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Abstract. Motivated by successful p-adic modeling of the genetic code, in this paper a p-adic (ultrametric)
language is introduced. This language can serve as an effective and advanced constructive element of a
future artificial intelligence. In this geometric approach to artificial language, we mainly use p-adic distance
as the most powerful example of ultrametrics. Here p-adic distance is a tool to quantify similarity between
words – similarity between their structure and similarity between their meaning. As a simple illustration,
a p-adic language with four letters and their 3-letter words is presented.

1. Introduction

Language, as finite ordered sequences (words) of some finite set of elements (letters) with relevant rules,
is an important component of all living organisms – from single cells to the humans. There are different
forms of languages that have emerged during evolution.

The oldest language is related to the genetic code. Namely, the genetic code can be viewed as a language,
which letters are four nucleotides (C, A, U, G) and words are codons as ordered triples of nucleotides.
Meaning of 64 codons are 20 canonical amino acids plus one stop signal. Consequently, meaning of genes
are proteins. This genetic language emerged at the very beginning of life on our planet and exists so far in
almost the same form without changes. It is an invariant of life evolution, because all other constituents of
living organisms have experienced changes.

In a series of papers [1–6] (see also [7]) was shown that set of 64 codons can be presented as an ultrametric
tree and that the degeneracy of the vertebrate mitochondrial (VM) code can be adequately described by
p-adic distance. The VM code is very simple and other dozen genetic codes can be considered as its slight
variations.

Note that p-adic distance is the most elaborated and useful example of ultrametrics. By appropriate
identification of nucleotides and digits in 5-adic representation of 64 codons, one obtains 32 codon doublets
which code amino acids or stop signal. Codons in these doublets are at the smallest 5-adic and 2-adic
distance. One can say that two codons coding the same amino acid or stop signal have the same meaning,
because they are p-adically (ultrametrically) closest each other with respect to all other codons. For such
codons we also say that they are, in the information sense, similar.
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The p-adic (ultrametric) approach to closeness between codons was extended to canonical amino acids,
and also between codons and amino acids, see e.g. [5]. In this way, the genetic code can be regarded as an
ultrametric network.

It is worth noting that doublets of vertebrate mitochondrial codons, which code the same amino acid or
stop signal, have the same first two nucleotides. In fact, two sequences of letters are more close if they have
more same elements at places counting from the beginning. This is a general property of any ultrametric
space of sequences. In human languages, which are based on letters, there are also some ultrametricity, but
not so strict as in the case of codons.

In this paper, we propose an ultrametric (p-adic) language for a future artificial intelligence. In biology
there is an approximative rule between physico-chemical structure and biological function: similar in
structure – similar in function. Our goal is to have an artificial language with strong connection between
structure and meaning: similar in structure – similar in meaning. Such language with ultrametric similarity,
should be simple, economic and effective. Namely, our intention is to have language in which notions
with similar meaning are expressed by words of similar structure. Therefore, we consider an ultrametric
approach which is motivated by language of the genetic code.

2. Ultrametric (p-Adic) Space of Sequences

Ultrametric space is a set U with a real-valued function d of any two elements on U satisfying the
following properties:

(i) d(x, y) ≥ 0, d(x, y) = 0 iff x = y,
(ii) d(x, y) = d(y, x),
(iii) d(x, y) ≤ max{d(x, z), d(z, y)}.

(1)

Property (iii) is called strong triangle inequality. Note that usual distance must satisfy triangle inequality, i.e.

d(x, y) ≤ d(x, z) + d(z, y). (2)

As a consequence of property (iii), all ultrametric spaces have some unusual properties, like:

• in all triangles two sides are equal and the third one is smaller or equal to others,

• there is no partial intersection of the balls,

• any point of a ball can be its center.

There are many examples of ultrametric spaces. In the sequel we shall consider ultrametric space of
sequences. Let S be a set of sequences of the same finite length n. The set S can be a finite ultrametric space
by defining an appropriate distance.

An ordinary ultrametric distance between any two elements x and y of S can be introduced in the following
way: d(x, y) = n −m, where m is a number of the first equal elements counting from the beginning in both
sequences x and y. Thus 0 ≤ m ≤ n and 0 ≤ d(x, y) ≤ n. It is evident that properties (i) and (ii) are satisfied.
Property (iii) can be shown by analyzing possible distances between three arbitrary sequences x, y and z. It
is worth noting that this ordinary ultrametric distance can be redefined by scaling it as ds(x, y) = n−m

n and
then it takes values 0 ≤ ds(x, y) ≤ 1.

Another example of ultrametric space of sequences is related to the Baire distance. This distance is
defined as dB(x, y) = 2−m,where m is the same as in the previous case, i.e. it is a number of the first positions
at which sequences x and y have the same elements. Here the base 2 can be replaced by any other natural
number greater than 2. In the definition of the Baire distance is not necessary that sequences are finite and
equal in length.
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2.1. p-Adic distance
The most significant example of ultrametrics is p-adic distance. Consider now finite sequences of the

fixed length n in the form

x = x0 x1 x2 ... xn , (3)

where xi = 0, 1, ..., p − 1 (are integers between 0 and p − 1) and p is a prime number. Then these sequences
can be viewed as numbers in the base p in the following way:

x = x0 + x1 p + x2 p2 + ... + xn pn ≡ x0 x1 x2 ... xn , (4)

where xi are related digits. By definition, p-adic distance between x = x0 x1 x2 ... xn and y = y0 y1 y2 ... yn is

dp(x, y) = p−m , (5)

where m is now number of equal first digits in both x and y. In other words, if difference between two
integers x and y is divisible by pm, then p-adic distance between them is p−m . Thus, one can say: more
divisibility = smaller distance =more similarity. p-Adic distance can be applied to some ultrametric sequences
only when it is possible to transform them to numbers in a base p, where p is a prime number. Numbers
endowed with p-adic distance are called p-adic numbers. In the last 30 years p-adic numbers, and related
p-adic analysis, have had many applications in construction of new models in physics and biology (for a
recent review, see [8]). In particular, p-adic models play are appropriate for description of complex systems
with hierarchical structure.

2.2. On real and p-adic numbers
It is worth noting some differences between real and p-adic numbers. To see it in a simple way, it is

sufficient to consider only natural numbers. Any natural number n has a unique expansion with respect to
a given prime number p, i.e.

n = n0 + n1 p + n2 p2 + ... + nk pk , (6)

where ni = 0, 1, 2, ..., p − 1 (i = 0, 1, 2, ..., k) are digits. There are two kinds of absolute value (norm) for
this natural number:

• ordinary absolute value, usually denoted by | · | ,

• p-adic absolute value (p-adic norm), denoted by | · |p .

Ordinary absolute value of this number is just usual sum of its terms, i.e. |n| = n. However, in the case
of p-adic absolute value, situation is quite different and in a sense inverse. Namely, by definition, p-adic
absolute value of n, presented as n = m pk with respect to a given p and m is not divisible by p, is

|n|p = |mpk
| = p−k. (7)

Hence, p-adic absolute value of n in (6) is equal to the highest p-adic value of its terms. p-Adic absolute value
is a very important example of non-Archimedean (ultrametric) norm and satisfies the following properties:

1) |x|p ≥ 0 , (|0|p = 0) , 2) |xy|p = |x|p|y|p , 3) |x + y|p ≤ max{|x|p, |y|p}, (8)

where here x, y, z are some natural (rational) numbers. This p-adic norm can be easily extended to integer and
also rational numbers. From algebraic point of view, set of rational numbers Q is a simple infinite number
field. All numerical results of measurements are some rational numbers. According to the Ostrowski
theorem, any nontrivial norm on the field Q is equivalent either to ordinary absolute value or to p-adic
absolute value, where p is a prime number. As the field R of real numbers can be obtained by completion
of Q with respect to distance induced by the ordinary absolute value, so the p-adic number field Qp is
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completion by the same procedure where instead of ordinary absolute value is used p-adic norm, see e.g.
[9]. There is p-adic analysis, which has been employed in construction of some physical models since 1987
and is named p-adic mathematical physics (for a recent review, see [8]). p-Adic modeling in physics was
extended to bioinformation, and p-adic model of the genetic code [1–6] is an evident successful example.

Using positional notation, we present number (6) differently in real and p-adic case: n = nk nk−1 ...n1 n0 –
real number, and n = n0 n1 ...nk−1 nk – p-adic number. By this presentation, in both cases we see that values
of terms decrease from the left to the right of digit sequences.

Real and p-adic distance are related to their absolute values respectively as follows: d(x, y) = |x −
y| , dp(x, y) = |x − y|p, where x and y are some natural (rational) numbers.

3. Ultrametric (p-Adic) Language

We want to construct now an ultrametric language in the following way. Let we have m letters of an
alphabet and let k be a fixed length of the corresponding words. Then n = mk is a total number of words
in this language. Let these n words denote some n things (objects). Can we, in principle, assign a number
of properties to each of these things (words) and to be able to describe them? The answer is positive and
is related to the p-adic absolute value. As it is well known, there are infinitely many prime numbers. To a
natural number we can apply any p-adic norm, which is less or equal to 1. For a fixed p, let its p-adic norm
is related to a definite characteristic, which we can call p-adic property. For different primes we will have
different p-adic properties. Using p-adic distance between words we can investigate similarity of p-adic
properties between these words. To illustrate this subject, let us consider an example where number of
letters m = 4 and length of words k = 3. There are 64 words for 64 objects: A1 , A2 , A3 , ..., A63 , A64. Let
these 64 words (objects) be presented in base 5 as follows:

x = x0 + x1 5 + x2 52
≡ x0 x1 x2 , (9)

where xi = 1, 2, 3, 4.Note that 5-adic norm of any 64 numbers of the form x in (9) is |x|5 = 1, because the first
digit x0 , 0. But 5-adic distance between two different numbers a = a0 + a1 5 + a2 52 and b = b0 + b1 5 + b2 52

may have one of the following three values:

d5(a, b) =


1 if a0 , b0 ,

1/5 if a0 = b0 and a1 , b1 ,

1/25 if a0 = b0, a1 = b1 and a2 , b2.

(10)

At Table 1 we presented 64 numbers in base 5 as a numerical representation of 64 words, which denote
some objects A1 , A2 , A3 , ..., A63 , A64. With respect to 5-adic distance, for each object Ai there are 48 other
objects at distance equal 1, also 12 objects at distance 1

5 , and 3 objects at distance 1
25 . For example, object A1

presented by number 111 is at 5-adic distance equal 1 with respect to all other numbers which first digit is
2, 3 or 4.

Note that in p-adic model of the genetic code (vertebrate mitochondrial code), Table 1 is used for
modeling 5-adic and 2-adic similarity between codons to find rule according to which two codons code the
same amino acid (for details see, e.g. [5]).

At Table 2 all 64 numbers, from Table 1, are presented as product of their primes written in the decimal
notation. Thus, for each number we use here two bases: on the left hand side of equality is base 5 and on
the right hand side notation of primes is in base 10. One can see presence of all primes between 2 and 61
except 5, as a consequence of given representation in base 5. This presentation by product of related primes
gives us possibility to find easily p-adic norms according to definition (7) for all 64 natural numbers. When
there is not explicitly a prime number in the factorization of presented numbers, it can be regarded that
such prime number is present like p0 = 1 and the corresponding p-adic norm is 1. So all 64 numbers with
respect to primes p > 61 have p-adic norm equal to 1.

It is also important to know p-adic distances between any two numbers in Table 1. As a consequence of
representation in base 5 with digits 1, 2, 3, 4 it is rather easy to find some distances for the cases p = 2 and
p = 3. For example d2(Ai + 16,Ai) = 1, d2(Ai + 32,Ai) = 2−1 and d3(Ai + 48,Ai) = 3−1.
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111 A1 211 A2 311 A3 411 A4
112 A17 212 A18 312 A19 412 A20
113 A33 213 A34 313 A35 413 A36
114 A49 214 A50 314 A51 414 A52

121 A5 221 A6 321 A7 421 A8
122 A21 222 A22 322 A23 422 A24
123 A37 223 A38 323 A39 423 A40
124 A53 224 A54 324 A55 424 A56

131 A9 231 A10 331 A11 431 A12
132 A25 232 A26 332 A27 432 A28
133 A41 233 A42 333 A43 433 A44
134 A57 234 A58 334 A59 434 A60

141 A13 241 A14 341 A15 441 A16
142 A29 242 A30 342 A31 442 A32
143 A45 243 A46 343 A47 443 A48
144 A61 244 A62 344 A63 444 A64

Table 1: This table contains 64 numbers presented by ordered digits 1, 2, 3, 4 of length 3 in base 5. The corresponding words, which
denote objects, are denoted by A with indices increasing with real values of the related numbers. It is worth noting that 5-adic distance
between numbers in every row is 1, and that in every column there are four quadruplets which numbers are at 5-adic distance 1

25 .
For example, if 5-adic property means color then there are 64 colored objects, which can be classified into three classes: very similar
(d5 = 1

25 , in quadruplets where the first two digits are the same), a little similar (d5 = 1
5 , when the first digits are the same and second

are different) and not similar (d5 = 1, when the first digits are different).

111 = 31 211 = 25 311 = 3 × 11 411 = 2 × 17
112 = 23

× 7 212 = 3 × 19 312 = 2 × 29 412 = 59
113 = 34 213 = 2 × 41 313 = 83 413 = 22

× 3 × 7
114 = 2 × 53 214 = 107 314 = 22

× 33 414 = 109
121 = 22

× 32 221 = 37 321 = 2 × 19 421 = 3 × 13
122 = 61 222 = 2 × 31 322 = 32

× 7 422 = 26

123 = 2 × 43 223 = 3 × 29 323 = 23
× 11 423 = 89

124 = 3 × 37 224 = 24
× 7 324 = 113 424 = 2 × 3 × 19

131 = 41 231 = 2 × 3 × 7 331 = 43 431 = 22
× 11

132 = 2 × 3 × 11 232 = 67 332 = 22
× 17 432 = 3 × 23

133 = 7 × 13 233 = 4 × 23 333 = 3 × 31 433 = 2 × 47
134 = 22

× 29 234 = 3 × 39 334 = 2 × 59 434 = 7 × 17
141 = 2 × 23 241 = 47 341 = 24

× 3 441 = 72

142 = 71 242 = 23
× 32 342 = 73 442 = 2 × 37

143 = 25
× 3 243 = 97 343 = 2 × 72 443 = 32

× 11
144 = 112 244 = 2 × 61 344 = 3 × 41 444 = 22

× 31

Table 2: Every number in this table is presented by two ways and connected by the sign of equality ”=”. On the left hand side of
the equality is a number in base 5 presented by digits 1, 2, 3, 4. On the right hand side is the same number presented by product of
its primes in decimal notation. These products of primes help us to easily find related p-adic norms. Note that all primes, except 5,
between 2 and 61 are employed in this table.
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3.1. Adelic aspects
Note that any of the above 64 numbers, as well as any rational number, has some real and p-adic

properties, for all infinitely many primes. In mathematics there is way to treat these real and p-adic
properties simultaneously. It is related to the notion of adeles and ideles. An adele α is an infinite sequence

α = (α∞, α2, α3, · · · , αp , · · · ) , α∞ ∈ R , αp ∈ Qp , (11)

where for all but a finite set P of primes p one has that αp ∈ Zp = {x ∈ Qp : |x|p ≤ 1}, which is the ring of
p-adic integers.

Here, it is sufficient to know what is a principal idele. Principal idele ρid is an infinite sequence

ρid = (ρ∞ , ρ2 , ρ3 , ρ5 , ..., ρp , ...) , (12)

where all ρ∞ , ρ2 , ρ3 , ρ5 , ..., ρp , ... are the same non-zero rational numbers, but treated by different norms
– ordinary absolute value for subscript ∞ and p-adic norms denoted by subscripts p = 2, 3, 5, 7, 11, .... In
our case, ρ is a natural number. One can show that the following formula

|ρ|∞ |ρ|2 |ρ|3 |ρ|5 · · · |ρ|p · · · = 1 (13)

is valid, where product runs over ordinary absolute value and all p-adic norms of the same natural (or
non-zero rational) number. According to formula (13), all (real and p-adic) properties of any non-zero
rational number (object) are mutually connected.

In our example with 64 objects, we can consider them as 64 principal ideles. Ordinary absolute value and
related usual distance can describe spatial properties of these objects. p-Adic norm and the corresponding
distance can describe arbitrary many various properties. In particular, by p-adic distance one can investigate
similarity (and dissimilarity) of some properties between different objects.

The most general mathematical notion for unification of real and p-adic numbers is adele, which takes
into account field of rational numbersQwith all its non-trivial valuations and all corresponding completions
(see, e.g. [10]). Artificial intelligence based on adeles, should be called adelic intelligence.

4. Concluding Remarks

In the previous sections we presented some basics of an ultrametric (p-adic) approach to language which
could be used in design of an artificial intelligence. This p-adic approach to an artificial language gives
possibility to quantify similarity between words.

As an illustration of ultrametric language, we considered 64 objects presented by 3-digit numbers in
base 5 and endowed by p-adic properties. Number of these properties can be arbitrary and they are related
to p-adic norm. Similarity of properties between distinct objects can be expressed by p-adic distance. Our
example with 64 objects can be generalized to any larger number of words and longer sequences of letters.
It is worth noting that these ultrametric spaces of sequences can be also considered as ultrametric networks,
where nodes are sequences and links are p-adic distances between them.

To compare similarities quantitatively, it is useful to introduce relative similarity δ within an ultrametric
space U in the following way:

δ(x, y) = (D − d(x, y))/D , (14)

where D is maximal distance on space U.One can easily see that values of δ are: 0 ≤ δ ≤ 1.When x = y then
δ = 1, and δ = 0 when d(x, y) = D. Thus, relative similarity increases from 0 to 1. This relative similarity can
be particularly useful comparing similarities in an ultrametric space U1 with similarities in another space
U2 . One can also introduce relative dissimilarity δ̄ by formula δ + δ̄ = 1.

For the future investigation of the subject proposed in this paper, we plan to construct a set of objects
with appropriate set of natural numbers, and connect p-adic properties with some concrete characteristics
of given objects.
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