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On Quasi-Clifford Osserman Curvature Tensors

Vladica Andrejié?, Katarina Lukié®

?Faculty of Mathematics, University of Belgrade, Belgrade, Serbia

Abstract. We consider pseudo-Riemannian generalizations of Osserman, Clifford, and the duality principle
properties for algebraic curvature tensors and investigate relations between them. We introduce quasi-
Clifford curvature tensors using a generalized Clifford family and show that they are Osserman. This
allows us to discover an Osserman curvature tensor that does not satisfy the duality principle. We give
some necessary and some sufficient conditions for the total duality principle.

1. Introduction

Let (V, g) be a (possibly indefinite) scalar product space of dimension n. The squared norm of a vector
X € V is the real number ex = g(X, X). The sign of the squared norm distinguishes all vectors X € V into
three different types. A vector X € V is spacelike if ex > 0; timelike if ex < 0; null if ex = 0. Especially, a
vector X € Vis nonnull if ex # 0 and it is unit if ex € {-1,1}.

An algebraic curvature tensor on (V,g) is a quadri-linear map R: V* — R that satisfies usual Z,-
symmetries and the first Bianchi identity. In the presence of an orthonormal basis (Ey, ..., E,) in V, we
have the associated Jacobi operator Jx: V — V for X € V by Jx(Y) = Zle eg,R(Y, X, X, Ej)E;. The Jacobi
operator is a self-adjoint endomorphism on V, and therefore it is diagonalizable if g is definite. However,
this is no longer true in the indefinite setting, so if Jx is diagonalizable for any nonnull X we say that R is
Jacobi-diagonalizable. In general, the eigen-structure of Jx is determined by the Jordan normal form (the
number and the sizes of the Jordan blocks).

We say that R is timelike Osserman (or spacelike Osserman) if the characteristic polynomial of the
Jacobi operator Jx is independent of unit timelike (or spacelike) X € V. We say that R is timelike
Jordan-Osserman (or spacelike Jordan-Osserman) if the Jordan normal form of Jx is independent of unit
timelike (or spacelike) X. An algebraic curvature tensor is Osserman if it is both timelike and spacelike
Osserman, and it is Jordan-Osserman if it is both timelike and spacelike Jordan-Osserman. It is known
that spacelike Osserman and timelike Osserman are equivalent properties, and R is Osserman if and only
if det(exAId —Jx) = 0 is the same equation for all nonnull X. However, spacelike Jordan-Osserman and
timelike Jordan-Osserman are not equivalent (see Section 3).

In the Riemannian setting (g is positive definite), one of important features of an Osserman algebraic
curvature tensor is the duality principle, given by Raki¢ [12]. Generalizations to a pseudo-Riemannian
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setting (see Andreji¢ and Rakic [3, 4]) are possible by the following implication,
Y is an eigenvector of Jx = X s an eigenvector of Jy. (1)

We shall use two kinds of duality depending on our (X, Y) domain. If (1) holds for all X,Y € V with the
restriction €x # 0, we say that R is Jacobi-dual (R satisfies the duality principle), and if the only restriction
is X # 0, we say that R is totally Jacobi-dual (see Andreji¢ and Raki¢ [4]).

After Raki¢ established the duality principle and proved that a Riemannian Osserman algebraic curva-
ture tensor is Jacobi-dual (see [12]), it is extensively studied in the pseudo-Riemannian settings. The best
results were recently given by Nikolayevsky and Raki¢ [11], where they showed that any Jordan-Osserman
R is Jacobi-dual. They also proved that if the set of those X € V for which Jx is diagonalizable has a
nonempty interior (R is semisimple) then R is Osserman if and only if it is Jacobi-dual.

Additionally, we have the following partial results. Any four-dimensional Osserman R is Jacobi-dual,
see Andreji¢ [1]. Any Lorentzian totally Jacobi-dual R has constant sectional curvature, see Andreji¢ and
Raki¢ [4]. Any four-dimensional Jacobi-dual R such that Jx is diagonalizable for some nonnull X is
Osserman, see Andreji¢ [2].

2. Quasi-Clifford curvature tensors
A tensor of constant sectional curvature 1 is a very first example of an algebraic curvature tensor,
RU(X,Y,Z,W) = g(Y, Z)g(X, W) = g(X, Z)g(Y, W).
Additionally, any skew-adjoint endomorphism | on V generates a new example by
RI(X,Y,2,W) = gUX, 2)90Y, W) - 90Y, Z)g(JX, W) + 29X, )gJZ, W).

Therefore, a linear combination

R= R+ )" iR (2)

i=1

is an algebraic curvature tensor for skew-adjoint endomorphisms Ji, ..., [, on V.

A Clifford family is an anti-commutative family of skew-adjoint complex structures J;, 1 < i < m.
Algebraic curvature tensors of form (2) associated with a Clifford family were introduced by Gilkey [6, 9].
However, it is natural to consider the generalization, an anti-commutative family of J; such that J? = ¢;Id
for some ¢; € R, that is, the Hurwitz-like relations,

Jilj + JiJi = 2¢idij1d, 3)

hold for 1 < i, j < m. We say that an algebraic curvature tensor R is quasi-Clifford if it has a form (2) with
the Hurwitz-like relations (3). Especially, R is Clifford if it is quasi-Clifford with ¢; = -1 forall 1 <i < m.

It is well known that a Clifford algebraic curvature tensor is Osserman. However, according to Niko-
layevsky [10, Section 2], in the Riemannian setting the converse is true (an Osserman R is Clifford) in all
dimensions except n = 16, and also in many cases when n = 16. The only known (Riemannian) counterex-
ample is the curvature tensor RO” * of the Cayley projective plane, or more precisely, any algebraic curvature
tensor of the form uR%” + &R', where R! is the curvature tensor of the unit sphere $'6(1) and u # 0.

Let us start with a quasi-Clifford R and an arbitrary vector X € V. Each J; is skew-adjoint which implies
9(JiX, X) = 0 and simplifies the calculation of the Jacobi operator,

Tx(Y) = polexY = g(¥, X)X) =3 )" pig(¥, JiX)JiX. 4)

i=1
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Additionally, the equation (3) implies g(J;X, ];X) = 0 and ¢j,x = —ciex for 1 < i # j < n. If we denote
Fi =1{X, 1 X, ..., ;1 X} for 1 <t < m, then we obtain

Ix(JiX) = ex(uo + 3ciu)[iX,  Ix(Z) = expoZ,

foralll1 <i<mandZ e ¥, . Itisimportant to distinguish the case ¢; # 0, 1 < i < k from the case ¢; = 0,
k<i<m.
For a nonnull X, the set ¥} consists of mutually orthogonal nonnull eigenvectors. Thus, Span ¥} and

7"kl are nondegenerate, and we can consider the restriction Jx of Jx to 7"kl as a self-adjoint endomorphism

on ¥*. Eigenvectors corresponding to distinct eigenvalues of a self-adjoint endomorphism are mutually
orthogonal, including complex eigenvectors for complex eigenvalues from the complexification V¢ =
V @ iV. However, all vectors orthogonal to ¥, \ i are eigenvectors with the eigenvalue expo, and

consequently Jx has no other eigenvalues. Hence,
det(exAId —=Jx) = (ex)"A(A — o) T, (A = (o + 3ciy)),
which means that R is Osserman.

Theorem 2.1. Any quasi-Clifford algebraic curvature tensor is Osserman.

Additionally, the Jordan normal form of Jx has the critical part on F -+, where for 3 x we have

m(Jx - expioId) C Span{Ji1X, ..., X} € Ker(Jx — exio1d),

and therefore Jx — expo Id is two-step nilpotent, (Jx — exuoId)? = 0. Thus, a quasi-Clifford R allows only
Jordan blocks of size 2.

However, let us remark that a pseudo-Riemannian manifold (IR*, 7) induced by the metric g = x,x3dx7 —
X1 x4dx§ + 2dx1dx; + 2dx1dxs + 2dx,dxy, at any point has the curvature tensor that is Jordan-Osserman such
that the Jordan normal form has a Jordan block of size 3 (see [5, Remark 4.1.2]). This means that the converse
question fails in the signature (2,2), where an Osserman R is not necessarily quasi-Clifford.

3. Jacobi-duality

We shall follow and generalize the arguments from Andreji¢ and Raki¢ [4] with the purpose to investigate
whether a quasi-Clifford R is Jacobi-dual. Let X € V be nonnull and suppose that Y is an eigenvector of
Ix, thatis, Ix(Y) = exAY holds for some A € R. Then (4) implies

ex(A = )Y = —1og(¥, X)X =3 Y 1ig(¥, JX)JiX, (5)

i=1

while by interchanging the roles of X and Y in (4) we have

Tv(X) = o(exX = g(X,V)V) =3 Y wig(X, J Y)Y, ©)

i=1
If A # o, then we can express Y from (5) and get

to(g(X, Y))z) y 4 BHogX, Y) v
ex(A = o) ex(A = o)

Jy(X) = Ho (5Y+ Z 1(9(Y11X)+9(X ]zY))LX

2 2 wiig(X, JgY, ;XN X

i=1 ] 1

_ 12(g(X, ))?

_[ oev ¥ ex(A = o) gX(/\ 1o )Zy, (9(Y, JiX ))ci

SX(/\ o)
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so X is an eigenvector of Jy. Otherwise, A = g gives

Hog(Y, X)X +3 ) pig(Y, JiX)JiX = 0. @)
i=1
If the set 7, is linearly independent, we have g(Y, X) = g(Y, JiX) = g9(J;Y, X) = 0, and therefore Jy(X) = eyuoX,
and again, X is an eigenvector of Jy. For anonnull X, Span ¥ is a nondegenerate subspace of V orthogonal
to Fiu \ Fr. Thus, if m = k or m = k + 1, then the set 7, is linearly independent.

Theorem 3.1. Any quasi-Clifford algebraic curvature tensor with at most one c; = 0 is Jacobi-dual.

However, this is no longer true if there are at least two J; with ¢; = 0. Let (Ty,...T},51,...,5;) be an
orthonormal basis in a scalar product space (V, g) of signature (p, ). Let us set an endomorphism | on V

by

JTi=To+S2==]S1, —JTa=T1+51=]Sy, JT3=Ta+Ss=-]S3, —JTa=Ts3+S3=]S4
]'T5:...:]T =]S5:]56:~~-]Sq=0~

It is easy to check that | is skew-adjoint with J?> = 0. In the case 4 = p < g, an Osserman algebraic curvature
tensor R = R/ is timelike Jordan-Osserman, but it is not spacelike Jordan-Osserman, which is similar to
Gilkey and Ivanova [8] and Gilkey [7, Section 3.2]. Let us introduce an additional endomorphism K on V
by

KTy =Ty +S,=-KS;, —KT,=Ti+S5 =KS;, KT3=Ty+Ss5=-KS;, —KTy=T3+S;3=KSs

It is just changing roles of Ss and Ss in ], so K is also skew-adjoint with K = 0. If we set R = R/ — R, then
from (4), Ix(Y) = 3(g(Y, KX)KX — g(Y, ] X)] X). Since |[T1 = KT1 = T» + S we have Jr,(Y) =0 forany Y € V.
Additionally, for Y = T, + V2S, we have g(Y, JT1) = g(Y,KT1) = g(T> + V284, Tr + S;) = -1, and therefore
Jv(T1) = 3(g(Y, JT1)]Y — g(Y,KT1)KY) = =3 V2(T5 + S3). Thus,

Ir(T2+ V250 =0, Ty, 5, (T1) = =3 V2(T5 + S3)

show that R is not Jacobi-dual. Moreover, our counterexample contains mutually orthogonal unit vectors

X =T;and Y = T, + V2S,, such that (1) does not work. In this way we were able to discover an Osserman
R that is not Jacobi-dual.

Theorem 3.2. There exist quasi-Clifford (and therefore Osserman) algebraic curvature tensors which are not Jacobi-
dual.

4. Total Jacobi-duality

Skew-adjoint endomorphisms with J? = 0 change the Jordan normal form of Jx and therefore they are
inadequate for the duality principle, which we have already seen in the previous section. Hence, we shall
exclude them (m = k), which leaves only the J; that are automorphisms. Without loss of generality, using
the rescaled (1/ Vlci])Ji, we can suppose ¢; € {-1,1}, and such R we called semi-Clifford. From Section 2, it
is easy to see that semi-Clifford R is Jacobi-diagonalizable and consequently Jordan-Osserman.

A semi-Clifford algebraic curvature tensor is generated by a family of anti-commutative skew-symmetric
orthogonal and anti-orthogonal operators on V. In fact, these are complex structures (c; = —1) and product
structures (c; = 1). It worth noting that a product structures J; change the signature because of ¢;,x = —¢x,
so in a non-neutral signature any semi-Clifford R is Clifford.
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We have already seen that a semi-Clifford R is Jacobi-dual, and the next step is to investigate whether
R is totally Jacobi-dual. The previous paper [4] gives only a sufficient condition that ¥, is linearly in-
dependent. Namely, if X is null, then the equation (4) for Jx(Y) = 0 yields the equation (7), where the
linear independence of ¥, as before, gives Jy(X) = eyoX. Therefore, we should examine whether the set
Fm =1X, 1X, ..., JuX} is linearly independent for a null vector X # 0.

Let us suppose that

00X+ 011X+ +0,]uX=0 (8)
holds for some 0y, 01, ..., 0, € Rand X # 0. Applying an endomorphism
(_1)a]a — (_1)al+---+am]zt1m . ?1

fora = (a1,...,am) € {0, 1} we get a new equation
Y DO X =0,
i=0

where e; = (011, 01, - . ., 0i) With additional ¢y = (0, ...,0),i.e. J% = J;, and [ = Id. It is easy to see that
(_1)0{](1]6; — (_1)ai+~~+am (Ci)m]aiei’

where a + ¢; and « differ only in the i-th slot. Thus we have a homogeneous system of 2™ linear equations
with 2" unknowns,

Z MyJfX =0, (9)
B
with My, = (=1)%"* 0y, My(aze) = (=1)% 7+ (c;)%0; for 1 < i < m, and Myp = 0 otherwise. Consider the
matrix M2, and calculate its entries,

(Mz)aa = MyoMpo + Ma(aiﬁ)M(aiel)zx +e Ma(aiem)M(aiem)a = 6% -0 6% — Cmezm/
(M2)a(ai-e,-) = M(mMa(aiei) + Ma(aiei)M(aie,-)(aiei) =0,
(Mz)a(aie,ie,') = Ma(azeyMaze;)axeixe;) T Ma(azeMiaze))(azeixe) = 0,

and (M?),s = 0 otherwise. Thus, M? is a diagonal matrix with
(detM)* = det(M?) = (6] — 167 — -~ — cu)”".

Itis important to notice that if det M # 0, the system (9) has the unique zero solutionX = [ X =--- =], X =0,
which is absurd since X # 0. Hence, we have the following statement.

Theorem 4.1. If 60X + 61/1X + -+ + 0] X = 0 holds for X # 0 then
05— 107 — -+ —c,,05, = 0. (10)

In the case of Clifford R, we have ¢; = —1 for all 1 < i < m, so (10) gives 65 + 6% + --- + 63, = 0, and
therefore 0; = 0 holds for all 0 < i < m, ¥, is linearly independent and consequently R is totally Jacobi-dual.

Theorem 4.2. Any Clifford algebraic curvature tensor is totally Jacobi-dual.

However, there are some problems in the case that we have ¢; = 1 for some i. If R is semi-Clifford that
is not totally Jacobi-dual, then there exists a pair of vectors (X, Y) such that X # 0 is null with Jx(Y) =0,
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where Jy(X) is not proportional to X. As before, we need (8), 0oX + 01/1X + -+ + 0,/ X = 0, such that
6y = [Jog(Y, X), and 60; = 3y1g(Y, J:iX),1 <i <m. Thus,

02 = og(¥, 00X) = o ) 0:g(Y, JiX) = —ttp ) o
i=1 i=1 !

If we include Theorem 4.1, the necessary conditions become

m m 62
93 = ZC,’Q? = —yo Z j (11)
=1 1

i i=1

Hence

Y+ L9220,
3[Ji

i=1
which implies the following theorem.

Theorem 4.3. If (Bcip; + po)pi > 0 for all 1 < i < m or (3cip; + po)pti < 0 for all 1 < i < m, then the associated
semi-Clifford R is totally Jacobi-dual.

5. Anti-Clifford curvature tensor

In the case that ¢; = 1 holds for all 1 < i < m we say that R is anti-Clifford. Then, Theorem 4.1 for the
hypothetical 6y = 0 gives 9% + -+ + 0%, = 0 which shows that the set {J1X,..., ], X} is linearly independent,
but ¥, can be linearly dependent.

We say that a subspace ‘W of an indefinite scalar product space (V, g) is totally isotropic if it consists
only of null vectors, which implies that any two vectors from ‘W are mutually orthogonal. We need the
next well known statement about an isotropic supplement of “W.

Proposition 5.1. Let ‘W C V be a totally isotropic subspace with basis Ni,...,N. Then there exist a totally
isotropic subspace U, disjoint from W, with basis My, ..., My, such that g(N;, M;) = 6;; holds for 1 <i,j < k.

Proof. The proof is by induction on k, where the case k = 0 is trivial. Let us set # = Span{Nj,..., Ni_1}.
Since Span{Ny} is not a subspace of P, P+ is not a subspace of Span{N}*, and there exists X € £+ such that
g(X, Ni) # 0. Then

—&X 1

M, = N; + X
T2 N2 T g(X Ny

is null with g(Ni, Mk) = 1. The subspace Span{Ny, My} is nondegenerate since it has an orthonormal basis

(Nk + My)/ V2, (Ng — My)/ V2. By construction % is a subspace of the nondegenerate Span{Ny, Mi}* and we
apply the induction hypothesis to get Mj, ..., M1 with desired properties. 0O

Since [1X, ..., ] X form a basis of a totally isotropic subspace of V, by the previous proposition there
exists a basis {Mj, ..., M} of an isotropic supplement, such that g(J;X, M;) = 6;; and g(M;, M;) = 0 hold for
1<1i,j <m. Then

has the properties 0; = 3u;g(Z, J;X), and consequently, by (11), 8y = pog(Z, X). Moreover, Z + W has the
same properties for any W € {J1X, ..., ], X}*.
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From (6), we need such Y that —0,Y + }.7; 6,];Y is not proportional to X. Therefore, we search for
Y = Z+ W such that K(Z + W) is not proportional to X where K = —0yId + )2, 6;];. For any nonnull D, the
set{D, 1D, ..., JuD} is linearly independent (mutually orthogonal nonnull vectors), and therefore K(D) = 0
implies O = --- = 0,, = 0 which is impossible. Thus K(D) # 0 holds for all nonnull D.

Let us suppose that dim V = n > 2m, which enables a nonnull vector H from {/1X, ..., [ X, M1, ..., My }*.
We already have K(X) = —200X. If R is totally Jacobi-dual, we have additional K(Z) = (X and K(Z + H) =
&EX. Then K(H) = (£ -0X # 0, so K(Z - ﬁH) = 0, which implies that Z — -S_ECH is null, and therefore

C = 0. Similarly, K(X + %H) = 0, which implies that X + %H is null, and therefore 6y = 0, which is a
contradiction. Hence, we have the following theorem. '

Theorem 5.2. If there exist Oy, ..., 0, € R (not all equal to zero), such that 00X + 61/1X + -+ + 0], X = 0 holds
for some nonnull X, with the condition (11), then the associated anti-Clifford algebraic curvature tensor of dimension
n > 2m is not totally Jacobi-dual.

In the end, let us show some examples of anti-Clifford algebraic curvature tensors which are not totally
Jacobi-dual.

In the case m = 1, Theorem 4.3 gives a necessary condition pig+3u1 = 0. A skew-adjoint product structure
Jgivenby JT; = S;and JS; = T; forall 1 <i <t,n =2t > 4, where (Ty,..., T, 51,...,S¢) is an orthonormal
basis in a scalar product space (V, g) of neutral signature, provides an anti-Clifford R = 3uR°% — uR/ for
p # 0. We can take X = S; + Ty, because of the linear dependence X = JX, and apply Theorem 5.2.

In the case m = 2, Theorem 4.3 gives (ug + 3pu1)(to + 3p2)ui iz < 0 as a necessary condition. Consider
skew-adjoint product structures | and K given by JT2i-1 = Sai-1, JT2i = S2i, KT2i—1 = Syi, and JTo; = =Sy,
foralll1 <i<t,n=4t>8 where (Ty,...,T2,51,...,5) is an orthonormal basis in (V, g). We can choose
X =cosaTi;+sinaT,+cosf S +sinf S, for some a, f € R to see that X = cos(f — a) JX + sin(f — ) KX. The
condition (11) gives

an?(f - ay = SLE=) (@)2 __Hot3u
cos*(B—a) \6 Ho+3u2
so we can take a = 0, f = arctan —ﬁg:—;ﬁl . Z—f and apply Theorem 5.2 to get an anti-Clifford R = pR° +

p1R) + paRK which is not totally Jacobi-dual.
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