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Abstract. For Legendrian submanifolds Mn in Sasakian space forms M̃2n+1(c), I. Mihai obtained an inequal-
ity relating the normalised scalar curvature (intrinsic invariant) and the squared mean curvature and the
normalised scalar normal curvature of M in the ambient space M̃ (extrinsic invariants) which is called the
generalised Wintgen inequality, characterising also the corresponding equality case. And a Legendrian sub-
manifold Mn in Sasakian space forms M̃2n+1(c) is said to be generalised Wintgen ideal Legendrian submanifold
of M̃2n+1(c) when it realises at everyone of its points the equality in such inequality. Characterisations based
on some basic intrinsic symmetries involving the Riemann–Cristoffel curvature tensor, the Ricci tensor and
the Weyl conformal curvature tensor belonging to the class of pseudosymmetries in the sense of Deszcz of such
generalised Wintgen ideal Legendrian submanifolds are given.

1. Preliminaries

Curvature invariants are the main Riemannian invariants and the most natural ones. Among all
curvature invariants, the most important are sectional, scalar and Ricci curvatures.
B. Y. Chen [2] established the inequality ρ ≤ H2 + c, for any submanifold Mn in a space form M̃m(c), whereby
ρ = 2τ

n(n−1) is the normalised scalar curvature and H2 is the squared mean curvature of Mn. And equality in
such inequality holds identically if and only if Mn is a totally umbilical submanifold.

For surfaces M2 in E3, the Euler inequality K ≤ H2, whereby K is the Gauss curvature of M2 and H2 is
the squared mean curvature of M2 in E3. And, K = H2 everywhere on M2 if and only if the surface M2 is
totally umbilical in E3, i.e. k1 = k2 at all points of M2, or by a theorem of Meusnier, if and only if M2 is a
part of a plane E2 or of a round sphere S2 in E3. In 1979, P. Wintgen [25] proved that the Gauss curvature
K and the squared mean curvature H2 and the normal curvature K⊥ of any surface M2 in E4 always satisfy
the inequality K ≤ H2

−K⊥, and that actually the equality holds if and only if the curvature ellipse of M2 in
E4 is a circle. The Whitney 2–sphere satisfies identically the equality of the Wintgen inequality [20].
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A survey of recent results on surfaces satisfying identically the equality in Wintgen inequality is given
in [5].

In 1999 De Smet, Dillen, Verstraelen and Vrancken [7] formulated the conjecture on Wintgen inequality
(DDVV conjecture) for all submanifolds in all real space forms,

ρ ≤ H2
− ρ⊥ + c (∗)

whereby ρ is the normalized scalar curvature of Mn defined by

ρ =
2

n(n − 1)

n∑
i< j

〈R(ei, e j)e j, ei〉,

and ρ⊥ is the normal scalar curvature function of Mn at a point p, defined by

ρ⊥(p) =
2

n(n − 1)

√√√ n∑
i< j

2∑
r<s

〈R⊥(ei, e j) ξr, ξs〉
2,

{e1, . . . , en} is any orthonormal basis of the tangent space Tp(Mn) (p ∈Mn), and R is the Riemann–Christoffel
curvature tensor of Mn, where R⊥ is the curvature tensor of the normal space, and {ξ1, ξ2} is an orthonormal
basis of the normal space. They proved the above Wintgen inequality for all submanifolds Mn of codimension
2 in all real space forms M̃n+2(c) of Mn, and also characterised the equality case in terms of the shape operators
of Mn in M̃n+2(c) [7].

Later, Choi and Lu [6], Lu [19] and Ge and Tang [14] proved that indeed (∗) holds in full generality
for all submanifolds Mn in M̃n+m(c) and gave a characterisation of the equality case in terms of an explicit
description of the second fundamental form.

The submanifolds Mn in M̃n+m(c) satisfying equality in Wintgen inequality are called Wintgen ideal
submanifolds; for many examples and for geometrical properties of such submanifolds, see e.g. [3,6,19,20,21].

It should be observed that for submanifolds Mn in M̃n+m(c) with flat normal connection, and thus in
particular for hypersurfaces (m = 1), the Wintgen inequality actually reduces to a Chen inequality ρ ≤ ‖H‖2 + c
and the corresponding ideal submanifolds M then are totally umbilical in M̃ and hence spaces of constant
curvature (and so are special Deszcz symmetric spaces, with L = 0); and, as general basic reference for
optimal inequalities relating various extrinsic and intrinsic characteristics of submanifolds, we refer to B.Y.
Chen’s book ([4]).

We recall that an n–dimensional Riemannian manifold Mn, (n ≥ 3) is said to be a pseudosymmetric space in
the sense of Deszcz or a Deszcz symmetric space ([8],[11],[16],[22],[23],[24]) if the (0, 6) tensors R ·R and Q(1,R)
are linearly dependent at every point of Mn, i.e. R ·R = LQ(1,R) onUR = {x ∈M|R−( κ

(n−1)n )G , 0 at x}, where
L is some function on this set, called the Deszcz sectional curvature function of Mn. Hereby, by the action of the
curvature operator R as a derivation on the (0, 4) curvature tensor R results the (0, 6) curvature tensor R·R, i.e.,
(R·R)(X1,X2,X3,X4; X,Y) = (R(X,Y)·R)(X1,X2,X3,X4) = −R(R(X,Y)X1,X2,X3,X4)−R(X1,R(X,Y)X2,X3,X4)−
R(X1,X2,R(X,Y)X3,X4)−R(X1,X2,X3,R(X,Y)X4), and the Tachibana tensor Q(1,R) is the (0, 6) tensor which
results from the action as a derivation on the (0, 4) curvature tensor R, by the metrical endomorphism, i.e.,
Q(1,R) = ∧1 ·R, or, Q(1,R)(X1,X2,X3,X4; X,Y) = (∧1 ·R)(X1,X2,X3,X4; X,Y) = ((X∧1 Y) ·R)(X1,X2,X3,X4) =
−R((X ∧1 Y)X1,X2,X3,X4) − R(X1, (X ∧1 Y)X2,X3,X4) − R(X1,X2, (X ∧1 Y)X3,X4) − R(X1,X2,X3, (X ∧1 Y)X4),
whereby X,Y,X1,X2,X3,X4 are arbitrary tangent vector fields on M.

The geometrical meaning of the tensor R · R and the Tachibana tensor Q(1,R) is given in [15]. And a
Riemannian manifold Mn of dimension n ≥ 3 is Deszcz symmetric or pseudosymmetric when its Deszcz
sectional curvature or double sectional curvature function L(p, π, π̄) is isotropic, i.e., at all of its points p has
the same value L(p) for all curvature dependent tangent planes π and π̄ at p. ([15])

The (0, 4) tensor R · S, obtained by the action of the curvature operator R(X,Y) on the (0, 2) symmetric
Ricci tensor S, given by (R · S)(X1,X2; X,Y) = (R(X,Y) · S)(X1,X2) = −S(R(X,Y)X1,X2)− S(X1,R(X,Y)X2). The
Ricci Tachibana tensor Q(1,S) is given by Q(1,S)(X1,X2; X,Y) = ((X ∧1 Y) · S)(X1,X2) = −S((X ∧1 Y)X1,X2) −
S(X1, (X ∧1 Y)X2).
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The geometrical meaning of the tensor R · S and the Tachibana Q(1,S) is given in [18].
A Riemannian manifold Mn (n ≥ 3), is said to be Ricci pseudosymmetric space in the sense of Deszcz, or Ricci

Deszcz symmetric space if R · S = LSQ(1,S), for some real valued function LS on M. It is known that every
Deszcz symmetric manifold automatically is Ricci Deszcz symmetric. The converse is not true in general
([8]).

A Riemannian manifold Mn (n ≥ 4), is said to have pseudosymmetric Weyl conformal tensor (see [9] and
references therein) if the (0, 6) tensors C · C and Q(1,C) satisfy the pseudosymmetry curvature condition
C · C = LCQ(1,C), for some function LC : M → R (on the open subset of M on which C , 0. Hereby, by the
action of the curvature operator C as a derivation on the (0, 4) curvature tensor C results the (0, 6) curva-
ture tensor C · C, i.e., (C · C)(X1,X2,X3,X4; X,Y) = (C(X,Y) · C)(X1,X2,X3,X4) = −C(C(X,Y)X1,X2,X3,X4) −
C(X1,C(X,Y)X2,X3,X4) − C(X1,X2,C(X,Y)X3,X4) − C(X1,X2,X3,C(X,Y)X4), and the Weyl Tachibana tensor
Q(1,C) is the (0, 6) tensor which results from the action as a derivation on the (0, 4) curvature tensor C, by the
metrical endomorphism, i.e., Q(1,C) = ∧1 ·C, or, Q(1,C)(X1,X2,X3,X4; X,Y) = (∧1 ·C)(X1,X2,X3,X4; X,Y) =
((X∧1Y)·C)(X1,X2,X3,X4) = −C((X∧1Y)X1,X2,X3,X4)−C(X1, (X∧1Y)X2,X3,X4)−C(X1,X2, (X∧1Y)X3,X4)−
C(X1,X2,X3, (X ∧1 Y)X4), whereby X,Y,X1,X2,X3,X4 are arbitrary tangent vector fields on M. The geomet-
rical meaning of the tensor C · C and the Weyl Tachibana tensor Q(1,C) is given in [17].

We mention that Chen ideal submanifolds in Euclidean spaces satisfying the presented above curvature
conditions, as well as other conditions of this kind were studied among others in [10] and [13].

2. Generalised Wintgen inequality for Legendrian submanifolds

Let M̃2m+1 be a Riemannian manifold with φ, ξ and η be tensor fields of type (1, 1), (1, 0) and (0, 1),
respectively. The triple (φ, ξ, η) is called an almost contact structure if the following equalities are satisfied:

η(ξ) = 1, η(φ(X)) = 0, φ2(X) = −X + η(X)ξ,

for any X ∈ TM̃2m+1. The vector field ξ is called characteristic vector field.
If 1 is a pseudo-Riemannian metric on M̃2m+1, then (φ, ξ, η, 1, ε) is called an almost contact metric on

M̃2m+1 if (φ, ξ, η) is an almost contact structure such that

1(ξ, ξ) = ε, η(X) = ε1(ξ,X), X ∈ TM̃2m+1, ε = 1, ε = −1

η(φ(X), φ(Y)) = 1(X,Y) − εη(X)η(Y), X,Y ∈ TM̃2m+1.

If this structure satisfies dη(X,Y) = 1(φX,Y), then this pseudo–Riemannian manifold with contact metric
structure is called a contact metric manifold. A manifold M endowed with a normal contact metric structure
(φ, ξ, η, 1, ε) which satisfies (∇̃Xφ)Y = εη(Y)X − 1(X,Y)ξ, ∇̃Xξ = φX, for any vector fields X,Y on M̃2m+1,
whereby ∇̃ denotes the Riemannian connection with respect to 1, is called a Sasakian manifold.

A plane section π in TM̃2m+1 is called a φ–section if it is spanned by X and φ(X), whereby X is a unit
tangent vector orthogonal to ξ. The sectional curvature of a φ–section is called a φ–sectional curvature. A
Sasakian manifold with constant φ–sectional curvature c is said to be a Sasakian space form and is denoted
by M̃2m+1(c). The curvature tensor R̃ of a Sasakian space form M̃2m+1(c) is given by (see [1])

R̃(X,Y)Z = c+3
4 {1(Y,Z)X − 1(X,Z)Y}+

+ c−1
4 {η(X)η(Z)Y − η(Y)η(Z)X + 1(X,Z)η(Y)ξ−

−1(Y,Z)η(X)ξ + 1(φY,Z)φX − 1(φ(X),Z)φY − 21(φX,Y)φZ},

for any tangent vector fields X,Y,Z on M̃2m+1(c).
Let Mn be an n–dimensional submanifold in a Sasakian space form M̃2m+1(c). Denote by ∇ and h the

Riemannian connection on Mn and the second fundamental form, respectively, then the Gauss equation is
given by

R̃(X,Y,Z,W) = R(X,Y,Z,W) + 1(h(X,W), h(Y,Z)) − 1(h(X,Z), h(Y,W)),
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whereby R is the Riemann curvature tensor of Mn, and X,Y,Z,W are vectors tangent to Mn.
Let p ∈ Mn and {e1, e2, . . . , en, . . . , e2m+1) is an orthonormal basis of the tangent space M̃2m+1(c), such that

e1, e2, . . . , en are tangent to Mn at p. Then the mean curvature vector is given by

H(p) =
1
n

n∑
i=1

h(ei, ei).

A submanifold Mn normal to ξ in a Sasakian manifold is said to be a C–totally real submanifold. In this case,
it follows that φ(TpMn) ⊂ T⊥p Mn, for every p ∈ Mn. In particular, if m = n, then Mn is called a Legendrian
submanifold.

Let Mn be an n–dimensional Legendrian submanifold of a Sasakian space form M̃2n+1(c) and {e1, e2, . . . , en}

an orthonormal frame on Mn and {en+1, . . . , e2n, e2n+1 = ξ} an orthonormal frame in the normal bundle T⊥Mn.
Denote by h and A the second fundamental form and the shape operator of Mn in M̃2n+1(c). Then the

Gauss equation is given by

R(X,Y,Z,W) =
c + 3

4
{1(X,Z)1(Y,W) − 1(Y,Z)1(X,W)} + 1(h(X,Z), h(Y,W)) − 1(h(X,W), h(Y,Z).

In the recent paper [20], I. Mihai established a generalised Wintgen inequality for Legendrian submanifolds
in Sasakian space forms.

Theorem A. ([20]). Let Mn be an n-dimensional Legendrian submanifold of a Sasakian space form M̃2n+1(c). Then

(ρ⊥)2
≤

(
‖H‖2 − ρ +

c + 3
4

)2

+
4

n(n − 1)

(
ρ −

c + 3
4

) c − 1
4

+
(c − 1)2

8n(n − 1)
, (∗∗)

and equality holds if and only if with respect to suitable orthonormal frames {e1, e2, . . . , en} and {en+1, . . . , e2n, e2n+1 = ξ},
the shape operators of Mn in M̃2n+1(c) are given by

Aen+1 =


λ1 µ 0 . . . 0
µ λ1 0 . . . 0
0 0 λ1 . . . 0
...

...
...

. . . 0
0 0 0 . . . λ1


, (1)

Aen+2 =


λ2 + µ 0 0 . . . 0

0 λ2 − µ 0 . . . 0
0 0 λ2 . . . 0
...

...
...

. . . 0
0 0 0 . . . λ2


, (2)

Aen+3 =


λ3 0 0 . . . 0
0 λ3 0 . . . 0
0 0 λ3 . . . 0
...

...
...

. . . 0
0 0 0 . . . λ3


, (3)

Aen+4 = · · · = Ae2n = Ae2n+1 = 0.
whereby λ1, λ2, λ3 and µ are real functions on Mn.

Legendrian submanifolds Mn in Sasakian space forms M̃2n+1(c) satisfying equality in generalised Wint-
gen inequality (∗∗) are called generalised Wintgen ideal Legendrian submanifolds. A frame {e1, e2, . . . , en; en+1, . . . e2n,
e2n+1} with the corresponding shape operators from Theorem A is called a Choi-Lu frame on such Mn in
M̃2n+1(c) and its distinguished tangent plane e1 ∧ e2 is called the Choi-Lu plane of the generalised Wintgen
ideal Legendrian submanifolds concerned.
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3. Pseudosymmetry properties of generalised Wintgen ideal Legendrian submanifolds

First consider the pseudosymmetry condition in the sense of Deszcz of the generalised Wintgen ideal Leg-
endrian submanifolds Mn in Sasakian space form M̃2m+1(c), (n ≥ 4,m ≥ 2). Their Riemann-Christoffel
curvature tensors are obtained by inserting the shape operators from Theorem A in the equation of Gauss.
Up to the algebraic symmetries of the (0, 4) curvature tensor R of such generalised Wintgen ideal submani-
folds, all components of R are zero except possibly the following ones

R1221 = 2µ2
− c1, (4)

R1kk1 = −λ2µ − c1, (k ≥ 3) (5)
R1kk2 = −λ1µ, (k ≥ 3) (6)
R2kk2 = λ2µ − c1, (k ≥ 3) (7)
Rkllk = −c1, (k , l, k, l ≥ 3), (8)

where c1 = c+3
4 + λ2

1 + λ2
2 + λ2

3.

Then expressing this pseudosymmetry condition, R ·R = LQ(1,R), to be satisfied by the (0, 6) tensors R ·R
and Q(1,R) for some function L : M→ R, by evaluating these tensors on the tangent vectors {e1, e2, . . . , en},
one finds that this pseudosymmetry is characterised by the following system of algebraic equations

2λ1µ(2µ2
− c1 − L) = 0 (9)

2λ2µ(2µ2
− c1 − L) = 0 (10)

λ2
1µ

2 + µ(2µ + λ2)(λ2µ − c1 − L) = 0 (11)

λ2
1µ

2 + λ2µ(λ2µ + c1 + L) = 0 (12)
λ1µ(c1 + L) = 0 (13)
λ2

1µ
2 + λ2µ(λ2µ − c1 − L) = 0 (14)

λ2
1µ

2 + µ(λ2 − 2µ)(λ2µ + c1 + L) = 0. (15)

This system of equations is obtained by the evaluations of tensors R·R and Q(1,R) on the following combi-
nations of basic vectors {e1, . . . , en}: (e1, e3, e3, e1; e1, e2), (e1, e3, e3, e2; e1, e2), (e1, e2, e1, e3; e2, e3), (e1, e4, e3, e4; e1, e3),
(e1, e4, e3, e4; e2, e3), (e2, e4, e3, e4; e2, e3) and (e1, e2, e2, e3; e1, e3), all other choices of combinations of vectors
{e1, . . . , en} leading either to one or other equation of the above system or to a triviality. And this sys-
tem is satisfied if and only if (I) µ = 0, in which case L = 0, or, (II) µ , 0 and λ1 = λ2 = 0, in which case
L = −c1 = − c+3

4 − λ
2
3.

Therefore we obtained the following

Theorem 1. A generalised Wintgen ideal Legendrian submanifold Mn of Sasakian space form M̃2n+1(c), (n ≥ 4),
is a Deszcz symmetric Riemannian manifold if and only if it is totally umbilical (with L = 0) or a minimal or
pseudoumbilical submanifold (L = − c+3

4 −H2) of this Sasakian space form M̃2n+1(c).

Next, consider the Ricci pseudosymmetry condition in the sense of Deszcz of the generalised Wintgen ideal
Legendrian submanifolds Mn in Sasakian space form M̃2n+1(c), (n ≥ 4). Using the nonzero components of
Riemann–Christoffel curvature tensor R, the nontrivial components of the (0, 2) Ricci tensor of generalised
Wintgen ideal Legendrian submanifolds Mn in Sasakian space form M̃2n+1(c) in a tangent frame are found
to be

S11 = 2µ2
− (n − 1)c1 − (n − 2)λ2µ, (16)

S22 = 2µ2
− (n − 1)c1 + (n − 2)λ2µ, (17)

S12 = −(n − 2)λ1µ, (18)
Skk = −(n − 1)c1, (k ≥ 3). (19)
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Then expressing the pseudosymmetry condition R · S = LSQ(1,S) satisfied by the (0, 4) tensors R · S and
Q(1,S) for some function LS : M→ R, by evaluating these tensors on the tangent vectors {e1, e2, . . . , en}, one
obtained that this Ricci pseudosymmetry in the sense of Deszcz is characterised by the following:

2(n − 2)λ1µ(2µ2
− c1 − LS) = 0 (20)

2(n − 2)λ2µ(2µ2
− c1 − LS) = 0 (21)

[−2µ2 + (n − 2)λ2µ](−λ2µ − c1 − LS) − (n − 2)λ2
1µ

2 = 0 (22)

(n − 2)λ1µ(λ2µ − c1 − LS) − λ1µ[−2µ2 + (n − 2)λ2µ] = 0 (23)
[−2µ2

− (n − 2)λ2µ](λ2µ − c1 − LS) − (n − 2)λ2
1µ

2 = 0. (24)

And this system of equations is satisfied if and only if (I) µ = 0, λ1, λ2, λ3 ∈ R in which case LS = 0, or,
(II) µ , 0, λ1 = λ2 = 0, λ3 ∈ R and LS = −c1 = − c+3

4 − λ
2
3. Based on this result on Ricci Deszcz symmetry for

Legendrian submanifolds Mn in Sasakian space form M̃2n+1(c), (n ≥ 4) and by virtue of Theorem 1, we thus
obtained the following

Theorem 2. Any generalised Wintgen ideal Legendrian submanifold Mn in a Sasakian space form M̃2n+1(c),
(n ≥ 4), is Deszcz symmetric if and only if it is Ricci Deszcz symmetric.

Similarly, in the following theorem, we characterised generalised Wintgen ideal Legendrian subman-
ifolds in Sasakian space forms with pseudosymmetric Weyl conformal curvature tensor C , i.e satisfying the
pseudosymmetry condition C · C = LCQ(1,C), whereby Q(1,C) is the so–called Weyl–Tachibana curvature
tensor. Hereby, the scalar curvature of generalised Wintgen ideal Legendrian submanifold Mn of Sasakian
space form M̃2n+1(c) is given by τ = 4µ2

− n(n − 1)c1 and inf K = K12 = c1 − 2µ2.

Theorem 3. Let Mn, (n ≥ 4) be a generalised Wintgen ideal Legendrian submanifold in a Sasakian space form
M̃2n+1(c).

(i) Then Mn is conformally flat if and only if Mn is a totally umbilical submanifold in M̃2n+1(c).
(ii) If Mn is a non–conformally flat submanifold, then Mn has a pseudosymmetric Weyl conformal tensor C and

corresponding function of pseudosymmetry is given by LC = n−3
(n−2)2(n2−1) (τ + n(n − 1) inf K).
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[21] M. Petrović–Torgašev and L. Verstraelen, On Deszcz symmetries of Wintgen ideal submanifolds, Arch. Math. (Brno) 44 (2008),

57–67.
[22] L. Verstraelen, Comments on the pseudo-symmetry in the sense of Deszcz, in: Geometry and Topology of Submanifolds, Vol. VI,

(eds. F. Dillen e.a.), World Scientific Publ. Co, Singapore (1994), 119–209.
[23] L. Verstraelen, Natural extrinsic geometrical symmetries–an introduction-, in: Recent Advances in the Geometry of Submanifolds

Dedicated to the Memory of Franki Dillen (1963–2013), Contemporary Mathematics, 674 (2016), 5–16.
[24] L. Verstraelen, Foreword, in: B.-Y. Chen, Differential Geometry of Warped Product Manifolds and Submanifolds, World Scientific,

2017, vii–xxi.
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