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On Quasi-Clifford Osserman Curvature Tensors

Vladica Andrejića, Katarina Lukića
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Abstract. We consider pseudo-Riemannian generalizations of Osserman, Clifford, and the duality principle
properties for algebraic curvature tensors and investigate relations between them. We introduce quasi-
Clifford curvature tensors using a generalized Clifford family and show that they are Osserman. This
allows us to discover an Osserman curvature tensor that does not satisfy the duality principle. We give
some necessary and some sufficient conditions for the total duality principle.

1. Introduction

Let (V, 1) be a (possibly indefinite) scalar product space of dimension n. The squared norm of a vector
X ∈ V is the real number εX = 1(X,X). The sign of the squared norm distinguishes all vectors X ∈ V into
three different types. A vector X ∈ V is spacelike if εX > 0; timelike if εX < 0; null if εX = 0. Especially, a
vector X ∈ V is nonnull if εX , 0 and it is unit if εX ∈ {−1, 1}.

An algebraic curvature tensor on (V, 1) is a quadri-linear map R : V4
→ R that satisfies usual Z2-

symmetries and the first Bianchi identity. In the presence of an orthonormal basis (E1, . . . ,En) in V, we
have the associated Jacobi operator JX : V → V for X ∈ V by JX(Y) =

∑n
i=1 εEi R(Y,X,X,Ei)Ei. The Jacobi

operator is a self-adjoint endomorphism onV, and therefore it is diagonalizable if 1 is definite. However,
this is no longer true in the indefinite setting, so if JX is diagonalizable for any nonnull X we say that R is
Jacobi-diagonalizable. In general, the eigen-structure of JX is determined by the Jordan normal form (the
number and the sizes of the Jordan blocks).

We say that R is timelike Osserman (or spacelike Osserman) if the characteristic polynomial of the
Jacobi operator JX is independent of unit timelike (or spacelike) X ∈ V. We say that R is timelike
Jordan-Osserman (or spacelike Jordan-Osserman) if the Jordan normal form of JX is independent of unit
timelike (or spacelike) X. An algebraic curvature tensor is Osserman if it is both timelike and spacelike
Osserman, and it is Jordan-Osserman if it is both timelike and spacelike Jordan-Osserman. It is known
that spacelike Osserman and timelike Osserman are equivalent properties, and R is Osserman if and only
if det(εXλ Id−JX) = 0 is the same equation for all nonnull X. However, spacelike Jordan-Osserman and
timelike Jordan-Osserman are not equivalent (see Section 3).

In the Riemannian setting (1 is positive definite), one of important features of an Osserman algebraic
curvature tensor is the duality principle, given by Rakić [12]. Generalizations to a pseudo-Riemannian
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setting (see Andrejić and Rakić [3, 4]) are possible by the following implication,

Y is an eigenvector of JX =⇒ X is an eigenvector of JY. (1)

We shall use two kinds of duality depending on our (X,Y) domain. If (1) holds for all X,Y ∈ V with the
restriction εX , 0, we say that R is Jacobi-dual (R satisfies the duality principle), and if the only restriction
is X , 0, we say that R is totally Jacobi-dual (see Andrejić and Rakić [4]).

After Rakić established the duality principle and proved that a Riemannian Osserman algebraic curva-
ture tensor is Jacobi-dual (see [12]), it is extensively studied in the pseudo-Riemannian settings. The best
results were recently given by Nikolayevsky and Rakić [11], where they showed that any Jordan-Osserman
R is Jacobi-dual. They also proved that if the set of those X ∈ V for which JX is diagonalizable has a
nonempty interior (R is semisimple) then R is Osserman if and only if it is Jacobi-dual.

Additionally, we have the following partial results. Any four-dimensional Osserman R is Jacobi-dual,
see Andrejić [1]. Any Lorentzian totally Jacobi-dual R has constant sectional curvature, see Andrejić and
Rakić [4]. Any four-dimensional Jacobi-dual R such that JX is diagonalizable for some nonnull X is
Osserman, see Andrejić [2].

2. Quasi-Clifford curvature tensors

A tensor of constant sectional curvature 1 is a very first example of an algebraic curvature tensor,

R0(X,Y,Z,W) = 1(Y,Z)1(X,W) − 1(X,Z)1(Y,W).

Additionally, any skew-adjoint endomorphism J onV generates a new example by

RJ(X,Y,Z,W) = 1(JX,Z)1(JY,W) − 1(JY,Z)1(JX,W) + 21(JX,Y)1(JZ,W).

Therefore, a linear combination

R = µ0R0 +

m∑
i=1

µiRJi (2)

is an algebraic curvature tensor for skew-adjoint endomorphisms J1, . . . , Jm onV.
A Clifford family is an anti-commutative family of skew-adjoint complex structures Ji, 1 ≤ i ≤ m.

Algebraic curvature tensors of form (2) associated with a Clifford family were introduced by Gilkey [6, 9].
However, it is natural to consider the generalization, an anti-commutative family of Ji such that J2

i = ci Id
for some ci ∈ R, that is, the Hurwitz-like relations,

Ji J j + J j Ji = 2ciδi j Id, (3)

hold for 1 ≤ i, j ≤ m. We say that an algebraic curvature tensor R is quasi-Clifford if it has a form (2) with
the Hurwitz-like relations (3). Especially, R is Clifford if it is quasi-Clifford with ci = −1 for all 1 ≤ i ≤ m.

It is well known that a Clifford algebraic curvature tensor is Osserman. However, according to Niko-
layevsky [10, Section 2], in the Riemannian setting the converse is true (an Osserman R is Clifford) in all
dimensions except n = 16, and also in many cases when n = 16. The only known (Riemannian) counterex-
ample is the curvature tensor ROP2

of the Cayley projective plane, or more precisely, any algebraic curvature
tensor of the form µROP2

+ ξR1, where R1 is the curvature tensor of the unit sphere S16(1) and µ , 0.
Let us start with a quasi-Clifford R and an arbitrary vector X ∈ V. Each Ji is skew-adjoint which implies

1(JiX,X) = 0 and simplifies the calculation of the Jacobi operator,

JX(Y) = µ0(εXY − 1(Y,X)X) − 3
m∑

i=1

µi1(Y, JiX)JiX. (4)
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Additionally, the equation (3) implies 1(JiX, J jX) = 0 and εJiX = −ciεX for 1 ≤ i , j ≤ n. If we denote
Ft = {X, J1X, . . . , JtX} for 1 ≤ t ≤ m, then we obtain

JX(JiX) = εX(µ0 + 3ciµi)JiX, JX(Z) = εXµ0Z,

for all 1 ≤ i ≤ m and Z ∈ F ⊥m . It is important to distinguish the case ci , 0, 1 ≤ i ≤ k from the case ci = 0,
k < i ≤ m.

For a nonnull X, the set Fk consists of mutually orthogonal nonnull eigenvectors. Thus, SpanFk and
F
⊥

k are nondegenerate, and we can consider the restriction J̃X ofJX to F ⊥k as a self-adjoint endomorphism
on F ⊥k . Eigenvectors corresponding to distinct eigenvalues of a self-adjoint endomorphism are mutually
orthogonal, including complex eigenvectors for complex eigenvalues from the complexification VC �
V ⊕ iV. However, all vectors orthogonal to Fm \ Fk are eigenvectors with the eigenvalue εXµ0, and
consequently J̃X has no other eigenvalues. Hence,

det(εXλ Id−JX) = (εX)nλ(λ − µ0)n−k−1Πk
i=1(λ − (µ0 + 3ciµi)),

which means that R is Osserman.

Theorem 2.1. Any quasi-Clifford algebraic curvature tensor is Osserman.

Additionally, the Jordan normal form of JX has the critical part on F ⊥k , where for J̃X we have

Im(J̃X − εXµ0 Id) ⊆ Span{Jk+1X, . . . , JmX} ⊆ Ker(J̃X − εXµ0 Id),

and therefore J̃X − εXµ0 Id is two-step nilpotent, (J̃X − εXµ0 Id)2 = 0. Thus, a quasi-Clifford R allows only
Jordan blocks of size 2.

However, let us remark that a pseudo-Riemannian manifold (R4, 1) induced by the metric 1 = x2x3dx2
1 −

x1x4dx2
2 + 2dx1dx2 + 2dx1dx3 + 2dx2dx4, at any point has the curvature tensor that is Jordan-Osserman such

that the Jordan normal form has a Jordan block of size 3 (see [5, Remark 4.1.2]). This means that the converse
question fails in the signature (2, 2), where an Osserman R is not necessarily quasi-Clifford.

3. Jacobi-duality

We shall follow and generalize the arguments from Andrejić and Rakić [4] with the purpose to investigate
whether a quasi-Clifford R is Jacobi-dual. Let X ∈ V be nonnull and suppose that Y is an eigenvector of
JX, that is, JX(Y) = εXλY holds for some λ ∈ R. Then (4) implies

εX(λ − µ0)Y = −µ01(Y,X)X − 3
m∑

i=1

µi1(Y, JiX)JiX, (5)

while by interchanging the roles of X and Y in (4) we have

JY(X) = µ0(εYX − 1(X,Y)Y) − 3
m∑

i=1

µi1(X, JiY)JiY. (6)

If λ , µ0, then we can express Y from (5) and get

JY(X) = µ0

(
εY +

µ0(1(X,Y))2

εX(λ − µ0)

)
X +

3µ01(X,Y)
εX(λ − µ0)

m∑
i=1

µi
(
1(Y, JiX) + 1(X, JiY)

)
JiX

+
9

εX(λ − µ0)

m∑
i=1

m∑
j=1

µiµ j1(X, JiY)1(Y, J jX)Ji J jX

=

µ0εY +
µ2

0(1(X,Y))2

εX(λ − µ0)
−

9
εX(λ − µ0)

m∑
i=1

µ2
i (1(Y, JiX))2ci

 X,
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so X is an eigenvector of JY. Otherwise, λ = µ0 gives

µ01(Y,X)X + 3
m∑

i=1

µi1(Y, JiX)JiX = 0. (7)

If the setFm is linearly independent, we have 1(Y,X) = 1(Y, JiX) = 1(JiY,X) = 0, and thereforeJY(X) = εYµ0X,
and again, X is an eigenvector ofJY. For a nonnull X, SpanFk is a nondegenerate subspace ofV orthogonal
to Fm \ Fk. Thus, if m = k or m = k + 1, then the set Fm is linearly independent.

Theorem 3.1. Any quasi-Clifford algebraic curvature tensor with at most one ci = 0 is Jacobi-dual.

However, this is no longer true if there are at least two Ji with ci = 0. Let (T1, . . .Tp,S1, . . . ,Sq) be an
orthonormal basis in a scalar product space (V, 1) of signature (p, q). Let us set an endomorphism J onV
by

JT1 = T2 + S2 = −JS1, −JT2 = T1 + S1 = JS2, JT3 = T4 + S4 = −JS3, −JT4 = T3 + S3 = JS4

JT5 = · · · = JTp = JS5 = JS6 = . . . JSq = 0.

It is easy to check that J is skew-adjoint with J2 = 0. In the case 4 = p < q, an Osserman algebraic curvature
tensor R = RJ is timelike Jordan-Osserman, but it is not spacelike Jordan-Osserman, which is similar to
Gilkey and Ivanova [8] and Gilkey [7, Section 3.2]. Let us introduce an additional endomorphism K onV
by

KT1 = T2 + S2 = −KS1, −KT2 = T1 + S1 = KS2, KT3 = T4 + S5 = −KS3, −KT4 = T3 + S3 = KS5

KT5 = · · · = KTp = KS4 = KS6 = . . .KSq = 0.

It is just changing roles of S4 and S5 in J, so K is also skew-adjoint with K2 = 0. If we set R = RJ
− RK, then

from (4),JX(Y) = 3(1(Y,KX)KX − 1(Y, JX)JX). Since JT1 = KT1 = T2 + S2 we haveJT1 (Y) = 0 for any Y ∈ V.
Additionally, for Y = T2 +

√
2S4 we have 1(Y, JT1) = 1(Y,KT1) = 1(T2 +

√
2S4,T2 + S2) = −1, and therefore

JY(T1) = 3(1(Y, JT1)JY − 1(Y,KT1)KY) = −3
√

2(T3 + S3). Thus,

JT1 (T2 +
√

2S4) = 0, JT2+
√

2S4
(T1) = −3

√

2(T3 + S3)

show that R is not Jacobi-dual. Moreover, our counterexample contains mutually orthogonal unit vectors
X = T1 and Y = T2 +

√
2S4, such that (1) does not work. In this way we were able to discover an Osserman

R that is not Jacobi-dual.

Theorem 3.2. There exist quasi-Clifford (and therefore Osserman) algebraic curvature tensors which are not Jacobi-
dual.

4. Total Jacobi-duality

Skew-adjoint endomorphisms with J2
i = 0 change the Jordan normal form of JX and therefore they are

inadequate for the duality principle, which we have already seen in the previous section. Hence, we shall
exclude them (m = k), which leaves only the Ji that are automorphisms. Without loss of generality, using
the rescaled (1/

√
|ci|)Ji, we can suppose ci ∈ {−1, 1}, and such R we called semi-Clifford. From Section 2, it

is easy to see that semi-Clifford R is Jacobi-diagonalizable and consequently Jordan-Osserman.
A semi-Clifford algebraic curvature tensor is generated by a family of anti-commutative skew-symmetric

orthogonal and anti-orthogonal operators onV. In fact, these are complex structures (ci = −1) and product
structures (ci = 1). It worth noting that a product structures Ji change the signature because of εJiX = −εX,
so in a non-neutral signature any semi-Clifford R is Clifford.
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We have already seen that a semi-Clifford R is Jacobi-dual, and the next step is to investigate whether
R is totally Jacobi-dual. The previous paper [4] gives only a sufficient condition that Fm is linearly in-
dependent. Namely, if X is null, then the equation (4) for JX(Y) = 0 yields the equation (7), where the
linear independence of Fm, as before, givesJY(X) = εYµ0X. Therefore, we should examine whether the set
Fm = {X, J1X, . . . , JmX} is linearly independent for a null vector X , 0.

Let us suppose that

θ0X + θ1 J1X + · · · + θm JmX = 0 (8)

holds for some θ0, θ1, . . . , θm ∈ R and X , 0. Applying an endomorphism

(−1)α Jα = (−1)α1+···+αm Jαm
m . . . Jα1

1

for α = (α1, . . . , αm) ∈ {0, 1}m we get a new equation

m∑
i=0

(−1)αθi Jα Jei X = 0,

where ei = (δi1, δi2, . . . , δim) with additional e0 = (0, . . . , 0), i.e. Jei = Ji, and Je0 = Id. It is easy to see that

(−1)α Jα Jei = (−1)αi+···+αm (ci)αi Jα±ei ,

where α ± ei and α differ only in the i-th slot. Thus we have a homogeneous system of 2m linear equations
with 2m unknowns,∑

β

Mαβ JβX = 0, (9)

with Mαα = (−1)αi+···+αmθ0, Mα(α±ei) = (−1)αi+···+αm (ci)αiθi for 1 ≤ i ≤ m, and Mαβ = 0 otherwise. Consider the
matrix M2, and calculate its entries,

(M2)αα = MααMαα + Mα(α±e1)M(α±e1)α + · · · + Mα(α±em)M(α±em)α = θ2
0 − c1θ

2
1 − · · · − cmθ

2
m,

(M2)α(α±ei) = MααMα(α±ei) + Mα(α±ei)M(α±ei)(α±ei) = 0,

(M2)α(α±ei±e j) = Mα(α±ei)M(α±ei)(α±ei±e j) + Mα(α±e j)M(α±e j)(α±ei±e j) = 0,

and (M2)αβ = 0 otherwise. Thus, M2 is a diagonal matrix with

(det M)2 = det(M2) = (θ2
0 − c1θ

2
1 − · · · − cmθ

2
m)2m

.

It is important to notice that if det M , 0, the system (9) has the unique zero solution X = J1X = · · · = JmX = 0,
which is absurd since X , 0. Hence, we have the following statement.

Theorem 4.1. If θ0X + θ1 J1X + · · · + θm JmX = 0 holds for X , 0 then

θ2
0 − c1θ

2
1 − · · · − cmθ

2
m = 0. (10)

In the case of Clifford R, we have ci = −1 for all 1 ≤ i ≤ m, so (10) gives θ2
0 + θ2

1 + · · · + θ2
m = 0, and

therefore θi = 0 holds for all 0 ≤ i ≤ m, Fm is linearly independent and consequently R is totally Jacobi-dual.

Theorem 4.2. Any Clifford algebraic curvature tensor is totally Jacobi-dual.

However, there are some problems in the case that we have ci = 1 for some i. If R is semi-Clifford that
is not totally Jacobi-dual, then there exists a pair of vectors (X,Y) such that X , 0 is null with JX(Y) = 0,
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where JY(X) is not proportional to X. As before, we need (8), θ0X + θ1 J1X + · · · + θm JmX = 0, such that
θ0 = µ01(Y,X), and θi = 3µi1(Y, JiX), 1 ≤ i ≤ m. Thus,

θ2
0 = µ01(Y, θ0X) = −µ0

m∑
i=1

θi1(Y, JiX) = −µ0

m∑
i=1

θ2
i

3µi
.

If we include Theorem 4.1, the necessary conditions become

θ2
0 =

m∑
i=1

ciθ
2
i = −µ0

m∑
i=1

θ2
i

3µi
. (11)

Hence
m∑

i=1

(ci +
µ0

3µi
)θ2

i = 0,

which implies the following theorem.

Theorem 4.3. If (3ciµi + µ0)µi > 0 for all 1 ≤ i ≤ m or (3ciµi + µ0)µi < 0 for all 1 ≤ i ≤ m, then the associated
semi-Clifford R is totally Jacobi-dual.

5. Anti-Clifford curvature tensor

In the case that ci = 1 holds for all 1 ≤ i ≤ m we say that R is anti-Clifford. Then, Theorem 4.1 for the
hypothetical θ0 = 0 gives θ2

1 + · · · + θ2
m = 0 which shows that the set {J1X, . . . , JmX} is linearly independent,

but Fm can be linearly dependent.
We say that a subspaceW of an indefinite scalar product space (V, 1) is totally isotropic if it consists

only of null vectors, which implies that any two vectors fromW are mutually orthogonal. We need the
next well known statement about an isotropic supplement ofW.

Proposition 5.1. Let W ⊂ V be a totally isotropic subspace with basis N1, . . . ,Nk. Then there exist a totally
isotropic subspaceU, disjoint fromW, with basis M1, . . . ,Mk, such that 1(Ni,M j) = δi j holds for 1 ≤ i, j ≤ k.

Proof. The proof is by induction on k, where the case k = 0 is trivial. Let us set P = Span{N1, . . . ,Nk−1}.
Since Span{Nk} is not a subspace of P, P⊥ is not a subspace of Span{Nk}

⊥, and there exists X ∈ P⊥ such that
1(X,Nk) , 0. Then

Mk =
−εX

2(1(X,Nk))2 Nk +
1

1(X,Nk)
X

is null with 1(Nk,Mk) = 1. The subspace Span{Nk,Mk} is nondegenerate since it has an orthonormal basis
(Nk + Mk)/

√
2, (Nk −Mk)/

√
2. By construction P is a subspace of the nondegenerate Span{Nk,Mk}

⊥ and we
apply the induction hypothesis to get M1, . . . ,Mk−1 with desired properties.

Since J1X, . . . , JmX form a basis of a totally isotropic subspace of V, by the previous proposition there
exists a basis {M1, . . . ,Mm} of an isotropic supplement, such that 1(JiX,M j) = δi j and 1(Mi,M j) = 0 hold for
1 ≤ i, j ≤ m. Then

Z =

m∑
i=1

θi

3µi
Mi

has the properties θi = 3µi1(Z, JiX), and consequently, by (11), θ0 = µ01(Z,X). Moreover, Z + W has the
same properties for any W ∈ {J1X, . . . , JmX}⊥.
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From (6), we need such Y that −θ0Y +
∑m

i=1 θi JiY is not proportional to X. Therefore, we search for
Y = Z + W such thatK (Z + W) is not proportional to X whereK = −θ0 Id +

∑m
i=1 θi Ji. For any nonnull D, the

set {D, J1D, . . . , JmD} is linearly independent (mutually orthogonal nonnull vectors), and thereforeK (D) = 0
implies θ0 = · · · = θm = 0 which is impossible. ThusK (D) , 0 holds for all nonnull D.

Let us suppose that dimV = n > 2m, which enables a nonnull vector H from {J1X, . . . , JmX,M1, . . . ,Mm}
⊥.

We already haveK (X) = −2θ0X. If R is totally Jacobi-dual, we have additionalK (Z) = ζX andK (Z + H) =

ξX. Then K (H) = (ξ − ζ)X , 0, so K (Z − ζ
ξ−ζH) = 0, which implies that Z − ζ

ξ−ζH is null, and therefore
ζ = 0. Similarly, K (X + 2θ0

ξ H) = 0, which implies that X + 2θ0
ξ H is null, and therefore θ0 = 0, which is a

contradiction. Hence, we have the following theorem.

Theorem 5.2. If there exist θ0, . . . , θm ∈ R (not all equal to zero), such that θ0X + θ1 J1X + · · · + θm JmX = 0 holds
for some nonnull X, with the condition (11), then the associated anti-Clifford algebraic curvature tensor of dimension
n > 2m is not totally Jacobi-dual.

In the end, let us show some examples of anti-Clifford algebraic curvature tensors which are not totally
Jacobi-dual.

In the case m = 1, Theorem 4.3 gives a necessary conditionµ0+3µ1 = 0. A skew-adjoint product structure
J given by JTi = Si and JSi = Ti for all 1 ≤ i ≤ t, n = 2t ≥ 4, where (T1, . . . ,Tt,S1, . . . ,St) is an orthonormal
basis in a scalar product space (V, 1) of neutral signature, provides an anti-Clifford R = 3µR0

− µRJ for
µ , 0. We can take X = S1 + T1, because of the linear dependence X = JX, and apply Theorem 5.2.

In the case m = 2, Theorem 4.3 gives (µ0 + 3µ1)(µ0 + 3µ2)µ1µ2 ≤ 0 as a necessary condition. Consider
skew-adjoint product structures J and K given by JT2i−1 = S2i−1, JT2i = S2i, KT2i−1 = S2i, and JT2i = −S2i−1,
for all 1 ≤ i ≤ t, n = 4t ≥ 8, where (T1, . . . ,T2t,S1, . . . ,S2t) is an orthonormal basis in (V, 1). We can choose
X = cosαT1 + sinαT2 + cos βS1 + sin βS2 for some α, β ∈ R to see that X = cos(β−α) JX + sin(β−α) KX. The
condition (11) gives

tan2(β − α) =
sin2(β − α)
cos2(β − α)

=
(
θ2

θ1

)2

= −
µ0 + 3µ1

µ0 + 3µ2
·
µ2

µ1
,

so we can take α = 0, β = arctan
√
−
µ0+3µ1

µ0+3µ2
·
µ2

µ1
and apply Theorem 5.2 to get an anti-Clifford R = µ0R0 +

µ1RJ + µ2RK which is not totally Jacobi-dual.
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