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Rotary Mappings of Spaces with Affine Connection

Josef Mikeša, Lenka Rýparováa
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Abstract. This paper concerns with rotary mappings of two-dimensional spaces with an affine connection
onto (pseudo-) Riemannian spaces. The results obtained in the theory of rotary mappings are further
developed. We prove that any (pseudo-) Riemannian space admits rotary mapping. There are also
presented certain properties from which yields the existence of these rotary mappings.

1. Introduction

Special diffeomorphisms, for which any special curve maps onto a special curve, were studied in many
works. These are for example geodesic, holomorphically projective, F-planar, almost geodesic, and other
mappings, i.e. see [1–7, 11–13, 15–22, 24–32, 34, 35, 37].

Our work is devoted to a certain question about rotary mappings, for which any geodesic is mapped
onto an isoperimetric extremal of rotation, i.e. [12–14, 16, 18, 23, 33].

Questions about isoperimetric extremals of rotation and rotary mappings had been studied by S. G. Leiko.
He was the first one to introduce terms of isoperimetric extremals of rotation and rotary mappings [12–
14, 16, 18].

Equations of these extremals of rotation were later specified in work [24]. Another contribution to this
topic can be found in [4], where authors refined requirements for spaces which admit rotary mapping.

Above mentioned results Leiko obtained in his works have their application in the theory of gravitation
fields, see [11, 15, 17]. In addition, he continued the research with Vinnik cooperation [35].

Leiko [12] found a necessary condition for the existence of the rotary mapping of two-dimensional
Riemannian spacesV2, which is the existence of vector fieldθ that satisfies the following necessary condition

∇Xθ = (A(X) + ∇XK/K) · θ + ν · X (1)

for any tangent vector X, where ∇ is the Levi-Civita connection, K is the Gaussian curvature, A is a linear
form for whichA(X) = 1(X, θ), 1 is a metric tensor, and ν is a function onV2.

In [4] Chudá, Mikeš and Sochor stated that for any two-dimmensional (pseudo-) Riemannian spaceV2
where exist vector fields satisfying the conditions (1) it is possible to construct the space with affine
connectionA2 which admits rotary mapping ontoV2.
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In papers [12, 13, 16, 18] Leiko claims that from the equations (1) it yields spaces V2 are isometric with
surfaces of revolution.

In the presented paper we are going to prove that the above mentioned statement is not valid, i.e. the
following theorem holds

Theorem 1.1. There exists a (pseudo-) Riemannian space V2 which is not isometric with surface of revolution and
where exists the vector field satisfying equations (1).

This result is in the shorter form presented in [23]. Further, we analyse gained results in more detail.

2. On isopetrimetric extremal of rotation and rotary mapping

Isoperimetric extremals of rotation were first introduced in [12] by Leiko. The term was defined on
two-dimensional Riemannian spacesV2 and surfaces S2 with a metric 1 as follows.

A curve `: x = x(t) on surface or on two-dimensional Riemannian space is called the isoperimetric extremal
of rotation if ` is the extremal of functionals θ[`] and s[`] = const with fixed ends.

Here

θ[`] =

∫ t1

t0

k(t) dt and s[`] =

∫ t1

t0

|λ| dt,

where k(t) is the curvature and |λ| is the length of the tangent vector λ of `.
Later, it was proved by Leiko [12, 16] that a curve ` is an isoperimetric extremal of rotation if and only

if its Frenet curvature k and Gaussian curvature K are proportional k = c ·K,where c is a constant. For c = 0
we get a geodesic.

The equations of the isoperimetric extremal of rotation were simplified by Mikeš, Stepanova and So-
chor [24] to ∇sλ = c · K · Fλ, where c is a constant, s is the arc length, F is a tensor

(1
1
)

which satisfies the
conditions

F2 = −e · Id, 1(X,FX) = 0, ∇F = 0.

For Riemannian manifold V2 is e = +1 and F is a complex structure and for pseudo-Riemannian manifold
is e = −1 and F is a product structure. This tensor F is uniquely defined (with the respect to the sign) with
using the skew-symmetric and covariantly constant discriminant tensor εi j, which is defined

Fh
j = 1hiεi j, εi j =

√
|111122 − 1

2
12| ·

(
0 1
−1 0

)
.

In [12] there was introduced the term of rotary diffeomorphism between the two-dimensional Rieman-
nian spacesV2 and the surfaces S2 with the metric 1.

A diffeomorphism between two-dimensional (pseudo-) Riemannian manifoldsV2 and V̄2 is called rotary
if any geodesic on V̄2 is mapped onto isoperimetric extremal of rotation onV2.

This definition which was formulated by Leiko [12] was later generalized as follows, see [4].
A diffeomorphism f : V2 → Ā2 is called rotary mapping if any geodesic on manifold Ā2 with affine

connection ∇̄ is mapped onto isoperimetric extremal of rotation on two-dimensional (pseudo-) Riemanninan
manifoldV2.

If the definition was formulated the other way around: A diffeomorphism between two-dimensional
(pseudo-) Riemannian manifoldsV2 and V̄2 is called rotary if any isoperimetric extremal of rotation onV2
is mapped onto geodesic on V̄2, then this mapping would be a geodesic mapping.

Later, some new properties were proved, see [4]: WhenV2 admits rotary mapping f onto Ā2 then ifV2
and Ā2 in common coordinate system belong differentiability class C2 and C1, respectively, then Gaussian
curvature K on V2 is differentiable. As a result authors formulated new theorem: Rotary diffeomorphism
V2 → Ā2 does not exist if Gaussian curvature K < C1.
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Chudá, Mikeš and Sochor [4] also proved that (pseudo-) Riemannian manifold V2 admits rotary map-
ping onto Ā2 if and only if inV2 holds equation

θh
, j = θh(θ j + ∂ j ln |K|) + ν δh

j , (2)

where θi = 1iαθα, ν is a function onV2 and vector field θh is a special case of torse-forming field. Here and
after comma denotes covariant derivative respective connection ∇, and ∂1 = ∂/∂xi.

3. Contra example of spaces admitting rotary mappings

A necessary condition for a (pseudo-) Riemannian spaceV2 to admit rotary mapping onto a manifold Ā2
is existence of a vector field that satisfies condition (1). Apparently, this vector field is a special type of
torse-forming vector field which was defined by K. Yano [36], see also [19].

A vector field ξ is called torse-forming if for any tangent vector X holds

∇Xξ = a(X) · ξ + νX,

where a is a linear form and ν is a function.
Riemannian spaces Vn where these vector fields exist are characterized with a metric it the following

form
ds2 = (dx1)

2
+ f (x1, . . . , xn) ds̃2,

where ds̃2 is a metric of the (n − 1) dimensional (pseudo-) Riemannian space Ṽn−1 and f is a function of all
variables.

In our case, we suppose that the metric of the two-dimensional (pseudo-) Riemannian spaceV2 has the
following form

ds2 =
(
dx1

)2
+ f (x1, x2) ·

(
dx2

)2
. (3)

It is known that this form of the metric always exists in any (pseudo-) Riemannian spaceV2. This coordinate
system is called the semi-geodesic coordinate system, see [9].

In case the function f is a function of the variable x1 then the space V2 is isometric with a surface of
revolution. Also, let us suppose that the component θ2 in this coordinate system is vanishing.

Now, we can compute non vanishing Christoffel symbols of the first and the second kind

Γ122 = Γ212 = 1/2 f1, Γ221 = −1/2 f1, Γ222 = 1/2 f2, and

Γ2
12 = Γ2

21 = 1/2
f1
f
, Γ1

22 = −1/2 f1, Γ2
22 = 1/2

f2
f
,

here and further we denote fi = ∂i f , ∂i ≡ ∂/∂xi and analogically fi j = ∂i j f .
We use a well known formula to calculate the Gaussian curvature K of the surfaceV2

K =
R1212

111122 − 1
2
12

,

where

Rhijk = 1hαRαi jk and Rh
ijk = ∂ jΓ

h
ik − ∂kΓ

h
ij + ΓαikΓ

h
α j − Γαi jΓ

h
αk (4)

are the components of the Riemannian tensors. Because R1212 = R1
212 · 111 from (4) it follows that

R1212 = R1
212 · 1 = ∂1Γ

1
22 − ∂2Γ

1
21 + Γα22Γ

1
α1 − Γα21Γ

1
α2 = −1/2 f11 + 1/4

f 2
1

f
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therefore

K = −
f11

2 f
+

(
f1

2 f

)2

.

To simplify this relation we use substitution F = f1/ f and thus we obtain

K = −1/2 F1 − 1/4 F2, (5)

where similarly as above F1 = ∂1F.
We can rewrite fundamental equation (2) in the following form

θh
,i = θh(θi + ∂i ln |K|) + ν δh

i

and after lowering indices we get

θh,i = θh(θi + ∂iK/K) + ν1hi, (6)

where K is the Gaussian curvature of the spaceV2 and θi = 1iαθi. From it follows θ1 = θ1, and additionally
in chosen coordinate system holds θ2 = 0.

For indices (hi) = (12) from (6) and after lowering indices we obtain

∂2θ1 = θ1 · ∂2K/K

and after integration we get
θ1 = κ(x1)K

where κ is a function of variable x1. Evidently, for (hi) = (21) formula (6) is identity and for (hi) = (11) and
(22) we get following equations

ν = θ11 − θ
2
1 − θ1 ∂iK/K and ν =

1
2
θ1 · f1/ f .

We merge these formulas and obtain following equation

κ′

κ
− κ · K =

1
2
·

f1
f
. (7)

Therefore from (7) and (5) we get the equation

F′ = −
1
2

F2 +
1
κ

F − 2 ·
κ′

κ2

which is a differential equation called Riccati equation, see [8]. Here, symbol “ ′ ” denotes a derivative with
respect to variable x1 and in these formulas x2 is a parameter.

We use special substitution F = 2 ·
u′

u
therefore we get a linear differential equation of the second order

respective the unknown function u

u′′ =
1
κ

u′ −
κ′

κ2 u. (8)

The general solution of equation (8) can be written in the following form

u = C1u1(x1) + C2u2(x1)

where C1 = C1(x2) and C2 = C2(x2).
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Let us suppose thatU(x1) is a particular solution of differential equation (8). We put this solution into
differential equation (8) and then we obtain

κ′ = −
U
′′

U
κ2 +

U
′

U
κ.

It is a differential equation of Bernoulli type, from which we can get inhomogeneous linear differential

equation using substitution v =
1
κ

v′ = −
U
′

U
v +
U
′′

U
.

This equation can be solved using method of variation of parameters, from which we obtain v =
U
′

U

therefore κ =
U

U′
. From it follows that one from the solutions of the equation (8) with a priori given κ(x1) is

u = e
∫

1/κdx1
.

If the functions U and V are two solution of the differential equation (8) it is possible to form their
Wronskian

W =

∣∣∣∣∣U V

U
′
V
′

∣∣∣∣∣ =UV′ −VU′.

Then after differentiating W and using (8) forU andV we get

W′ =

∣∣∣∣∣U′ V′U
′
V
′

∣∣∣∣∣ +

∣∣∣∣∣U V

U
′′
V
′′

∣∣∣∣∣ =

∣∣∣∣∣ U V

U
′/κ +U · κ′/κ2

V
′/κ +V · κ′/κ2

∣∣∣∣∣ =
1
κ

W.

Because W′ =
1
κ

W we get this relation

W = C1 · e
∫

1/κdx1
, (9)

where C1 is a constant of integration.

Because
1
κ

=
U
′

U
then

∫
1
κ

dx1 = ln |U| and from (9) we obtain

UV
′
−VU

′ = C1 · eln |U|,

therefore we get a linear inhomogeneous differential equationV′ =
U
′

U
V + C1.

Firstly, we solve related homogeneous equationV′ =
U
′

U
V and we get the solutionV = C · U, where

C is a constant of integration.
Secondly, using the method of variation of parameters, we suppose that C is a function of the variable x1

and then we obtain C =

∫
C1

U
dx1 thus the other partial solution of (8) is

V = C1 · U ·

∫
1
U

dx1 + C2,

where C2 is a constant of integration. As above C1 = C1(x2) and C2 = C2(x2).
In conclusion, if the certain particular solution of the equation (8) is known it is possible to find the

other particular solution, therefore, the general solution of this equation. From this follows that the vector
field θ which satisfies the conditions (6) always exists. In general case, the Riemannian space V2 given by
the metric in the form (3) is not a surface of revolution, therefore, the Theorem 1.1 from the Introduction is
valid.
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[34] S. Stepanov, I. Shandra, J. Mikeš, Harmonic and projective diffeomorphisms, J. Math. Sci. 207 (2015) 658–668.
[35] A. V. Vinnik, The property of reciprocity of rotary diffeomorphisms of two-dimensional Riemannian spaces, Differ. Geom.

Mnogoobr. Figur 29 (1998) 13–16.
[36] K. Yano, On torse-forming direction in Riemannian spaces, Proc. Imp. Acad. Tokyo 20 (1944) 340–345.
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