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Abstract. In this paper some algebraic and geometrical properties of symmetries (taken here as Lie algebras
of smooth Killing vector fields) on a 4−dimensional manifold of arbitrary signature will be described. The
discussion will include the theory of the distributions arising from such vector fields, their resulting orbit
and isotropy structure and certain stability properties which these orbits may, or may not, possess. A link
between the isotropies and the restrictions on the fundamental tensors of Ricci and Weyl (in terms of the
subalgebras of the Lie algebras o(4), o(1, 3) and o(2, 2)) will be briefly discussed.

1. Introduction

Let M be a 4−dimensional, smooth, connected, paracompact, Hausdorff manifold with metric 1 of
signature either (+,+,+,+) (positive definite), (+,+,+,−) (Lorentz) or (+,+,−,−) (neutral), collectively
referred to as (M, 1). (In the Lorentz case, paracompactness follows automatically from the other conditions
[1]). In an attempt to deal with all signatures simultaneously, if TmM denotes the tangent space to M at
m ∈ M and u, v ∈ TmM, u.v denotes their inner product, 1(m)(u, v), at m. A non-zero member u ∈ TmM is
called spacelike if u.u > 0, timelike if u.u < 0 and null if u.u = 0 and the 1−dimensional subspaces (directions)
that each span are called, respectively, spacelike, timelike and null. A 2−dimensional subspace V of TmM
is called spacelike if each non-zero member of V is spacelike, or each non-zero member of V is timelike,
timelike if V contains exactly two, distinct, null directions, null if V contains exactly one null direction and
totally null if each non-zero member of V is null. Thus a totally null 2−space, which can only arise for
neutral signature, consists, apart from the zero vector, of null vectors any two of which are orthogonal. For
neutral signature, a 3−dimensional subspace of TmM is spacelike (respectively, timelike, null) if its normal
is spacelike (respectively, timelike, null) whereas for Lorentz signature convention demands it is spacelike
(respectively, timelike) if its normal is timelike (respectively, spacelike) and null if its normal is null. If 1 is
of positive definite signature the term subspace, together with its dimension, are all that is required. The
property (spacelike, timelike, null, etc) of a path or submanifold is sometimes referred to as its nature.

Let X be a global, smooth vector field on M each of whose local flows φt is an isometry, that is, its
pullback φ∗t satisfies φ∗t(1) = 1. Then, equivalently, X satisfies LX1 = 0 on M (using L to denote a Lie
derivative) and X is a Killing vector field on M. The collection of all such vector fields is a finite-dimensional
Lie algebra under the Lie bracket operation called the Killing algebra and is denoted by K(M). If X ∈ K(M),
then X satisfies Killing’s equations

Xa;b + Xb;a = 0⇔ Xa;b = Fab = −Fba, Xa
;bc = Fa

b;c = Ra
bcdXd (1)
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where a semi-colon denotes a covariant derivative with respect to the (unique) Levi-Civita connection of 1,
Ra

bcd are the components of the associated curvature tensor and F is the (skew-symmetric) Killing bivector
of X. The equations (1) reduce to first order differential equations for the components of X and F along any
path in M and reveal that, since M is connected, a member X ∈ K(M) is uniquely determined by its value
and that of its Killing bivector, at any m ∈M and hence that dimK(M) ≤ 10, these results being independent
of signature. Thus, if X ∈ K(M) vanishes on some non-empty open subset of M, X ≡ 0 on M. [It is remarked
that it is assumed that there are no local (non-extendible to M) Killing vector fields on M and that all the
“symmetry” is contained in the global Killing algebra K(M).]

The theory of Killing symmetry is interesting and important and has been used to significant effect in
producing exact solutions of Einstein’s equations in his general relativity theory. It is also useful from a
purely geometrical viewpoint. This paper extends the work of the author and Bahar Kırık [2].

2. Generalised Killing Distributions and Orbits

Define a generalised (or singular) distribution D : m → Jm on M where m ∈ M and Jm is the subspace of
TmM given by Jm = {X(m) : X ∈ K(M)} (noting that dimJm is not necessarily constant on M). A submanifold
N of M with (smooth) inclusion i : N→M is then an integral manifold of D if for each m ∈ N the differential
of i at m, i∗(m), satisfies i∗(TmN) = Jm. The distribution D is called integrable if there is a maximal, connected
integral manifold of D through each m ∈ M. Since K(M) is finite-dimensional, D is necessarily integrable
[3] and the integral manifolds of D are leaves of M and satisfy the condition (not necessarily satisfied by
any submanifold) that if N is an integral manifold of D and f : M → M is smooth with range in N then
f : M → N is smooth [4]. These integral manifolds have a geometrical interpretation in that they are
precisely the equivalence classes corresponding to the equivalence relation m ∼ m′ where m,m′ ∈ M and
some finite sequence of local flows of members of K(M) maps m → m′ [5]. Such integral manifolds are
called orbits (of K(M)) and each X ∈ K(M) is tangent to the integral manifold through m at any m ∈M. Now
let m ∈ M and define a subalgebra Im of K(M) by Im = {X ∈ K(M) : X(m) = 0}. [In this case any local flow
φt of X satisfies φt(m) = m and so m is a zero of X and a fixed point of φt.] The subalgebra Im is called the
isotropy subalgebra (of K(M)) at m and is easily checked to be Lie isomorphic to the Lie algebra of all {Fa

b(m)}
where F(m) is the Killing bivector of some member of Im (with matrix commutation as its Lie product)
under the map which associates X ∈ Im with its Killing bivector at m. Finally, for any m ∈ M, the linear
map K(M)→ TmM given by X→ X(m) has range space Jm and kernel Im and so dimK(M) =dimIm+dimOm
where Om is the orbit (of K(M)) through m. This equation links the (m−dependent) dimensions of Im and
Om with the (fixed by (M, 1)) dimension of K(M).

It is easily checked that the nature of an orbit is the same at each of its points, as is the nature of the
tangent to the integral curve of a Killing vector field. An orbit O of K(M) is called proper if 1 ≤dimO ≤ 3. A
proper orbit O will be called stable (respectively, dimensionally stable) if, for each m ∈ O, there exists an open
neighbourhood U of m in M such that each orbit intersecting U has the same nature and dimension as O
(respectively, has the same dimension as O) [6, 7]. If a proper orbit O is spacelike or timelike and i : O→M
is the usual inclusion map for the submanifold O, the pullback h ≡ i∗1 is a metric on O. Now each X ∈ K(M)
is tangent to O at any m ∈ O and so there exists a unique smooth vector field X̃ on O such that i∗X̃ = X
(see, e.g. [8]) and X̃ is a Killing vector field for h (see, e.g. [6, 7]). Thus one has a map (in fact a Lie algebra
homomorphism) K(M) → K(O) where K(O) is the Killing algebra for (O, h). This map need not be either
injective or surjective [2, 6, 7].

It is useful to note the following decomposition of M with respect to K(M) and with K(M) assumed
non-trivial. For each 0 ≤ i ≤ 4 let Vi = {m ∈M :dimJm = i} and disjointly decompose M =

⋃4
i=0 Vi as

M =

4⋃
i=0

intVi ∪ Z = V4 ∪

3⋃
i=0

intVi ∪ Z. (2)

where int denotes the interior in the manifold topology on M and the closed subset Z is defined by the
disjointness of the decomposition. It can be shown that intZ = ∅ [2, 6, 7]. Thus M is decomposed into
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open subsets of constant orbit dimension apart from the closed set Z which has empty interior. On any
component of V4, if non-empty, the symmetries act “homogeneously”. The subset M \ Z is the union of V4
with all (proper) dimensionally stable orbits of K(M) and is open and dense in M whilst Z is the union of
V0 and all (proper) not dimensionally stable orbits of K(M) (since K(M) is not trivial and hence intV0 = ∅.)
Any proper orbit of maximum dimension (in an obvious sense) is dimensionally stable.

3. Isotropy Structure

If Om is the Killing orbit through m and dimOm = n′ < n =dimK(M) then Im is non-trivial. Let X ∈ Im be
non-trivial, so that X(m) = 0 (and its Killing bivector F(m) , 0.) If one chooses normal coordinates xa about m
with domain U then, since the local flows of X are affine and preserve geodesics and their affine parameters,
X is “linearised” on U, that is, its components are linear functions of xa and satisfy Xa = Fa

b(m)xb in U [6, 9].
Thus if F(m), which must have matrix rank an even integer since it is skew-symmetric, has rank 4, the zero
m of X is isolated (that is, it is the only zero of X in some open neighbourhood of m) whereas if it has rank
2, the coordinates of the zeros of X in U are found from the kernel of F(m) and constitute a 2−dimensional
submanifold of U and hence of M. In this latter case F(m) is called simple and can be written in the form
Fab(m) = rasb

− sarb (or, more briefly, as r ∧ s where ∧ is the usual wedge product) where the 2−dimensional
subspace of TmM spanned by r, s ∈ TmM is uniquely determined by F(m) and called the blade of F(m). For
the above orbit Om (and reducing U if necessary) choose independent members X1, ...,Xn′ ∈ K(M) which
span the tangent space to Om at each point in U ∩Om and give rise to independent tangent vectors at each
point of U and a smooth vector field k which is orthogonal to each of X1, ...,Xn′ on U. Then along any path
c in Om through m with tangent p(t) any X ∈ Im satisfies (Xaka);bpb = 0 for each (independent) choice of k
and p (which depend on Om). Evaluating this at m gives Fab(m)kapb = 0. If Om is dimensionally stable the
Killing vectors X1, ...,Xn′ may be taken to span the orbits on U and so the stronger result Fab(m)kb = 0 is
achieved [6, 7]. When the type and dimension of the orbit is known these equations give restrictions on the
dimension of (the Killing bivector representation of) Im and, in the dimensionally stable case, any solution F(m)
is simple.

For example, suppose 1(m) is positive definite and that there exists a 1−dimensional orbit O with
m ∈ O. Then there exists X ∈ K(M) spanning O at m. Choosing an orthonormal basis x, y, z,w at m and
normal coordinates based on it one can arrange that X(m) = (∂/∂x)m and, in an obvious abuse of notation,
Fabxayb = Fabxazb = Fabxawb = 0 where F = F(m) and xa = (∂/∂x)m, etc. Thus with <> denoting the span of its
included members Im ⊂< y∧z, y∧w, z∧w >with each member of Im satisfying Fa

bxb = 0 and is thus simple.
This example is easily modified, if O is spacelike or timelike, to the Lorentz and neutral signature cases.
Further, for any signature and any (1−dimensional) orbit type, if O is dimensionally stable, Im is trivial.

Next, if 1 has positive definite signature and O is 2−dimensional one may choose the above orthonormal
basis where xa and ya are tangent to O at m and F(m) satisfies Fabxazb = Fabxawb = Fabyazb = Fabyawb = 0.
Thus F(m) lies in < x ∧ y, z ∧ w > and dimIm ≤ 2 whilst, if O dimensionally stable, F(m) is a multiple of
x ∧ y and dimIm = 1. This technique is easily extended to Lorentz and neutral signature if O is spacelike or
timelike and with a little more effort if O is null or totally null.

Next, if 1 is of neutral signature and Om is null with dimOm = 3 then if l,n,L,N ∈ TmM constitute a basis
each member of which is null (and with the only non-vanishing inner products l.n = L.N = 1) and with
l,L,N spanning Om (so that l is the null normal to Om) F(m) lies in < l∧ n, l∧ L, l∧N,L∧N > and dimIm ≤ 4.
Here, in the dimensionally stable case, F(m) lies in < l∧ L, l∧N,L∧N > and dimIm ≤ 3. The Lorentz case is
similar in an appropriately modified basis.

Finally, and with 1 of neutral signature, let O be a 3−dimensional timelike orbit. Choose an orthonormal
basis x, y, s, t at m with x.x = y.y = −s.s = −t.t = 1 and with x, y, s spanning the tangent space to O at m.
The above results show that F(m) lies in < x ∧ y, x ∧ s, y ∧ s > and so, at m, Fabtb = 0. Thus F(m) is always
simple. Similar comments apply to the spacelike case, to both (3−dimensional) spacelike and timelike cases
when 1 has Lorentz signature and in all (3−dimensional) cases if 1 is positive definite. Thus for each of
these dimIm ≤ 3. When all the above results, for each orbit type and dimension and for each signature, are
combined they place restrictions on dimK(M), as remarked above, and lead to the following theorem which
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covers all signatures. It is not claimed that all situations can occur but many can and some examples can
be found in [2, 6, 7, 10].

Theorem 3.1. Let M be a 4−dimensional manifold with metric of arbitrary signature. Then the following hold for
the orbits of K(M) where K(M) is assumed non-trivial.

(i) If K(M) admits a (proper) dimensionally stable orbit O with m ∈ O and ImM non-trivial the non-zero Killing
bivectors in Im are simple and have a common annihilator (that is, there exists k ∈ TmM such that Fabkb = 0 for each
F ∈ Im). Each such vector k is orthogonal to the orbit at m and the transformations associated with Im act as the
identity map on the subspace of TmM orthogonal to O.

(ii) If there exists a 3-dimensional, null orbit (Lorentz or neutral) 3 ≤ dimK(M) ≤ 7 whilst if there exists a
3−dimensional, null, dimensionally stable orbit (Lorentz or neutral) or a 3−dimensional timelike or spacelike orbit
(Lorentz or neutral and for positive definite, spacelike), 3 ≤dimK(M) ≤ 6.

(iii) If there exists a 2−dimensional, totally null orbit (neutral), 2 ≤dimK(M) ≤ 7, if there exists a 2−dimensional,
null orbit (Lorentz or neutral), 2 ≤dimK(M) ≤ 5 and if there exists a 2−dimensional, spacelike or timelike orbit
(Lorentz and neutral and for positive definite, spacelike), 2 ≤dimK(M) ≤ 4. If there exists a 2−dimensional,
dimensionally stable orbit (all signatures), 2 ≤dimK(M) ≤ 3.

(iv) If there exists a 1−dimensional, null orbit (Lorentz or neutral), 1 ≤dimK(M) ≤ 5, if there exists a
1−dimensional, spacelike or timelike orbit (Lorentz and neutral and for positive definite, spacelike), 1 ≤dimK(M) ≤ 4
and if there exists a 1−dimensional, dimensionally stable orbit (all signatures), dimK(M) = 1.

4. Orbit Restrictions

There are further restrictions on certain orbit dimensions other than those contained in Theorem 3.1 and
which can be seen from the following argument.

For all signatures, suppose there exists a 1−dimensional, non-dimensionally stable, spacelike or timelike
orbit O associated with K(M) and that m ∈ O. Choose normal coordinates ya (with domain V) about m
generated by a basis for TmM one member of which is tangent to O and the others orthogonal to O. Thus
one may arrange that X ∈ K(M) and X(m) = ∂/∂y1 and the 3−dimensional coordinate plane H in V given
by y1 = 0 is then generated by geodesics through m orthogonal to O at m. Then use the “straightening out
lemma” for X ([9] section 4.1.14) to get a local chart (U, ψ) of M with m ∈ U, and, with an abuse of notation,
ψ(U) = H′ × I, H′ ⊂ H and I = (−a, a) for some a ∈ R. The curves of the form q× I are integral curves of X for
each q ∈ H′. Now each local flow φt of X preserves geodesics and orthogonality and thus maps H′ at m to
a similar section of the above flow box of X generated by geodesics orthogonal at the corresponding point
of O to the integral curve of X in O. Now any other Y ∈ K(M) is tangent to O, hence orthogonal to these
sections at each point of O and hence (by a classical result saying that the inner product of a Killing vector
field and the tangent to an affinely parametrised geodesic is constant along the geodesic -see, e.g. [11]) is
at any m′ ∈ U orthogonal to a geodesic from m′ to some point of O. This restriction shows that the orbits in
U are at most 3−dimensional and with at least one orbit of dimension 2 or 3 since O is not dimensionally
stable.

Now suppose there exists a 3−dimensional spacelike or timelike orbit O, for any signature. Let m ∈ O,
let X,Y,Z be independent members of K(M) and let U an open neighbourhood of m such that X,Y,Z span
the tangent space to O at each point of U ∩ O and give independent members of TmM for each m ∈ U.
Then U may be chosen such that there exists a smooth nowhere-zero spacelike or timelike (depending on
the nature of O) vector field T on U which is orthogonal to X,Y,Z on U and whose integral curves are
geodesics. The last of these follows from Killing’s equations for X,Y,Z since 0 = (TaXa);bTb = Ta

;bTbXa on U
and similarly for Y and Z. Now using the straightening out lemma again, this time for T, one may build an
open neighbourhood V ⊂ U containing m. Since any W ∈ K(M) is tangent to O∩V ⊂ O∩U it is orthogonal
to T on V by the classical result mentioned above and hence any orbit in V is at most 3−dimensional (and
hence exactly 3−dimensional by an appeal to rank) and of the same nature as O. Thus any 3−dimensional
non-null orbit is stable.

A similar argument shows, again for any signature, that if V0 , ∅, using normal coordinates about
m ∈ V0, there exists a neighbourhood U of m in which the orbits have dimension ≤ 3.



G. Hall / Filomat 33:4 (2019), 1235–1240 1239

It is clear that any proper, spacelike or timelike, dimensionally stable orbit is stable.

Theorem 4.1. Let M be a 4−dimensional manifold with metric of arbitrary signature. Then any 3−dimensional
non-null orbit is stable and any m lying on a spacelike or timelike 1−dimensional orbit admits a neighbourhood in
which all orbits are at most 3−dimensional. Any proper, spacelike or timelike, dimensionally stable orbit is stable.

Some examples to illustrate this theorem (and theorem 3.1) are given in [2].

5. Restrictions on the Ricci and Weyl Tensors

The work in section 3 dealt with the situation when a non-trivial member X ∈ K(M) vanished at m ∈ M
so that m was a zero of X and a fixed point of the associated local flows φt of X. In this case the pushforward
φt∗ is a linear isometry on TmM with respect to 1(m). Since X ∈ K(M), one has the relations φ∗tRicc = Ricc and
φ∗tC = C where Ricc denotes the Ricci tensor arising from the curvature tensor on M and C is the associated
Weyl conformal tensor. Thus for example, for u, v ∈ TmM, Ricc(u, v) = Ricc(φt∗(u), φt∗(v)) and (algebraic)
restrictions are placed on Ricc(m) (and similarly on C(m)). Such restrictions depend on the structure of the
Lie algebra Im (now of dimension ≥ 1) expressed in bivector form (section 3). It turns out (sections 3 and
4) that if m lies on any proper, dimensionally stable orbit or any 1− or 3−dimensional spacelike or timelike
orbit, Im has a bivector representation consisting of simple bivectors which possess a common annihilator
(that is, there exists k ∈ TmM such that any bivector F in this representation satisfies Fa

bkb = 0) and hence
can be shown to have dimension ≤ 3. Such subalgebras are called special. To put this into practice one
requires an algebraic classification of Ricc and C for each signature and these can be found, for neutral
signature respectively, in [12] and [13]. For Lorentz signature the algebraic classification of C is the Petrov
classification [14] (as modified by Pirani [15]) and convenient forms for the algebraic types for Ricc(m) and
C(m) can be found in [6]. The (Petrov) types are labelled I, II, III, D, N and O, where the last type means
that C(m) = 0. The type of Ricc(m) can be given by its Segre symbol. For positive definite signature the
algebraic types for Ricc(m) are just the diagonalisable (overR) Segre types. For C(m) one must consider how
to algebraically classify C for this signature. This is rather similar to that given for neutral signature in [13]
but much less complicated. Further details on the isotropy structure and the consequent algebraic types
will be given by Dr B Kırık in her contribution to this volume [10]. It is remarked here, for later use and for
all signatures, that if m lies on some dimensionally stable orbit and dimIm ≥ 3 the Weyl tensor vanishes at m
(and in the Lorentz case this result applies at any m ∈ M where dimIm ≥ 3—see, e.g., [6, 16]) and again for
any m ∈M, if dimIm ≥ 4, Ricc(m) is proportional to 1(m) [2, 6].

6. Further Comments

The results of theorem 3.1 lead to further results in those cases when K(M) is of high dimension. The
next theorem summarises some of these results.

Theorem 6.1. (i) Suppose dimK(M) = 7. Then for Lorentz and neutral signatures V4 is dense in M and if M , V4
any orbit in M \ V4 is not dimensionally stable. In the positive definite case M = V4.

(ii) Suppose dimK(M) ≥ 8. For all signatures, M = V4 and (M, 1) is an Einstein space. If, in addition,
dimK(M) ≥ 9 (M, 1) is a conformally flat, Einstein space, hence of constant curvature, and there exists, locally, a
10−dimensional Killing algebra. If M is simply connected, dimK(M) = 10.

(iii) Suppose dimK(M) = 6. Then, in the positive definite case M = V4 or M = V3. Otherwise, either M = V4,
or V4 = ∅ or ∅ , V4 , M and in this last case M \ V4 admits a non-dimensionally stable orbit which is either
2−dimensional and totally null (neutral signature) or 3−dimensional and null (Lorentz or neutral signature). Again,
for Lorentz or neutral signatures, if V4 = ∅ the subset U of points of M lying on proper dimensionally stable orbits is
open and dense in M and so, on U, dimIm ≥ 3 and C(m) vanishes there and hence on M. Thus (M, 1) is conformally
flat.
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Proof
(i) (Lorentz and neutral signatures.) If V4 (which is open in M) is not dense in M there exists an non-

empty open subset U ⊂ M \ V4. Then the orbit of maximum dimension (≤ 3) intersecting U non-trivially is
dimensionally stable and theorem 3.1 gives the contradiction that dimK(M) ≤ 6. Thus V4 is dense in M and
it follows that if M , V4 any orbit intersecting M \ V4 is not dimensionally stable. In the positive definite
case it follows immediately from theorem 3.1 that M = V4.

(ii) (All signatures.) If dimK(M) ≥ 8 then dimIm ≥ 4 for each m ∈ M and so (M, 1) is an Einstein space
[2, 6, 13]. It follows from theorem 3.1 that M = V4. For dimK(M) ≥ 9, dimIm ≥ 5 for each m ∈ M and so
C ≡ 0 on M [2, 6, 13] and (M, 1) is a conformally flat Einstein space and is hence of constant curvature. Thus
a local Lie algebra of Killing vector fields of dimension 10 is admitted about each point and which may be
extended globally to M if M is simply connected [17, 18].

(iii) For dimK(M) = 6 (Lorentz or neutral signatures) if ∅ , V4 , M (and since M is connected and V4
is open in M) M \ V4 admits a non-dimensionally stable orbit (otherwise it would be open and contradict
the connectedness of M) which is either 2−dimensional and totally null or 3−dimensional and null. If
V4 = ∅ and if a non-empty open subset is contained in M \U the orbit of maximum dimension intersecting
this subset non-trivially is a proper, dimensionally stable orbit and a contradiction to the definition of U is
obtained. Thus U is (open and) dense in M. So for m ∈ U, dimIm ≥ 3 and C(m) vanishes there (since m lies
on a dimensionally stable orbit) and hence on M. Thus (M, 1) is conformally flat. For the positive definite
case theorem 3.1 shows that M = V3 ∪ V4 with V4 open (and V3 is open from theorem 4.1) and the result
follows from the connectedness of M.
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