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Infinitesimal Rotary Transformation

Lenka Ryparova?, Josef Mikes?

“Department of Algebra and Geometry, Faculty of Science, Palacky University Olomouc

Abstract. The paper is devoted to further study of a certain type of infinitesimal transformations of two-
dimensional (pseudo-) Riemannian spaces, which are called rotary. An infinitesimal transformation is called
rotary if it maps any geodesic on (pseudo-) Riemannian space onto an isoperimetric extremal of rotation in
their principal parts on (pseudo-) Riemannian space. We study basic equations of the infinitesimal rotary
transformations in detail and obtain the simpler fundamental equations of these transformations.

1. Introduction

The paper concerns with a study of infinitesimal rotary transformations [8], for other exmaples of
infinitesimal transformations see also [2, 12, 15-20]. The rotary diffeomorphism and rotary transformations
of two-dimensional Riemannian spaces were first introduced by Leiko [4, 5, 7, 11]. He defined the term of
the rotary diffeomorphism under which any geodesic is mapped onto isoperimetric extremal of rotation,
and he obtained fundamental equation for this task, see also [9].

Results about the isoperimetric extremals of rotation have physical application, i.e. in the theory of
gravitational fields, for example see [3, 6, 7, 10].

In this paper, we study above mentioned rotary transformations of two-dimensional (pseudo-) Rieman-
nian spaces and obtain new fundamental equations in a simpler form.

2. Basic definition of infinitesimal rotary transformation

In this section, we are going to define the term of the infinitesimal rotary transformation of two-
dimensional (pseudo-) Riemannian space V,. The study will be based on well-known facts valid in
n-dimensional (pseudo-) Riemannian spaces V.

Let us consider an n-dimensional (pseudo-) Riemannian space V,,, where the object of the Levi-Civita
connection V is given. We denote x = (x1,x2,...,x") a coordinate system on the space V,. Here and further
we suppose that n > 2.

A curve ¢ in the space V, given by the equations x = x(t) is said to be geodesic if its tangent vector
A = dx(t)/dt is recurrent along it.
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A curve (' is a geodesic if and only if VA = p(t)A, which can be rewritten into a coordinate form

TN = p(, )

where F?j are components of the connection V, and p(t) is a function of parameter ¢.

Let us consider a smooth curve £(t) given by the equations x" = %'(t) on the two-dimensional (pseudo-)
Riemannian space V, with the metric tensor g and the Gaussian curvature K of a constant sign. We fix the
ends of this curve at the points py = €(ty) and p; = €(t;) and consider following functionals of length and

rotation , ,
1 1

s[?] = f ViAldt and 0[7] = f k(t) dt;
to fo

where k > 0 is the Frenet curvature of the curve £ and A is a tangent vector of the curve ¢. Then, extremals of
variational problem 6[f] and s[{] = const are called isoperimetric extremals of rotation (IER), see [12, p. 405];
for properly Riemannian spaces see [4-6, 9, 11].
If the s[£] is the minimal distance, then the geodesic going through the points py and p; is the unique
solution of this problem. In this case, we talk about the trivial isoperimetric extremal of rotation.
A curve {is an isoperimetric extremal of rotation if and only if the following equation holds VA = ¢K-FA,
and in the coordinate form
A" h (w\1a 3B = h(z\ T
ot Lag(®ATAP = cK(x) - Fo(X)A, )
where ¢ is a constant, K(¥) is the Gaussian curvature, A is a tangent vector, and F(¥) is an affinor, tensor field
of type (%), see [1, 14], which satisfies the following conditions

F*=—e-1d, g(X,FX)=0, VF=0.

In this case, parameter f is a length of the curve and A is a unit tangent vector.
For Riemannian manifold V; is e = +1 and for pseudo-Riemannian manifold V; is e = —1. The tensor F
is uniquely defined (with respect to the sign) as follows

i 0 1
PI] = gh EZ’]', Ei]' = |911922 - g%zl : (_] 0) :

An infinitesimal transformation of a (pseudo-) Riemannian space V,, is given with respect to the coordinates
in this manner

=2+ e d(x), ®3)

where x" are the coordinates of a certain point in V,, and %" are the coordinates of its image under the

infinitesimal transformation, ¢ is an infinitesimal parameter not depending on x", and &" is a displacement
vector, see [2, 12].

If a certain object A of the space V,, depends on x € V,, but also on the infinitesimal parameter ¢, then
the principal part of the object A is ?Ol(x) + .%l(x)s in the expansion of series with respect to the infinitesimal

parameter &
Alx, €) = %{(x) + &fl(x)e + f/;l(x)ez +....

For our purposes the curves obtained by the infinitesimal transformation of geodesics satisfy the equa-
tions of isoperimetric extremals of rotation (2) under the condition, that we dropped the terms containing
higher powers of the infinitesimal parameter ¢, i.e. &2, &3, ...

Definition 2.1. An infinitesimal transformation of the two-dimensional (pseudo-) Riemannian space V3 is
called rotary if it maps any geodesic of the space V, onto an isoperimetric extremal of rotation in their
principal parts.
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3. Basic equations of infinitesimal rotary transformations
We prove the following theorem.

Theorem 3.1. A differential operator X = E¥(x)dy (o = J/9IX?) determines an infinitesimal rotary transformation
of (pseudo-) Riemannian space V, if and only if X satisfies

Lel} = 0(yy) + 6'gy5, €)= 6"(6; + Ki/K) + v, @

where 1; is a covector, 6? is the Kronecker delta, ©" is a vector field, g is a metric tensor, K is the Gaussian curvature,
and Ly is the Lie derivative with respect to &.

Proof. Let us consider an infinitesimal rotary transformation of (pseudo-) Riemannian space V, determined
by the equations (3). Furthermore, let ¢ be a geodesic of the space V, given by the equations x" = x/(t).
Further, let ¢ satisfy the equations (1). The curve £ which corresponds to the curve £ under the infinitesimal
rotary transformation (3) has the following equations

(1) = 2t) + € E"(x(t)). (G))

The infinitesimal transformation (3) is rotary if £ is an isoperimetric extremal of rotation in its principal
parts. Therefore, the equations X(f) given by (5) satisfy in the principal part equations (2) which could be
written like follows

A (t)

T T (ROIAY (AP (E) = cK(x(D)) - Fy(R(ENA(H). (6)

Next, we shall find the objects involved in the equations (6). The tangent vector A"(t) we receive after
derivation of equations (5)

ax'(t)  dx"t) A& (x(t)) dxV(t)
= +e

Thon
A = dt dt oxY dt

= A(t) + eA (£)9, " (x(t)).

Also, for the connection I' and the structure F we get

91“’1 al:h
Th(® =Ty +e=2 4[] and Fo®) = Fi+ e 528 +[e?]

Furthermore, for the Gaussian curvature K it holds

K() = K+£§TKV§V +]e?]

And finally, we expand the function p and the constant c like follows

p(t) = po(t) + ep1(t) + , and c=c¢y+ecy + .

Let us remind, that here and after stands for the terms containing higher powers of the infinitesimal
parameter €, which will be dropped later.
Now we substitute above mentioned expressions into the equation (6) and we get

e (aaﬁgh)wﬁ + ‘%&aéh) +
H(I 4 ed, T +[ 2 )M + A2, ENAF + N0, EP) =

= (co + et +| 2 )L + £ FLey +| 2 (A + AV, &) (K + e K +| ).
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Since we know that the curve ¢ is a geodesic, we use equations (1) to eliminate % from the expression
above

~Th ACAP + A (po + epr + ) +
v (QupE AT + 2,8~ T4 APV + A(po + epr +[2)) +
H(I 4 ed, T +[ 2 )T+ eAVD,ENAF + N0, EP) =

= (co + et +| 2 )L + £ FLey + | 2 (A + AV, &) (K + e KE +| ).
Y

The constant term (not depending on ¢) and the linear term (with respect to ¢) from above mentioned
equation vanishes, in which case we receive two following equations, the first one

poA" = coF 19K, )
and the second one
AN Dape — T}, 0y E" + 15,0587 + Th0aE) + )Ty &7) + prA" + poA” = ®)
= co(KFL A9 &% + KA®DyFLEY + A*FL9, KEY) + c1 KFIAY.

From the equation (7) follows that pp = ¢y = 0, which can be substituted to the second equation (8).
Furthermore, after using the definition of Lie derivative we obtain following relation

Lgrﬁﬁ)\“)\ﬂ = —p1 A" + ¢ KFi A ©9)

These equations hold true for any point and any unit vector A". Analogically as described in [1, 14] from
the above mentioned we obtain the equations

Lgrﬁ?j = 5@.4; )t 0"gi;, (10)

where ; is a covector and 0" is a vector.
Similarly as in the papers [1, 14] we substitute the equations (10) in (9) and we get

O+ 8" + 0"gi)AAT = —py AP+ KFIAT, (11)
iT] ] _l]] P i

After contracting formula (11) with g;,A* we obtain 6,A% = —(p1 + 21, A%), where 0; = 7,,0%. Therefore
formula (11) has the form

n0" = 0,A°A" + ¢1K - Fl A2, (12)

where 1 = g;;A'/AJ = £1. After differentiating (12) along the curve ¢ and after detailed analysis of degrees
of A" in such equation, we get

Vo' = 0"(0; + VK/K) + vo, (13)
where v is a function on the space V;, therefore the theorem is proved. [

As it can be seen, the equations (4) have simpler form than the equations of rotary trasnformations
deduced by Leiko in [4]. In Leiko’s work [4] it is stated that the vector field 8 which satisfies equations (13)
exist only on the surfaces of revolution. This statement is not valid and we have constructed a contra
example in [13].



L. Ryparovd, |. Mikes$ / Filomat 33:4 (2019), 11531157 1157

References

(1]

[2]
(3]

[4]
[5]
(6]
[7]
(8]
191

[10]
[11]

[12]
[13]
[14]

[15]
[16]

[17]
[18]
[19]

[20]

H. Chuda, J. Mikes, M. Sochor, Rotary diffeomorphism onto manifolds with affine connection. In: Geometry, Integrability and
Quantization 18, proc. of 18th Int. Conf. Sofia, Bulgaria (2017) 130-137.

L. Hinterleitner, J. Mike3, J. Stranskd, Infinitesimal F-planar transformations, Russian Mathematics 52:4 (2008) 16-22.

S. G. Leiko, Conservation laws for spin trajectories generated by isoperimetric extremals of rotation, Gravitation and Theory of
Relativity 26 (1988) 117-124.

S. G. Leiko, Rotary diffeomorphisms on Euclidean spaces, Math. Notes 47 (1990) 261-264.

S. G. Leiko, Rotary transformations of surfaces, Ukr. Geom. Sb. 34 (1990).

S. G. Leiko, Variational problems for rotation functionals, and spin-mappings of pseudo-Riemannian spaces, Sov. Math. 34:10
(1990) 9-18.

S. G. Leiko, Extremals of rotation functionals of curves in a pseudo-Riemannian space, and trajectories of spinning particles in
gravitational fields, Russian Acad. Sci. Dokl. Math. 46 (1993) 84-87.

S. G. Leiko, Infinitesimal rotational transformations and deformations of surfaces in Euclidean space, Dokl. Math. 52:2 (1995)
190-192.

S. G. Leiko, Isoperimetric extremals of a turn on surfaces in the Euclidean space [E®, Izv. Vyshh. Uchebn. Zaved. Mat. 6 (1996)
25-32.

S. G. Leiko, On the conformal, concircular, and spin mappings of gravitational fields. . Math. Sci., New York 90 (1998) 1941-1944.
S. G. Leiko, Isoperimetric problems for rotation functionals of the first and second orders in (pseudo) Riemannian manifolds,
Russ. Math. 49 (2005) 45-51.

J. Mikes et al, Differential geometry of special mappings, Palacky Univ. Press, Olomouc, 2015.

J. Mikes, L. Ryparovd, H. Chud4, On the theory of rotary mappings, Math. Notes 104:4 (2018) 637-640.

J. Mike§, M. Sochor, E. Stepanova, On the existence of isoperimetric extremals of rotation and the fundamental equations of
rotary diffeomorphisms, Filomat 29 (2015) 517-523.

M. S. Najdanovi¢, L. S. Velimirovi¢, Second order infinitesimal bending of curves, Filomat 31 (2017) 4127-4137.

L. S. Velimirovi¢, S. M. Ciri¢, M. D. Cvetkovi¢, Change of the Willmore energy under infinitesimal bending of membranes,
Computers and Mathematics with Applications 59 (2010) 3679-3686.

L. S. Velimirovi¢, M. D. Cvetkovi¢, M. S. Najdanovi¢, N. M. Velimirovi¢, Variation of shape operator under infinitesimal bending
of surface, Applied Mathematics and Computation 225 (2013) 480—486.

L.S. Velimirovi¢, S. M. Min&i¢, M. S. Stankovi¢, Infinitesimal deformations of curvature tensors at non-symmetric affine connection
space, Matematicki Vesnik 54 (2002) 219-226.

L. S. Velimirovi¢, S. M. Min¢i¢, M. S. Stankovi¢, Infinitesimal rigidity and flexibility of a non-symmetric affine connection space,
European Journal of Combinatorics 34 (2010) 1148-1159.

L. S. Velimirovi¢, S. R. Ranci¢, Notes on infinitesimal bending of a toroid formed by revolution of a polygonal meridian, Journal
for Geometry and Graphics 13 (2009) 177-186.



