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Abstract. We study surfaces with parallel normalized mean curvature vector field in Euclidean or
Minkowski 4-space. On any such surface we introduce special isothermal parameters (canonical pa-
rameters) and describe these surfaces in terms of three invariant functions. We prove that any surface
with parallel normalized mean curvature vector field parametrized by canonical parameters is determined
uniquely up to a motion in Euclidean (or Minkowski) space by the three invariant functions satisfying a
system of three partial differential equations. We find examples of surfaces with parallel normalized mean
curvature vector field and solutions to the corresponding systems of PDEs in Euclidean or Minkowski space
in the class of the meridian surfaces.

1. Introduction

A basic class of surfaces in Riemannian and pseudo-Riemannian geometry are surfaces with parallel
mean curvature vector field, since they are critical points of some natural functionals and play important
role in differential geometry, the theory of harmonic maps, as well as in physics. Surfaces with parallel
mean curvature vector field in Riemannian space forms were classified in the early 1970s by Chen [2]
and Yau [15]. Recently, spacelike surfaces with parallel mean curvature vector field in pseudo-Euclidean
spaces with arbitrary codimension were classified in [4]. Lorentz surfaces with parallel mean curvature
vector field in arbitrary pseudo-Euclidean space Em

s are studied in [5, 8]. A survey on classical and recent
results on submanifolds with parallel mean curvature vector in Riemannian manifolds as well as in pseudo-
Riemannian manifolds is presented in [6].

The class of surfaces with parallel mean curvature vector field is naturally extended to the class of
surfaces with parallel normalized mean curvature vector field. A submanifold in a Riemannian manifold is
said to have parallel normalized mean curvature vector field if the mean curvature vector is non-zero and
the unit vector in the direction of the mean curvature vector is parallel in the normal bundle [3]. It is well
known that submanifolds with non-zero parallel mean curvature vector field also have parallel normalized
mean curvature vector field. But the condition to have parallel normalized mean curvature vector field is
weaker than the condition to have parallel mean curvature vector field. Every surface in the Euclidean 3-
space has parallel normalized mean curvature vector field but in the 4-dimensional Euclidean space, there
exist examples of surfaces with parallel normalized mean curvature vector field, but with non-parallel
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mean curvature vector field. In [3] it is proved that every analytic surface with parallel normalized mean
curvature vector in the Euclidean space Em must either lie in a 4-dimensional space E4 or in a hypersphere
of Em as a minimal surface.

Spacelike submanifolds with parallel normalized mean curvature vector field in a general de Sitter
space are studied in [14]. It is shown that compact spacelike submanifolds whose mean curvature does
not vanish and whose corresponding normalized vector field is parallel, must be, under some suitable
geometric assumptions, totally umbilical.

In [1] we studied the local theory of Lorentz surfaces with parallel normalized mean curvature vector
field in the pseudo-Euclidean space with neutral metric E4

2. Introducing special geometric parameters
(called canonical parameters) on each such surface, we described the Lorentz surfaces with parallel normal-
ized mean curvature vector field in terms of three invariant functions satisfying a system of three partial
differential equations.

In the present paper we study surfaces with parallel normalized mean curvature vector field in the
Euclidean 4-space E4 and the Minkowski 4-space E4

1. We introduce canonical parameters on each such
surface that allow us to describe these surfaces in terms of three invariant functions. We prove that any
surface with parallel normalized mean curvature vector field is determined up to a motion in E4 by three
functions λ(u, v), µ(u, v) and ν(u, v) satisfying the following system of partial differential equations

νu = λv − λ(ln |µ|)v;

νv = λu − λ(ln |µ|)u;

ν2
− (λ2 + µ2) = 1

2 |µ|∆ ln |µ|,
(1)

where ∆ denotes the Laplace operator.
The class of spacelike surfaces with parallel normalized mean curvature vector field in the Minkowski

space E4
1 is described by three functions λ(u, v), µ(u, v) and ν(u, v) satisfying the following system of partial

differential equations

νu = λv − λ(ln |µ|)v;

νv = λu − λ(ln |µ|)u;

ε(ν2
− λ2 + µ2) = 1

2 |µ|∆ ln |µ|,
(2)

where ε = 1 corresponds to the case the mean curvature vector field is spacelike, ε = −1 corresponds to the
case the mean curvature vector field is timelike.

Examples of surfaces with parallel normalized mean curvature vector field inE4 andE4
1 can be found in

the class of the so-called meridian surfaces – two-dimensional surfaces which are one-parameter systems
of meridians of a rotational hypersurface [11–13]. In the Euclidean space E4 there is one type of meridian
surfaces, while in the Minkowski space E4

1 we distinguish three types of meridian surfaces depending on
the casual character of the rotational axis (spacelike, timelike, or lightlike). The functions λ(u, v), µ(u, v),
ν(u, v) of each meridian surface with parallel normalized mean curvature vector field parametrized by
canonical parameters (u, v) in E4 or E4

1 give a solution to the system of partial differential equations (1) or
(2), respectively. In Section 5 we give explicit examples of solutions to systems (1) and (2).

2. Preliminaries

Let M2 be a 2-dimensional surface in the Euclidean space E4 or a spacelike surface in the Minkowski
space E4

1. We denote by ∇ and ∇′ the Levi Civita connections of M2 and E4 (or E4
1), respectively. For any

tangent vector fields x, y and any normal vector field ξ of M2, the formulas of Gauss and Weingarten are
given respectively by [2]:

∇
′
xy = ∇xy + σ(x, y);

∇
′
xξ = −Aξx + Dxξ.
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These formulas define the second fundamental form σ, the normal connection D, and the shape operator
Aξ with respect to ξ. The shape operator Aξ is a symmetric endomorphism of the tangent space TpM2 at
p ∈M2.

The mean curvature vector field H of M2 in E4 (or E4
1) is defined as

H =
1
2

tr σ.

A normal vector field ξ on M2 is called parallel in the normal bundle (or simply parallel) if Dξ = 0 holds
identically [7]. The surface is said to have parallel mean curvature vector field if its mean curvature vector H
satisfies DH = 0 identically.

Surfaces for which the mean curvature vector H is non-zero and there exists a unit vector field b in the
direction of H, such that b is parallel in the normal bundle, are called surfaces with parallel normalized mean
curvature vector field [3]. It is easy to see that if M2 is a surface with non-zero parallel mean curvature vector
field H (i.e. DH = 0), then M2 is a surface with parallel normalized mean curvature vector field, but the
converse is not true in general. It is true only in the case ‖H‖ = const.

3. Canonical parameters on surfaces with parallel normalized mean curvature vector field in E4

Let M2 : z = z(u, v), (u, v) ∈ D (D ⊂ R2) be a local parametrization of a surface free of minimal points
in the Euclidean 4-space E4. In [9] we defined principal lines and introduced a geometrically determined
orthonormal frame field {x, y, b, l} at each point of the surface which is defined by the principal lines and the
mean curvature vector field H. With respect to this frame field we have the following Frenet-type formulas:

∇
′
xx = γ1 y + ν1 b; ∇

′
xb = −ν1 x − λ y + β1 l;

∇
′
xy = −γ1 x + λ b + µ l; ∇

′
yb = −λ x − ν2 y + β2 l;

∇
′
yx = −γ2 y + λ b + µ l; ∇

′
xl = −µ y − β1 b;

∇
′
yy = γ2 x + ν2 b; ∇

′
yl = −µ x − β2 b,

(3)

where γ1, γ2, ν1, ν2, λ, µ, β1, β2 are functions on M2 determined by the geometric frame field as follows:

ν1 = 〈∇′xx, b〉, ν2 = 〈∇′yy, b〉, λ = 〈∇′xy, b〉, µ = 〈∇′xy, l〉,

γ1 = 〈∇′xx, y〉, γ2 = 〈∇′yy, x〉, β1 = 〈∇′xb, l〉, β2 = 〈∇′yb, l〉. (4)

We call these functions geometric functions of the surface since they determine the surface up to a rigid
motion in E4.

We considered the general class of surfaces for which µu µv , 0 and for this class of surfaces we proved
the fundamental existence and uniqueness theorem in terms of their geometric functions. The theorem
states:

Theorem 3.1. [9] Let γ1, γ2, ν1, ν2, λ, µ, β1, β2 be smooth functions, defined in a domain D, D ⊂ R2, and
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satisfying the conditions

µu

2µγ2 + ν1 β2 − λβ1
> 0;

µv

2µγ1 + ν2 β1 − λβ2
> 0;

−γ1
√

E
√

G = (
√

E)v; −γ2
√

E
√

G = (
√

G)u;

ν1 ν2 − (λ2 + µ2) =
1
√

E
(γ2)u +

1
√

G
(γ1)v −

(
(γ1)2 + (γ2)2

)
;

2λγ2 + µβ1 − (ν1 − ν2)γ1 =
1
√

E
λu −

1
√

G
(ν1)v;

2λγ1 + µβ2 + (ν1 − ν2)γ2 = −
1
√

E
(ν2)u +

1
√

G
λv;

γ1 β1 − γ2 β2 + (ν1 − ν2)µ = −
1
√

E
(β2)u +

1
√

G
(β1)v,

where
√

E =
µu

2µγ2 + ν1 β2 − λβ1
,
√

G =
µv

2µγ1 + ν2 β1 − λβ2
. Let {x0, y0, b0, l0} be an orthonormal frame at a

point p0 ∈ R4. Then there exist a subdomain D0 ⊂ D and a unique surface M2 : z = z(u, v), (u, v) ∈ D0, passing
through p0, such that {x0, y0, b0, l0} is the geometric frame of M2 at the point p0 and γ1, γ2, ν1, ν2, λ, µ, β1, β2 are
the geometric functions of M2.

Hence, any surface of the general class is determined up to a rigid motion in E4 by the eight geometric
functions γ1, γ2, ν1, ν2, λ, µ, β1, β2 satisfying some natural conditions.

Now we focus our attention on the class of surfaces with parallel normalized mean curvature vector
field. The mean curvature vector field H is expressed as

H =
ν1 + ν2

2
b. (5)

Using (5) and (3) we obtain that

DxH = x
(
ν1 + ν2

2

)
b + β1 l;

DyH = y
(
ν1 + ν2

2

)
b + β2 l.

Hence, the mean curvature vector field H is parallel if and only if β1 = β2 = 0 and ν1 + ν2 = const. The
normalized mean curvature vector field of M2 is b. It follows from (3) that b is parallel in the normal bundle
if and only if β1 = β2 = 0.

We shall study surfaces with parallel normalized mean curvature vector field, but with non-parallel
mean curvature vector field. They are characterized by the conditions β1 = β2 = 0, ν1 + ν2 , const. For
these surfaces we shall introduce special isothermal parameters that allow us to formulate the fundamental
existence and uniqueness theorem in terms of three geometric functions.

Definition 3.2. Let M2 be a surface with parallel normalized mean curvature vector field. The parameters (u, v) of
M2 are said to be canonical, if

E(u, v) =
1

|µ(u, v)|
; F(u, v) = 0; G(u, v) =

1
|µ(u, v)|

.

Theorem 3.3. Each surface with parallel normalized mean curvature vector field in E4 locally admits canonical
parameters.
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Proof. Using the Gauss and Codazzi equations, from (3) we obtain that the geometric functionsγ1, γ2, ν1, ν2,
λ, µ, β1, β2 of a surface free of minimal points satisfy the following integrability conditions:

2µγ2 + ν1 β2 − λβ1 = x(µ);

2µγ1 − λβ2 + ν2 β1 = y(µ);

2λγ2 + µβ1 − (ν1 − ν2)γ1 = x(λ) − y(ν1);

2λγ1 + µβ2 + (ν1 − ν2)γ2 = −x(ν2) + y(λ);

γ1 β1 − γ2 β2 + (ν1 − ν2)µ = −x(β2) + y(β1);

ν1 ν2 − (λ2 + µ2) = x(γ2) + y(γ1) −
(
(γ1)2 + (γ2)2

)
.

(6)

Putting β1 = β2 = 0 in formulas (6), we get

2µγ2 = x(µ);

2µγ1 = y(µ);

2λγ2 − (ν1 − ν2)γ1 = x(λ) − y(ν1);

2λγ1 + (ν1 − ν2)γ2 = −x(ν2) + y(λ);

(ν1 − ν2)µ = 0;

ν1 ν2 − (λ2 + µ2) = x(γ2) + y(γ1) −
(
(γ1)2 + (γ2)2

)
.

(7)

The first and second equalities of (7) imply γ1 =
1
2

y(ln |µ|); γ2 =
1
2

x(ln |µ|). On the other hand, from

(4) it follows that γ1 = −y(ln
√

E), γ2 = −x(ln
√

G). Hence, y(ln |µ|E) = 0 and x(ln |µ|G) = 0, which imply
that E|µ| does not depend on v, and G|µ| does not depend on u. Hence, there exist functions ϕ(u) > 0 and
ψ(v) > 0, such that

E|µ| = ϕ(u); G|µ| = ψ(v).

Under the following change of the parameters:

u =

∫ u

u0

√
ϕ(u) du + u0, u0 = const

v =

∫ v

v0

√
ψ(v) dv + v0, v0 = const

we obtain
E =

1
|µ|

; F = 0; G =
1
|µ|
,

which imply that the parameters (u, v) are canonical.

Since µ , 0, it follows from the fifth equality of (7) that ν1 = ν2 =: ν. Thus we have

Corollary 3.4. If M2 is a surface with parallel normalized mean curvature vector field, then ν1 = ν2.

Now we suppose that M2 : z = z(u, v), (u, v) ∈ D is a surface with parallel normalized mean curvature
vector field parametrized by canonical parameters (u, v). It follows from the first two equalities in (7) that
the functions γ1 and γ2 are expressed by:

γ1 =
(√
|µ|

)
v

; γ2 =
(√
|µ|

)
u
.
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The third and fourth equalities of (7) imply the following partial differential equations:

νu = λv − λ(ln |µ|)v;

νv = λu − λ(ln |µ|)u.

The last equality of (7) implies

ν2
− (λ2 + µ2) =

1
2
|µ|∆ ln |µ|,

where ∆ =
∂2

∂u2 +
∂2

∂v2 is the Laplace operator.

Now we shall formulate the fundamental existence and uniqueness theorem for the class of surfaces
with parallel normalized mean curvature vector field in terms of canonical parameters.

Theorem 3.5. Let λ(u, v), µ(u, v) and ν(u, v) be smooth functions, defined in a domainD, D ⊂ R2, and satisfying
the conditions

µ , 0, ν , const;

νu = λv − λ(ln |µ|)v;

νv = λu − λ(ln |µ|)u;

ν2
− (λ2 + µ2) = 1

2 |µ|∆ ln |µ|.

(8)

If {x0, y0, b0, l0} is an orthonormal frame at a point p0 ∈ E4, then there exists a subdomain D0 ⊂ D and a unique
surface M2 : z = z(u, v), (u, v) ∈ D0 with parallel normalized mean curvature vector field, such that M2 passes
through p0, {x0, y0, b0, l0} is the geometric frame of M2 at the point p0, and the functions λ(u, v), µ(u, v), ν(u, v) are
the geometric functions of M2. Furthermore, (u, v) are canonical parameters of M2.

So, by introducing canonical parameters on a surface with parallel normalized mean curvature vector
field we manage to reduce up to three the number of functions and the number of partial differential
equations which determine the surface up to a motion.

Our approach to the study of surfaces with parallel normalized mean curvature vector field can be
applied also to spacelike surfaces in the Minkowski space E4

1.

4. Canonical parameters on spacelike surfaces with parallel normalized mean curvature vector field in
E

4
1

Analogously to the theory of surfaces in the Euclidean space E4 we developed an invariant local theory
of spacelike surfaces in the Minkowski space E4

1 [10]. We introduced principal lines and a geometrically
determined moving frame field at each point of a spacelike surface. Writing derivative formulas of Frenet-
type for this frame field, we obtained eight geometric functions and proved a fundamental existence and
uniqueness theorem, stating that any spacelike surface whose mean curvature vector at any point is a
non-zero spacelike vector or a timelike vector is determined up to a motion in E4

1 by its eight geometric
functions satisfying some natural conditions [10].

Similarly to the Euclidean case, we can introduce canonical parameters for the class of spacelike surfaces
with parallel normalized mean curvature vector field inE4

1. The canonical parameters are special isothermal
parameters satisfying the conditions

E(u, v) = G(u, v) =
1

|µ(u, v)|
; F(u, v) = 0.

Analogously to the proof of Theorem 3.3, we get the following result.
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Theorem 4.1. Each spacelike surface with parallel normalized mean curvature vector field in E4
1 locally admits

canonical parameters.

The fundamental existence and uniqueness theorem in terms of canonical parameters for the class of
spacelike surfaces with parallel normalized mean curvature vector field states as follows.

Theorem 4.2. Let λ(u, v), µ(u, v) and ν(u, v) be smooth functions, defined in a domainD, D ⊂ R2, and satisfying
the conditions

µ , 0, ν , const;

νu = λv − λ(ln |µ|)v;

νv = λu − λ(ln |µ|)u;

ε(ν2
− λ2 + µ2) = 1

2 |µ|∆ ln |µ|, ε = ±1.

(9)

If {x0, y0, b0, l0} is an orthonormal frame at a point p0 ∈ E4
1 (with 〈b0, b0〉 = ε; 〈l0, l0〉 = −ε), then there exist a

subdomain D0 ⊂ D and a unique spacelike surface M2 : z = z(u, v), (u, v) ∈ D0 with parallel normalized mean
curvature vector field, whose mean curvature vector at any point is spacelike (resp. timelike) in the case ε = 1 (resp.
ε = −1). Moreover, M2 passes through p0, {x0, y0, b0, l0} is the geometric frame of M2 at the point p0, and the
functions λ(u, v), µ(u, v), ν(u, v) are the geometric functions of M2. Furthermore, (u, v) are canonical parameters of
M2.

5. Examples

In [9] we constructed a special class of surfaces which are one-parameter systems of meridians of a
rotational hypersurface in E4 and called them meridian surfaces. Each meridian surfaceM is determined
by a meridian curve m of a rotational hypersurface in E4 and a smooth curve c lying on the unit 2-
dimensional sphere S2(1) in a 3-dimensional Euclidean subspace E3

⊂ E4. All invariants of the meridian
surfaceM are expressed by the curvature κm(u) of the meridian curve m and the spherical curvature κ(v)
of the curve c on S2(1). We classified the meridian surfaces with constant Gauss curvature and the meridian
surfaces with constant mean curvature. In [11] we gave the complete classification of Chen meridian
surfaces and meridian surfaces with parallel normalized mean curvature vector field. Meridian surfaces
in the Minkowski space E4

1 are studied in [12] and [13]. Since in E4
1 there are three types of rotational

hypersurfaces, namely rotational hypersurface with timelike, spacelike, or lightlike axis, we distinguish
three types of meridian surfaces – elliptic, hyperbolic, and parabolic. We found all meridian surfaces of
elliptic, hyperbolic, or parabolic type with parallel normalized mean curvature vector field. The geometric
functions λ(u, v), µ(u, v), ν(u, v) of a meridian surface with parallel normalized mean curvature vector
field parametrized by canonical parameters (u, v) in E4 (resp. E4

1) give a solution to the system of partial
differential equations (8) (resp. (9)).

5.1. A solution to the system of PDEs describing the surfaces with parallel normalized mean curvature vector field in
E4

Let Oe1e2e3e4 be the standard orthonormal frame in E4. Let

f (u) =
√

u2 + 2u + 5; 1(u) = 2 ln(u + 1 +
√

u2 + 2u + 5)

and consider the rotational hypersurface M3 obtained by the rotation of the meridian curve m : u →
( f (u), 1(u)) about the Oe4-axis, which is parametrized as follows:

M3 : Z(u,w1,w2) = f (u) cos w1 cos w2e1 + f (u) cos w1 sin w2e2 + f (u) sin w1e3 + 1(u)e4.
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If we denote by l(w1,w2) = cos w1 cos w2 e1 + cos w1 sin w2 e2 + sin w1 e3 the unit position vector of the 2-
dimensional sphere S2(1) lying inE3 = span{e1, e2, e3} and centered at the origin O, then the parametrization
of M3 is written shortly as

M3 : Z(u,w1,w2) = f (u) l(w1,w2) + 1(u) e4.

If w1 = w1(v), w2 = w2(v), v ∈ J, J ⊂ R, then c : l = l(v) = l(w1(v),w2(v)), v ∈ J is a smooth curve on the
sphere S2(1). We consider the two-dimensional surfaceM defined by:

M : z(u, v) = f (u) l(v) + 1(u) e4, u ∈ I, v ∈ J.

It is a one-parameter system of meridians of the rotational hypersurface M3. We callM a meridian surface
on M3.

According to a result in [11], for an arbitrary spherical curve c : l = l(v) on S2(1) with spherical curvature
κ(v) , 0, the corresponding meridian surface M is a surface with parallel normalized mean curvature
vector field but non-parallel mean curvature vector field. The geometric functions λ, µ, ν of the meridian
surfaceMwith respect to the parameters (u, v) are:

λ(u, v) =
κ(v)

2
√

u2 + 2u + 5
;

µ(u, v) =
2

u2 + 2u + 5
;

ν(u, v) =
κ(v)

2
√

u2 + 2u + 5
.

(10)

The mean curvature vector field is:
H =

κ(v)

2
√

u2 + 2u + 5
H0,

where H0 is a unit vector field in the direction of H. Since 〈H,H〉 , const, M is a surface with parallel
normalized mean curvature vector but non-parallel H.

It is important to note that the parameters (u, v) coming from the parametrization of the meridian curve
m are not canonical parameters of the meridian surfaceM. But if we change the parameters as follows

ū = ln(u + 1 +
√

u2 + 2u + 5) + v;

v̄ = − ln(u + 1 +
√

u2 + 2u + 5) + v,

then we get canonical parameters (ū, v̄) ofM. Hence, changing the parameters (u, v) with (ū, v̄), we obtain
that the functions λ(u(ū, v̄), v(ū, v̄)), µ(u(ū, v̄), v(ū, v̄)), and ν(u(ū, v̄), v(ū, v̄)), given by (10) give a solution to
the following system of PDEs:

νū = λv̄ − λ(ln |µ|)v̄;

νv̄ = λū − λ(ln |µ|)ū;

ν2
− (λ2 + µ2) = 1

2 |µ|∆ ln |µ|.
(11)

One can see also by a direct computation that the functions given by (10) satisfy the equalities in system
(11).

5.2. A solution to the system of PDEs describing the spacelike surfaces with parallel normalized mean curvature
vector field in E4

1

Solutions to system (9) can be found in the class of the meridian surfaces in the Minkowski 4-space. In
E4

1 there exist three types of spacelike meridian surfaces and all of them give solutions to the corresponding
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system of PDEs. Bellow we present a solution obtained from the class of the meridian surfaces lying on a
rotational hypersurface with lightlike axis, since it is the most interesting rotation in E4

1.
Let Oe1e2e3e4 be the standard orthonormal frame in E4

1, i.e. 〈e1, e1〉 = 〈e2, e2〉 = 〈e3, e3〉 = 1; 〈e4, e4〉 = −1.
Let

f (u) =
√

u + 1; 1(u) = −
2
3

(u + 1)
3
2 , u ∈ (−1; +∞)

and consider the rotational hypersurface with lightlike axis parametrized as follows:

Z(u,w1,w2) = f (u) w1 cos w2 e1 + f (u) w1 sin w2 e2 +

(
f (u)

(w1)2

2
+ 1(u)

)
ξ1 + f (u) ξ2,

where ξ1 =
e3 + e4
√

2
, ξ2 =

−e3 + e4
√

2
. According to a result in [13], for an arbitrary curve c : l = l(v) =

l(w1(v),w2(v)), v ∈ J, J ⊂ R with curvature κ(v) , 0 lying on the paraboloid

P
2 : l(w1,w2) = w1 cos w2 e1 + w1 sin w2 e2 +

(w1)2

2
ξ1 + ξ2,

the corresponding meridian surface parametrized by

M
′′′ : z(u, v) = f (u) l(v) + 1(u)ξ1

is a surface with parallel normalized mean curvature vector field (and non-parallel H). Indeed, the geometric
functions λ(u, v), µ(u, v), ν(u, v) of the meridian surfaceM′′′ with respect to the parameters (u, v) look like:

λ(u, v) =
κ(v)

2
√

u + 1
;

µ(u, v) = −
1

2(u + 1)
;

ν(u, v) =
κ(v)

2
√

u + 1
.

(12)

The mean curvature vector field is
H =

κ(v)

2
√

u + 1
H0,

where H0 is a unit vector field in the direction of H. In this example, H0 is a spacelike vector at each point,
and hence the solution corresponds to the case ε = 1 in system (9).

Again, the parameters (u, v) coming from the parametrization of the meridian curve m are not canonical
parameters of the meridian surfaceM′′′. But if we change the parameters as follows:

ū =
√

u + 1 +
v
2

;

v̄ = −
√

u + 1 +
v
2
,

then we obtain canonical parameters (ū, v̄) of the meridian surface. Hence, the functions λ(u(ū, v̄), v(ū, v̄)),
µ(u(ū, v̄), v(ū, v̄)), and ν(u(ū, v̄), v(ū, v̄)), defined by (12) give a solution to the following system of PDEs:

νū = λv̄ − λ(ln |µ|)v̄;

νv̄ = λū − λ(ln |µ|)ū;

ν2
− λ2 + µ2 = 1

2 |µ|∆ ln |µ|.
(13)
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It can be seen also by a direct computation that the functions defined by (12), satisfy the equalities in
system (13).

This is the system of PDEs describing the spacelike surfaces with parallel normalized mean curvature
vector field in the Minkowski space E4

1 in the case ε = 1. Bellow we present shortly a solution to the same
system in the case ε = −1.

Let f (u) =
√

u2 + 2u + 5; 1(u) = 2 ln(u + 1 +
√

u2 + 2u + 5) and consider the rotational hypersurface in
E4

1 parametrized by

Z(u,w1,w2) = 1(u)e1 + f (u)
(
cosh w1 cos w2e2 + cosh w1 sin w2e3 + sinh w1e4

)
.

According to a result in [12], for an arbitrary curve c : l = l(v) = l(w1(v),w2(v)), v ∈ J with non-vanishing
curvature κ(v) lying on the de Sitter space

S2
1(1) : l(w1,w2) = cosh w1 cos w2 e2 + cosh w1 sin w2 e3 + sinh w1 e4,

the corresponding meridian surface

M
′′ : z(u, v) = 1(u) e1 + f (u) l(v)

is a surface with parallel normalized mean curvature vector field but non-parallel H. The geometric
functions λ, µ, ν ofM′′ with respect to the parameters (u, v) are:

λ(u, v) =
κ(v)

2
√

u2 + 2u + 5
;

µ(u, v) =
2

u2 + 2u + 5
;

ν(u, v) =
κ(v)

2
√

u2 + 2u + 5
.

(14)

Changing the parameters by

ū = ln(u + 1 +
√

u2 + 2u + 5) + v;

v̄ = − ln(u + 1 +
√

u2 + 2u + 5) + v,

we get that the functions λ(u(ū, v̄), v(ū, v̄)), µ(u(ū, v̄), v(ū, v̄)), ν(u(ū, v̄), v(ū, v̄)), defined by (14), give a solution
to the system

νū = λv̄ − λ(ln |µ|)v̄;

νv̄ = λū − λ(ln |µ|)ū;

−(ν2
− λ2 + µ2) = 1

2 |µ|∆ ln |µ|.
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