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Infinitesimal Rotary Transformation
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Abstract. The paper is devoted to further study of a certain type of infinitesimal transformations of two-
dimensional (pseudo-) Riemannian spaces, which are called rotary. An infinitesimal transformation is called
rotary if it maps any geodesic on (pseudo-) Riemannian space onto an isoperimetric extremal of rotation in
their principal parts on (pseudo-) Riemannian space. We study basic equations of the infinitesimal rotary
transformations in detail and obtain the simpler fundamental equations of these transformations.

1. Introduction

The paper concerns with a study of infinitesimal rotary transformations [8], for other exmaples of
infinitesimal transformations see also [2, 12, 15–20]. The rotary diffeomorphism and rotary transformations
of two-dimensional Riemannian spaces were first introduced by Leiko [4, 5, 7, 11]. He defined the term of
the rotary diffeomorphism under which any geodesic is mapped onto isoperimetric extremal of rotation,
and he obtained fundamental equation for this task, see also [9].

Results about the isoperimetric extremals of rotation have physical application, i.e. in the theory of
gravitational fields, for example see [3, 6, 7, 10].

In this paper, we study above mentioned rotary transformations of two-dimensional (pseudo-) Rieman-
nian spaces and obtain new fundamental equations in a simpler form.

2. Basic definition of infinitesimal rotary transformation

In this section, we are going to define the term of the infinitesimal rotary transformation of two-
dimensional (pseudo-) Riemannian space V2. The study will be based on well-known facts valid in
n-dimensional (pseudo-) Riemannian spaces Vn.

Let us consider an n-dimensional (pseudo-) Riemannian space Vn, where the object of the Levi-Civita
connection ∇ is given. We denote x = (x1, x2, . . . , xn) a coordinate system on the space Vn. Here and further
we suppose that n ≥ 2.

A curve ` in the space Vn given by the equations x = x(t) is said to be geodesic if its tangent vector
λ ≡ dx(t)/dt is recurrent along it.
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A curve ` is a geodesic if and only if ∇tλ = ρ(t)λ, which can be rewritten into a coordinate form

dλh

dt
+ Γh

αβ(x(t))λαλβ = ρ(t)λh, (1)

where Γh
ij are components of the connection ∇, and ρ(t) is a function of parameter t.

Let us consider a smooth curve ¯̀(t) given by the equations xh = x̄h(t) on the two-dimensional (pseudo-)
Riemannian space V2 with the metric tensor 1 and the Gaussian curvature K of a constant sign. We fix the
ends of this curve at the points p0 = ¯̀(t0) and p1 = ¯̀(t1) and consider following functionals of length and
rotation

s[ ¯̀] =

∫ t1

t0

√
|λ̄| dt and θ[ ¯̀] =

∫ tl

t0

k(t) dt;

where k ≥ 0 is the Frenet curvature of the curve ¯̀ and λ̄ is a tangent vector of the curve ¯̀. Then, extremals of
variational problem θ[ ¯̀] and s[ ¯̀] = const are called isoperimetric extremals of rotation (IER), see [12, p. 405];
for properly Riemannian spaces see [4–6, 9, 11].

If the s[`] is the minimal distance, then the geodesic going through the points p0 and p1 is the unique
solution of this problem. In this case, we talk about the trivial isoperimetric extremal of rotation.

A curve ¯̀ is an isoperimetric extremal of rotation if and only if the following equation holds∇sλ = cK ·Fλ,
and in the coordinate form

dλ̄h

dt
+ Γh

αβ(x̄)λ̄αλ̄β = cK(x̄) · Fh
α(x̄)λ̄α, (2)

where c is a constant, K(x̄) is the Gaussian curvature, λ̄ is a tangent vector, and F(x̄) is an affinor, tensor field
of type

(1
1
)
, see [1, 14], which satisfies the following conditions

F2 = −e · Id, 1(X,FX) = 0, ∇F = 0.

In this case, parameter t is a length of the curve and λ̄ is a unit tangent vector.
For Riemannian manifold V2 is e = +1 and for pseudo-Riemannian manifold V2 is e = −1. The tensor F

is uniquely defined (with respect to the sign) as follows

Fh
j = 1hiεi j, εi j =

√
|111122 − 1

2
12| ·

(
0 1
−1 0

)
.

An infinitesimal transformation of a (pseudo-) Riemannian space Vn is given with respect to the coordinates
in this manner

x̄h = xh + ε ξh(x), (3)

where xh are the coordinates of a certain point in Vn and x̄h are the coordinates of its image under the
infinitesimal transformation, ε is an infinitesimal parameter not depending on xh, and ξh is a displacement
vector, see [2, 12].

If a certain object A of the space Vn depends on x ∈ Vn but also on the infinitesimal parameter ε, then
the principal part of the objectA isA

0
(x) +A

1
(x)ε in the expansion of series with respect to the infinitesimal

parameter ε
A(x, ε) = A

0
(x) +A

1
(x)ε +A

2
(x)ε2 + . . . .

For our purposes the curves obtained by the infinitesimal transformation of geodesics satisfy the equa-
tions of isoperimetric extremals of rotation (2) under the condition, that we dropped the terms containing
higher powers of the infinitesimal parameter ε, i.e. ε2, ε3, . . ..

Definition 2.1. An infinitesimal transformation of the two-dimensional (pseudo-) Riemannian space V2 is
called rotary if it maps any geodesic of the space V2 onto an isoperimetric extremal of rotation in their
principal parts.
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3. Basic equations of infinitesimal rotary transformations

We prove the following theorem.

Theorem 3.1. A differential operator X = ξα(x)∂α (∂α = ∂/∂xα) determines an infinitesimal rotary transformation
of (pseudo-) Riemannian space V2 if and only if X satisfies

LξΓh
ij = δh

(iψ j) + θh1i j, θh
,i = θh(θi + Ki/K) + νδh

i , (4)

where ψi is a covector, δh
i is the Kronecker delta, θh is a vector field, 1 is a metric tensor, K is the Gaussian curvature,

and Lξ is the Lie derivative with respect to ξ.

Proof. Let us consider an infinitesimal rotary transformation of (pseudo-) Riemannian space V2 determined
by the equations (3). Furthermore, let ` be a geodesic of the space V2 given by the equations xh = xh(t).
Further, let ` satisfy the equations (1). The curve ¯̀ which corresponds to the curve ` under the infinitesimal
rotary transformation (3) has the following equations

x̄h(t) = xh(t) + ε ξh(x(t)). (5)

The infinitesimal transformation (3) is rotary if ¯̀ is an isoperimetric extremal of rotation in its principal
parts. Therefore, the equations x̄(t) given by (5) satisfy in the principal part equations (2) which could be
written like follows

dλ̄h(t)
dt

+ Γh
αβ(x̄(t))λ̄α(t)λ̄β(t) = cK(x̄(t)) · Fh

α(x̄(t))λ̄α(t). (6)

Next, we shall find the objects involved in the equations (6). The tangent vector λ̄h(t) we receive after
derivation of equations (5)

λ̄h(t) ≡
dx̄h(t)

dt
=

dxh(t)
dt

+ ε
∂ξh(x(t))
∂xγ

dxγ(t)
dt

= λh(t) + ελγ(t)∂γξh(x(t)).

Also, for the connection Γ and the structure F we get

Γh
αβ(x̄) = Γh

αβ + ε
∂Γh

αβ

∂xγ
ξγ + ε2 and Fh

α(x̄) = Fh
α + ε

∂Fh
α

∂xγ
ξγ + ε2 .

Furthermore, for the Gaussian curvature K it holds

K(x̄) = K + ε
∂K
∂xγ

ξγ + ε2 ,

And finally, we expand the function ρ and the constant c like follows

ρ(t) = ρ0(t) + ερ1(t) + ε2 , and c = c0 + εc1 + ε2 .

Let us remind, that here and after ε2 stands for the terms containing higher powers of the infinitesimal
parameter ε, which will be dropped later.

Now we substitute above mentioned expressions into the equation (6) and we get

dλh

dt + ε
(
∂αβξhλαλβ + dλα

dt ∂αξ
h
)

+

+(Γh
αβ + ε∂γΓh

αβξ
γ + ε2 )(λα + ελγ∂γξα)(λβ + ελγ∂γξβ) =

= (c0 + εc1 + ε2 )(Fh
α + ε∂γFh

αξ
γ + ε2 )(λα + ελγ∂γξα)(K + ε∂γKξγ + ε2 ).
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Since we know that the curve ` is a geodesic, we use equations (1) to eliminate dλh

dt from the expression
above

−Γh
αβλ

αλβ + λh(ρ0 + ερ1 + ε2 ) +

+ε
(
∂αβξhλαλβ + ∂αξh

(
− Γαβγλ

βλγ + λα(ρ0 + ερ1 + ε2 )
))

+

+(Γh
αβ + ε∂γΓh

αβξ
γ + ε2 )(λα + ελγ∂γξα)(λβ + ελγ∂γξβ) =

= (c0 + εc1 + ε2 )(Fh
α + ε∂γFh

αξ
γ + ε2 )(λα + ελγ∂γξα)(K + ε∂γKξγ + ε2 ).

The constant term (not depending on ε) and the linear term (with respect to ε) from above mentioned
equation vanishes, in which case we receive two following equations, the first one

ρ0λ
h = c0Fh

αλ
αK, (7)

and the second one

λαλβ(∂αβξh
− Γ

γ
βα∂γξ

h + Γh
αγ∂βξ

γ + Γh
γβ∂αξ

γ + ∂γΓ
h
αβξ

γ) + ρ1λ
h + ρ0λ

α =

= c0(KFh
αλ

γ∂γξ
α + Kλα∂γFh

αξ
γ + λαFh

α∂γKξγ) + c1KFh
αλ

α.
(8)

From the equation (7) follows that ρ0 = c0 = 0, which can be substituted to the second equation (8).
Furthermore, after using the definition of Lie derivative we obtain following relation

LξΓh
αβλ

αλβ = −ρ1λ
h + c1KFh

αλ
α (9)

These equations hold true for any point and any unit vector λh. Analogically as described in [1, 14] from
the above mentioned we obtain the equations

LξΓh
ij = δh

(iψ j) + θh1i j, (10)

where ψi is a covector and θh is a vector.
Similarly as in the papers [1, 14] we substitute the equations (10) in (9) and we get

(δh
iψ j + δh

jψi + θh1i j)λiλ j = −ρ1λ
h + c1KFh

i λ
i. (11)

After contracting formula (11) with 1hαλα we obtain θαλα = −(ρ1 + 2ψαλα), where θi = 1iαθα. Therefore
formula (11) has the form

ηθh = θαλ
αλh + c1K · Fh

αλ
α, (12)

where η = 1i jλiλ j = ±1. After differentiating (12) along the curve ` and after detailed analysis of degrees
of λh in such equation, we get

∇θh = θh(θi + ∇K/K) + νδh
i , (13)

where ν is a function on the spaceV2, therefore the theorem is proved.

As it can be seen, the equations (4) have simpler form than the equations of rotary trasnformations
deduced by Leiko in [4]. In Leiko’s work [4] it is stated that the vector field θwhich satisfies equations (13)
exist only on the surfaces of revolution. This statement is not valid and we have constructed a contra
example in [13].
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