write

JV = φV + ωV, (8)

where φV ∈ Γ(D1) and ωV ∈ Γ(JD2). Also for X ∈ Γ((kerF∗)⊥), we write

JX = BX + CX, (9)

where BX ∈ Γ(D2) and CX ∈ Γ(µ). Hence, we write from (8) and (9)

1M(X,U) = 0, (10)

for X ∈ Γ((kerF∗)⊥) and U ∈ Γ(D2). Thus we get the orthogonal complementary subbundle of (kerF∗)⊥ to
J(D2) by µ

(kerF∗)⊥ = µ ⊕ J(D2).

Then it is easy to see that µ is invariant.

Theorem 3.5. Let F : (M, 1M, J) −→ (N, 1N) be a conformal semi-invariant Riemannian map from a Kaehler manifold
(M, 1M, J) to a Riemannian manifold (N, 1N). Then the invariant distribution D1 is integrable if and only if

(∇F∗)(U, JV) − (∇F∗)(V, JU) = 0,

for U,V ∈ Γ(D1).
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Proof. Since M is Kaehlerian manifold for U,V ∈ Γ(D1), we have

TU JV + v
M
∇U JV = BTUV + CTUV + φv

M
∇UV + ωv

M
∇UV. (11)

If we change roles of U and V in (11), we have

TV JU + v
M
∇V JU = BTVU + CTVU + φv

M
∇VU + ωv

M
∇VU. (12)

Thus, if we take horizontal parts of (11), (12) and from (2) , we get

ωv[U,V] = (∇F∗)(U, JV) − (∇F∗)(V, JU).

Hence, if ωv[U,V] = 0 , we obtain v[U,V] ∈ Γ(D1). The proof is complete.

For the distribution D2, we have the following result.

Theorem 3.6. Let F : (M, 1M, J) −→ (N, 1N) be a conformal semi-invariant Riemannian map from a Kaehler manifold
(M, 1M, J) to a Riemannian manifold (N, 1N). Then the distribution D2 is always integrable.

Proof. Since M is Kaehlerian manifold, fundamental 2-form Ω is closed, we obtain

3dω(U,V,W) = −1M(JU, [V,W]) = 0,

for U ∈ Γ(D1) and V,W ∈ Γ(D2). Because of the distribution D1 is invariant, we have [V,W] ∈ Γ(D2).

We now obtain a new condition for the horizontal distributions.

Theorem 3.7. Let F : (M, 1M, J) −→ (N, 1N) be a conformal semi-invariant Riemannian map from a Kaehler manifold
(M, 1M, J) to a Riemannian manifold (N, 1N). Then the distribution (kerF∗)⊥ is integrable if

BAYBX = −Bh
M
∇YCX,

φAYCX = −φv
M
∇YBX,

are satisfied for X,Y ∈ Γ((kerF∗)⊥).

Proof. Since M is Kaehlerian manifold for X,Y ∈ Γ((kerF∗)⊥), we have

M
∇XY = − {BAXBY + CAXBY + φv

M
∇XBY − ωv

M
∇XBY

+ φAXCY − ωAXCY + Bh
M
∇XCY + Ch

M
∇XCY}. (13)

If we change roles of X and Y in (13), we have

M
∇YX = − {BAYBX + CAYBX + φv

M
∇YBX − ωv

M
∇YBX

+ φAYCX − ωAYCX + Bh
M
∇YCX + Ch

M
∇YCX}. (14)

Thus, if we take vertical parts of (13), (14) and from (4) , we get

[X,Y] = B{AYBX − AXBY + h
M
∇YCX − h

M
∇XCY}

+ φ{AYCX − AXCY + v
M
∇YBX − v

M
∇XBY}.

Hence, the proof is complete.

Now, we recall pluriharmonic map from [12].
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Definition 3.8. [12] Let F : (M, 1M, J) −→ (N, 1N) be a map from a complex manifold (M, 1M, J) to a Riemannian
manifold (N, 1N). Then F is called a pluriharmonic map if F satisfies the following equation

(∇F∗)(X,Y) + (∇F∗)(JX, JY) = 0 (15)

for X,Y ∈ Γ(TM).

If F satisfies equation (15) for X,Y ∈ Γ((kerF∗)⊥) (respectively, kerF∗, D2, D1, {(kerF∗)⊥− (kerF∗)} ), F is called
(kerF∗)⊥− pluriharmonic map (respectively, kerF∗, D2, D1, {(kerF∗)⊥ − (kerF∗)} ).

Theorem 3.9. Let F : (M, 1M, J) −→ (N, 1N) be a conformal semi-invariant Riemannian map from a Kaehler manifold
(M, 1M, J) to a Riemannian manifold (N, 1N). Then, three of the below assertions imply the fourth assertion,

i- The distribution kerF∗ defines totally geodesic foliation on M,

ii- F is a kerF∗-pluriharmonic map,

iii- TφUφV + AωVφU + AωUφV = 0,

iv- F is a horizontally homothetic map and (∇F∗)⊥(ωU, ωV) = 0,

for U,V ∈ Γ(kerF∗).

Proof. From definition of a pluriharmonic map, (2) and (4), we have

(∇F∗)(U,V) + (∇F∗)(JU, JV) = −F∗(TUV) − F∗(TφUφV + AωVφU + AωUφV)
+ (∇F∗)⊥(ωU, ωV) − 1M(ωU, ωV)F∗(1radlnλ)
+ ωU(lnλ)F∗(ωV) + ωV(lnλ)F∗(ωU), (16)

for U,V ∈ Γ(kerF∗). The proof is clear.

Theorem 3.10. Let F : (M, 1M, J) −→ (N, 1N) be a conformal semi-invariant Riemannian map from a Kaehler
manifold (M, 1M, J) to a Riemannian manifold (N, 1N). Then, three of the below assertions imply the fourth assertion,

i- (∇F∗)⊥(X,Y) + (∇F∗)⊥(CX,CY) = 0,

ii- F is a horizontally homothetic map,

iii- F is a (kerF∗)⊥-pluriharmonic map,

iv- ACXBY + ACYBX + TBXBY = 0,

for X,Y ∈ Γ((kerF∗)⊥).

Proof. From definition of a (kerF∗)⊥− pluriharmonic map, (2) and (4), we have

(∇F∗)(X,Y) + (∇F∗)(JX, JY) = −F∗(TBXBY + ACYBX + ACXBY) + (∇F∗)⊥(X,Y) + (∇F∗)⊥(CX,CY)
+ X(lnλ)F∗(Y) + Y(lnλ)F∗(X) + CX(lnλ)F∗(CY) + CY(lnλ)F∗(CX)
− F∗(1radlnλ){1M(X,Y) + 1M(CX,CY)}. (17)

for X,Y ∈ Γ((kerF∗)⊥). Hence one can easily obtain the assertion of theorem.

Theorem 3.11. Let F : (M, 1M, J) −→ (N, 1N) be a conformal semi-invariant Riemannian map from a Kaehler
manifold (M, 1M, J) to a Riemannian manifold (N, 1N). If F is a (kerF∗)⊥-pluriharmonic map, then two of the below
assertions imply third assertion,

i- F is a horizontally homothetic map,

ii- ACYBX + ACXBY = 0,



B. Şahin, Ş. Yanan / Filomat 33:4 (2019), 1125–1134 1131

iii- φTBXY − TBXCY ∈ D2,

for X,Y ∈ Γ((kerF∗)⊥).

Proof. We only proof third condition. Suppose that (i) and (ii) are satisfied in (17). We get

1M(
M
∇BXBY,U) = 1M(

M
∇BX JY − CY,U) = 1M(φTBXY − TBXCY,U),

for X,Y ∈ Γ((kerF∗)⊥) and U ∈ Γ(D1). The proof is complete.

Corollary 3.12. Let F : (M, 1M, J) −→ (N, 1N) be a conformal semi-invariant Riemannian map from a Kaehler
manifold (M, 1M, J) to a Riemannian manifold (N, 1N). If F is a (kerF∗)⊥-pluriharmonic map, we have

(∇F∗)⊥(X,Y) + (∇F∗)⊥(CX,CY) = 0,

for X,Y ∈ Γ((kerF∗)⊥).

Theorem 3.13. Let F : (M, 1M, J) −→ (N, 1N) be a conformal semi-invariant Riemannian map from a Kaehler
manifold (M, 1M, J) to a Riemannian manifold (N, 1N). If F is a (kerF∗)-pluriharmonic map, then two of the below
assertions imply the third assertion,

i- The distribution D1 defines totally geodesic foliation on M,

ii- F is a horizontally homothetic map and (∇F∗)⊥(ωU, ωV) = 0,

iii- C{TUφV + h
M
∇UωV} + ω{TUωV + v

M
∇UφV} = AωVφU + AωUφV,

for U,V ∈ Γ(kerF∗).

Proof. From definition of a kerF∗− pluriharmonic map, (2) and (4), we have

F∗(
M
∇φUφV) = F∗(CTUφV) + F∗(Ch

M
∇UωV) + F∗(ωTUωV) + F∗(ωv

M
∇UφV) − F∗(AωVφU) − F∗(AωUφV)

+ (∇F∗)⊥(ωU, ωV) + ωU(lnλ)F∗(ωV) + ωV(lnλ)F∗(ωU) − 1M(ωU, ωV)F∗(1radlnλ),

for U,V ∈ Γ(kerF∗). Thus proof is complete.

Theorem 3.14. Let F : (M, 1M, J) −→ (N, 1N) be a conformal semi-invariant Riemannian map from a Kaehler
manifold (M, 1M, J) to a Riemannian manifold (N, 1N). If F is a {(kerF∗)⊥ − (kerF∗)}-pluriharmonic map, then two of
the below assertions imply the third assertion,

i- F is a horizontally homothetic map,

ii- AXV + TBXφV + ACXφV = 0,

iii- (∇F∗)(BX, ωV) + (∇F∗)⊥(CX, ωV) = 0,

for X ∈ Γ((kerF∗)⊥) and V ∈ Γ(kerF∗).

Proof. From definition of a {(kerF∗)⊥ − (kerF∗)}− pluriharmonic map, (2) and (4), we have

0 = −F∗(AXV) +
N

∇
F

JXF∗(ωV) − F∗(
M
∇BXφV) − F∗(

M
∇BXωV) − F∗(

M
∇CXφV) − F∗(

M
∇CXωV)

0 = −F∗(AXV) +
N

∇
F

JXF∗(ωV) − F∗(TBXφV) − F∗(h
M
∇BXωV) − F∗(ACXφV) − F∗(h

M
∇CXωV).

Using (6), we get

0 = (∇F∗)(BX, ωV) + (∇F∗)⊥(CX, ωV) − CX(lnλ)F∗(ωV)
− ωV(lnλ)F∗(CX) − F∗(AXV + TBXφV + ACXφV). (18)
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Suppose that (ii) and (iii) are satisfied, we have

0 = ωV(lnλ)λ21M(CX,CX) (19)

for CX ∈ Γ(µ). Thus λ is a constant on Γ(µ). On the other hand, we derive from (18)

0 = CX(lnλ)λ21M(ωV, ωV) (20)

for ωV ∈ (J(D2)). From above equation, λ is a constant on Γ(J(D2)). The converse is clear from (18).

We now recall (kerF∗)⊥−geodesic map from [2].

Definition 3.15. [2] Let F be a conformal semi-invariant Riemannian map from a Kaehler manifold (M, 1M, J) to a
Riemannian manifold (N, 1N). Then F is called a kerF∗-geodesic map if

(∇F∗)(X,Y) = 0,

for U,V ∈ Γ(kerF∗).

Theorem 3.16. Let F : (M, 1M, J) −→ (N, 1N) be a conformal semi-invariant Riemannian map from a Kaehler
manifold (M, 1M, J) to a Riemannian manifold (N, 1N). Then, F is a kerF∗-geodesic map, if and only if the following
conditions are satisfied,

i- ∇̂UφV + TUωV ∈ D1,

ii- TUφV + h
M
∇UωV ∈ JD2,

for U,V ∈ Γ(kerF∗).

Proof. Using (2) for U,V ∈ Γ(kerF∗), we get

(∇F∗)(U,V) = F∗(CTUφV) + F∗(ω∇̂UφV) + F∗(ωTUωV) + F∗(Ch
M
∇UωV). (21)

Now, for W ∈ Γ(D2) from (21), we obtain

1N((∇F∗)(U,V),F∗(JW)) = λ21M(ω{∇̂UφV + TUωV}, JW). (22)

Then, for Z ∈ Γ(µ) from (21), we obtain

1N((∇F∗)(U,V),F∗(Z)) = λ21M(C{TUφV + h
M
∇UωV},Z). (23)

From (22) and (23) we have the proof.

We now investigate the geometry of leaves of distributions on M.

Theorem 3.17. Let F : (M, 1M, J) −→ (N, 1N) be a conformal semi-invariant Riemannian map from a Kaehler
manifold (M, 1M, J) to a Riemannian manifold (N, 1N). The distribution D2 defines a totally geodesic foliation on M
if and only if the following conditions are satisfied,

i- 1
λ2 1N((∇F∗)(X, JU),F∗(JY)) = 0,

ii- 1
λ2 1N((∇F∗)(X,CZ),F∗(JY)) = 1

λ2 1N(
N
∇

F
XF∗(CZ),F∗(JY)) + 1M(TXBZ, JY),

for X,Y ∈ Γ(D2), Z ∈ Γ((kerF∗)⊥) and U ∈ Γ(D1).
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Proof. For X,Y ∈ Γ(D2), U ∈ Γ(D1) and using (2), we have

1M(
M
∇XY,U) = 1M(TX JU, JY)

= −
1
λ2 1N(F∗(TX JU),F∗(JY))

=
1
λ2 1N((∇F∗)(X, JU),F∗(JY)). (24)

By the similar way, for X,Y ∈ Γ(D2), Z ∈ Γ((kerF∗)⊥) and using (2), we have

1M(
M
∇XY,Z) = −1M(

M
∇XBZ +

M
∇XCZ, JY)

= −1M(TXBZ + h
M
∇XCZ, JY)

= −
1
λ2 1N(

N

∇
F

XF∗(CZ),F∗(JY)) +
1
λ2 1N((∇F∗)(X,CZ),F∗(JY)) − 1M(TXBZ, JY). (25)

The proof is clear from (24) and (25).

In a similar way, we obtain the following result.

Theorem 3.18. Let F : (M, 1M, J) −→ (N, 1N) be a conformal semi-invariant Riemannian map from a Kaehler
manifold (M, 1M, J) to a Riemannian manifold (N, 1N). The distribution D1 defines a totally geodesic foliation on M
if and only if the following conditions are satisfied,

i- ∇̂UBX + TUCX ∈ D2,

ii- 1N((∇F∗)(U, JV),F∗(JW)) = 0,

for U,V ∈ Γ(D1), X ∈ Γ((kerF∗)⊥) and W ∈ Γ(D2).

Theorem 3.19. Let F : (M, 1M, J) −→ (N, 1N) be a conformal semi-invariant Riemannian map from a Kaehler
manifold (M, 1M, J) to a Riemannian manifold (N, 1N). The distribution kerF∗ defines a totally geodesic foliation on
M if and only if the following conditions are satisfied,

i- 1N((∇F∗)(U, JX),F∗(ωV)) = 1N((∇F∗)(U, φV),F∗(JX)) + 1N(∇F
UF∗(JX),F∗(ωV)),

ii- 1
λ2 1N((∇F∗)(U,Z),F∗(ωV)) = 1M(∇̂UZ, φV),

for U,V ∈ Γ(kerF∗), Z ∈ Γ(D2) and X ∈ Γ(µ).

Proof. For U,V ∈ Γ(kerF∗), X ∈ Γ(µ) and using (2), we have

1M(
M
∇UV,X) = −1M(TU JX, φV) − 1M(h

M
∇U JX, ωV)

=
1
λ2 {1N((∇F∗)(U, JX),F∗(ωV)) − 1N(

N

∇
F

UF∗(JX),F∗(ωV))} − 1M(TU JX, φV).

At last equation, because of tensor field T is anti-symmetric, we get

1M(
M
∇UV,X) =

1
λ2 {1N((∇F∗)(U, JX),F∗(ωV)) − 1N(

N

∇
F

UF∗(JX),F∗(ωV)) − 1N((∇F∗)(U, φV),F∗(JX))}. (26)

Similarly, for U,V ∈ Γ(kerF∗), Z ∈ Γ(D2) and using (2), we have

1M(
M
∇UV, JZ) = 1M(TUZ, ωV) + 1M(∇̂UZ, φV)

= 1M(∇̂UZ, φV) −
1
λ2 1N((∇F∗)(U,Z),F∗(ωV)). (27)

From (26) and (27), we get the proof.
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For the distribution (kerF∗)⊥, we have the following result.

Theorem 3.20. Let F : (M, 1M, J) −→ (N, 1N) be a conformal semi-invariant Riemannian map from a Kaehler
manifold (M, 1M, J) to a Riemannian manifold (N, 1N). The distribution (kerF∗)⊥ defines a totally geodesic foliation
on M if and only if the following conditions are satisfied,

i- 1
λ2 1N((∇F∗)(X, JV),F∗(CY)) = 1M(∇̂X JV,BY),

ii- 1
λ2 1N((∇F∗)(X, JW),F∗(CY)) = 1

λ2 1N(
N
∇

F
XF∗(JW),F∗(CY)) + 1M(AX JW,BY),

for X,Y ∈ Γ((kerF∗)⊥), V ∈ Γ(D1) and W ∈ Γ(D2).

Proof. For X,Y ∈ Γ((kerF∗)⊥), V ∈ Γ(D1) and using (2), we have

1M(
M
∇XY,V) = −1M(AX JV,CY) − 1M(∇̂X JV,BY)

=
1
λ2 1N((∇F∗)(X, JV),F∗(CY)) − 1M(∇̂X JV,BY). (28)

Similarly, for X,Y ∈ Γ((kerF∗)⊥), W ∈ Γ(D2) and using (2), we have

1M(
M
∇XY,W) = −1M(AX JW,BY) − 1M(h

M
∇X JW,CY)

=
1
λ2 1N((∇F∗)(X, JW),F∗(CY)) − 1M(AX JW,BY) −

1
λ2 1N(

N

∇
F

XF∗(JW),F∗(CY)). (29)

From (28) and (29), we get the proof.
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