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Abstract. In this article the so called induced spin velocities are studied, and it is an improvement of
the paper [13] using the geometry of curves in 3-dimensional Euclidean space. Some essential properties
of them are given, and they are rather different than the ordinary velocities. Indeed, the induced spin
velocities are non-inertial and instead of the Lorentz transformations for them the Galilean transformations
should be used. The induced spin velocity is derived in terms of the curvature and torsion of the trajectory.
Two applications of the induced spin velocities are studied.

1. Preliminaries for high-dimensional space-time

Henri Poincare and Albert Einstein almost one century ago thought about a 3-dimensional time, in order
the space and time would be of the same dimension. At present time this idea appears again and some
of the authors [1–9] propose multidimensional time from different targets. This paper is a continuation of
the papers [10–14], and improvement of [13]. The gravitation in multidimensional space-time is recently
published in [15].

Let us denote by x, y and z the coordinates in R3. The bundle of all moving orthonormal frames,
can be parameterized by the following 9 coordinates x, y, z, xs, ys, zs, xt, yt, zt, where the first 6 coordinates
parameterize the subbundle with the fiber SO(3,R). So it is called 3+3+3-dimensional model [10–14].
Indeed, to each body are related 3 coordinates for the position, 3 coordinates for the spatial rotation and
3 coordinates for the velocity. This 3+3+3-model is built on three 3-dimensional sets: space (S) which is
homeomorphic to S3, spatial rotations (SR) which is also homeomorphic to S3 and velocity (V) which is
homeomorphic to R3.

2. Research of the 6-dimensional space SR × S

It is known that the Lorentz group O↑+(1, 3) is isomorphic to SO(3,C), and both of them are homeomorphic
to SR × V � SO(3,R) ×R3. Instead of these real 6 × 6-matrices we are interest now for the product S × SR,
which can be considered as a fiber and Lie group G of a principal bundle over the base V. So we consider
this group for a fixed inertial coordinate system up to a translation and spatial rotation and the coefficient
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1 − v2

c2 will not have any role. This group is analogous to the group of all rotations and translations in the
3-dimensional Euclidean space. The Lie algebra of G is given by[

C B
B C

]
. (1)

where B and C are antisymmetric 3 × 3 matrices.
The group G is isomorphic to the group Spin(4) [14]. While the Lorentz group reduces to the group of

Galilean transformations when the velocities are small, the transformations of the group G reduce to the
group of all rotations and translations in the Euclidean space in case of short translations, i.e. matrices of

type
[

M ~hT

0 1

]
, where M ∈ SO(3,R) and ~hT is the vector of translation.

If a rigid body is spinning, there may appear a constraint for the spatial rotation, because there is no
freedom of a chosen point to rotate according to its own trajectory. As a consequence there may appear
a displacement, which is called spin displacement, because it appears in case of spinning bodies. The
property of conversion from unadmitted spatial rotation into spatial displacement is basic property of the
space. This displacement induces the so called induced spin velocity or simply spin velocity ([13]) and will
be denoted by large letter V. In section 3 a precise introduction of this motion will be given, and it will be
applied in two examples in section 4.

The spin motion (displacement) has the following properties.
i) The spin velocity is non-inertial, because it can be conceived just like a displacement in the space.
ii) Instead the Lorentz transformations for these velocities we may use only the Galilean transformations

and the coefficient
√

1 − V2

c2 does not appear.
iii) If the spin velocity of any point is constrained completely or partially, then the constrained part

converts into inertial velocity with opposite sign.

3. Spinning bodies in gravitational field

Let us consider a trajectory over a spinning sphere, which rests in our coordinate system, but it is under
the gravitational acceleration or any mechanical force. We assume that the barycentre is at the coordinate
origin, that at the initial moment the spin axis is determined by ~b∗ = (0, 0, 1) and at the initial moment the
considered point has coordinates (r cosα, r sinα, h).

In order to calculate the spin velocity we will use the group of affine transformations in 3-dimensional
Euclidean space. Its Lie algebra has the following form

A =


0 −ϕz ϕy sx
ϕz 0 −ϕx sy
−ϕy ϕx 0 sz

0 0 0 0

 , (2)

where ~ϕ = (wx,wy,wz)t, ~w is the angular velocity of the sphere, t is short time and ~s = (1x, 1y, 1z)t2/2 is small
translation as a consequence of the acceleration ~1. The quantities ~ϕ and ~s may dependent on time, so we
use the Taylor series. Since ~ϕ(0) = 0, ~s(0) = 0, and ~s′(0) = 0 we obtain

~ϕ(t) = ~ϕ(0) + ~ϕ′(0)
t
1!

+ ~ϕ′′(0)
t2

2!
+ · · · = ~wt + ~w′

t2

2!
+ ~w′′

t3

3!
+ · · ·

and

~s(t) = ~s(0) + ~s′(0)
t
1!

+ ~s′′(0)
t2

2!
+ · · · = ~1

t2

2
+ ~1′

t3

6
+ · · · .
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After these replacements into (2) the required trajectory is determined by the matrix I + A + A2

2! + A3

3! + · · · .
Then the image (x(t), y(t), z(t)) of the starting vector (r cosα, r sinα, h), where α is an arbitrary parameter of
the circle, is given by the equality

x(t)
y(t)
z(t)
1

 = (I + A +
A2

2!
+

A3

3!
+ · · · )


r cosα
r sinα

h
1

 . (3)

Hence ~r = (x(t), y(t), z(t)) is well defined, and the first three derivatives are

~r′ = (−w sinα,w cosα, 0)r, (4)

~r′′ = (−rw2 cosα− rw′z sinα+ hw′y + 1x,−rw2 sinα+ rw′z cosα− hw′x + 1y,−rw′y cosα+ rw′x sinα+ 1z), (5)

~r′′′ = (−3rww′z cosα + rw3 sinα − w′′z r sinα + hw′′y +
3
2

hww′x,

−3rww′z sinα − rw3 cosα + w′′z r cosα − hw′′x +
3
2

hww′y,

(−w′′y +
3
2

ww′x)r cosα + (w′′x +
3
2

ww′y)r sinα) −
3
2

(~1 × ~w) + ~1′. (6)

Any point of the spinning sphere intends to move in its own osculating plane, orthogonal to the
binormal vector~b, but as a part of the sphere at the chosen moment all points will move in the plane which
is orthogonal to the vector ~b∗. Note that in general case ~b , ~b∗. We will assume further that d~b∗

dt << w.
If there are no constraints, the Frenet antisymmetric matrix 0 k 0
−k 0 τ
0 −τ 0

 ds (7)

corresponds to angular rotation of the trihedron (~t, ~n,~b) by ([16], sec.28)

τ~tds + k~bds. (8)

One can explain why arbitrary point of the considered trajectories over the sphere r2 + h2 = const. tends to
rotate with accordance to the rotation of the trihedron (~t, ~n,~b), but we omit this discussion.

Assume that the considered point, which moves on the considered trajectory, may be displaced without
constraint. There may exist different approaches in determining the spin velocity, but all of them have the
same approximation when τ << k. In [13] is given one such procedure. In this article we deduce the spin
velocity which is free of any intuition and it is based on the following two invariants ([13]). Analogous to
the invariant dx2 + dy2 + dz2

− c2dt2 in the Special Relativity, in the space SR × S there exist two invariants
([13])

I1 = (d~η)2 + (d~ξ)2, I2 = d~η · d~ξ, (9)

where d~η is vector of spatial displacement caused by the space (i.e. translation), while d~ξ is displacement
caused by the rotation given by (8). The property that they are invariant means that they are unchanged
independently whether there is a constraint, or there doesn’t exist a constraint. Now we have the following
theorem.

Theorem. The induced spin velocity of arbitrary point on a spinning sphere, whose center rests in our coordinate
system, is given by

~V = −
τk

k2 + τ2 rw~b −
τ2

k2 + τ2 rw~t, (10)

where w is the angular velocity and r is distance to the axis of the sphere.
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Proof. The vector of displacement caused by the rotation for angle (8) is orthogonal with the unit vector −~n
and the vector (8) and hence

d~ξ = µ[(τ~t + k~b) × (−~n)ds] = µ(−τ~b + k~t)ds.

The vector of displacement caused by rotation (8) where τ ≈ 0 since d~b∗/dt << w is d~ξcon. = ~tds, while
d~ηcon. = 0 because the center of the spinning sphere rests. According to (9) we have the following system

(d~η)2 + (µ(−τ~b + k~t)ds)2 = (~tds)2,

(d~η) · (µ(−τ~b + k~t)ds) = 0.

Using also that
(µ(−τ~b + k~t)ds) + (~ηds) = ~tds,

one can easily obtain that µ = k/(k2 + τ2). The spin velocity ~V is indeed the vector d~ξ
dt −

d~ξcon.
dt =

d~ηcon.

dt −
d~η
dt and

now using that ds = rwdt, it is given by (10).

According to (10) we notice that i) |~V| = | τ
√

k2+τ2
rw| ≤ |rw|, ii) |~b · ~V| ≤ |rw|/2, and iii) ~V is collinear with

the vector of rotation (8). If λ = τ/k, then the spin velocity becomes

~V = −
λ

1 + λ2 rw~b −
λ2

1 + λ2 rw~t. (11)

4. Applications of the spin velocities

The spin velocity in case of a homogeneous spinning circle will be calculated. The components− λ
1+λ2 rw~b

and− λ2

1+λ2 rw~t should be calculated and then they should be averaged for α ∈ [−π, π]. These two components
will be denoted respectively by ~Vb and ~Vt. Since ~Vt is collinear to ~t, the averaging

〈~Vt/(r~t)〉 = (−w)〈
λ2

1 + λ2 〉 = −
w
2π

∫ π

−π

λ2dα
1 + λ2

leads to the change of the angular velocity of the spinning body. On the other hand, since ~Vb is orthogonal
to ~t, the averaging

〈~Vb〉 =
−rw
2π

∫ π

−π

λ~b
1 + λ2 dα

leads to the global spin velocity of the spinning body.
Example 1. Let us consider a spinning circle where~b∗ is a constant vector, and only w = |~w| is a function

of t. We use the formulas (4), (5) and (6) where ~b∗ = (0, 0, 1). Using that w′x = w′y = w′′x = w′′y = 0, w′z = w′

and w′′z = w′′, we obtain
~r′ = wr(− sinα, cosα, 0),

~r′′ = −rw2(cosα, sinα, 0) + rw′(− sinα, cosα, 0) + ~1,

~r′′′ = (rw3
− rw′′)(sinα,− cosα, 0) − 3rww′(cosα, sinα, 0) −

3
2

w(~1 ×~b∗) +
d~1
dt
.

Further we obtain

~r′ × ~r′′′ = 3r2w2w′~b∗ +
3
2

rw2(−1x sinα + 1y cosα)~b∗ + wr(− sinα, cosα, 0) ×
d~1
dt
,
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(~r′,~r′′,~r′′′) = −
3
2

rw2(2rw′ − 1x sinα + 1y cosα)(~1 ·~b∗)+

+rw
[
rw2

(
~b∗ ·

d~1
dt

)
+ (1z cosα, 1z sinα,−1y sinα − 1x cosα) ·

d~1
dt

]
,

~r′ × ~r′′ = r2w3~b∗ + wr(1z cosα, 1z sinα,−1y sinα − 1x cosα).

Let us put 1z = 1 cosϕ, 1x = 1 sinϕ and assume that 1y = 0. Then for

−λwr~b = −wr
τ
k
~b = −

|~r′|4(~r′,~r′′,~r′′′)
|~r′ × ~r′′|4

(~r′ × ~r′′),

we obtain

−λwr~b =
{ 3

2 rw2(2rw′ − 1 sinϕ sinα)1 cosϕ

[r2w4 + 12(cos2 ϕ + sin2 ϕ cos2 α) − 21rw2 cosα sinϕ]2
−

rw
[
rw2

(
~b∗ · d~1

dt

)
+ 1(cosϕ cosα, cosϕ sinα,− sinϕ cosα) · d~1

dt

]
[r2w4 + 12(cos2 ϕ + sin2 ϕ cos2 α) − 21rw2 cosα sinϕ]2

}
· [r2w3~b∗ + wr(1z cosα, 1z sinα,−1x cosα)].

The spin velocity can be decomposed into two components: radial component ~Vb · (cosα, sinα, 0) and axial
component ~Vb ·

~b∗, while the tangential component ~Vb · (− sinα, cosα, 0) is equal to 0. It is of interest to
calculate the averaging of ~Vb · (cosα, sinα, 0) and ~Vb ·

~b∗. Since the expressions are very large, we will replace
approximately ~Vb by −λrw~b, and however if we know the value of λ, the exact value of the required spin
velocity can easily be calculated.

We will consider two cases.
a) Assume that beside the constant gravitational acceleration there appears also radial acceleration ~1r

and tangent acceleration ~1t, such that ~1r = −1r(cosα, sinα, 0) and ~1t = 1t(sinα,− cosα, 0). Then

~1′r + ~1′t = −(1′r − 1tw)(cosα, sinα, 0) − (1rw + 1′t)(− sinα, cosα, 0).

It is easy to check that the component (1rw +1′t)(− sinα, cosα, 0) has no influence to ~V, while the component
−(1′r−1tw)(cosα, sinα, 0) has influence to V. Now the required influence to the spin velocity is the following

〈~Vb · (cosα, sinα, 0)〉 ≈
−1
2π

∫ π

−π

3rw21 cosϕ(2rw′ − 1 sinϕ sinα)(wr1 cosϕ)dα

[r2w4 + 12(cos2 ϕ + sin2 ϕ cos2 α) − 21rw2 cosα sinϕ]2
+

+
1

2π

∫ π

−π

r2w2(1 cosϕ)(1(1′r − 1tw) cosϕ)dα

[r2w4 + 12(cos2 ϕ + sin2 ϕ cos2 α) − 21rw2 cosα sinϕ]2
=

=
1

2π

∫ π

−π

r2w21 cos2 ϕ(1(1′r − 1tw) + 3rww′1)dα

[r2w4 + 12(cos2 ϕ + sin2 ϕ cos2 α) + 21rw2 cosα sinϕ]2
=

=
r

2π
θ cos2 ϕ

(1r + 3
2 rw2)′ − 1tw
1

∫ π

−π

dα
[θ2 − 2θ cosα sinϕ + cos2 ϕ + sin2 ϕ cos2 α]2

and

〈~Vb ·
~b∗〉 ≈

1
2π

∫ π

−π

3
2 rw21 cosϕ(2rw′ − 1 sinϕ sinα)(r2w3

− wr1 cosα sinϕ)dα

[r2w4 + 12(cos2 ϕ + sin2 ϕ cos2 α) − 21rw2 cosα sinϕ]2
+

+
1

2π

∫ π

−π

rw(r2w3
− wr1 cosα sinϕ)(1(1′r − 1tw) cosϕ)dα

[r2w4 + 12(cos2 ϕ + sin2 ϕ cos2 α) − 21rw2 cosα sinϕ]2
=

=
1

2π

∫ π

−π

(r2w3
− wr1 cosα sinϕ)[3r2w2w′1 + rw1(1′r − 1tw)] cosϕdα

[r2w4 + 12(cos2 ϕ + sin2 ϕ cos2 α) − 21rw2 cosα sinϕ]2
=
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=
r

2π
(1r + 3

2 rw2)′ − 1tw
1

cosϕ
∫ π

−π

(θ2
− θ cosα sinϕ)dα

[θ2 − 2θ cosα sinϕ + cos2 ϕ + sin2 ϕ cos2 α]2
.

In a special case, when the vectors ~1 and ~b∗ are collinear, such that cosϕ = −1, then if we put θ = rw2

1
, we

obtain

〈~Vb〉 =
−θ2r

(1 + θ2)2

(1r + 3
2 rw2)′ − 1tw
1

~b∗.

Notice that in both cases the averaging is proportional with (1r+
3
2 rw2)′−1tw
1

. Having in mind that 1t = rw′,

this term becomes simpler (1r+rw2)′

1
. For example, the last formula for cosϕ = −1 becomes

〈~Vb〉 =
−θ2r

(1 + θ2)2

(1r + rw2)′

1
~b∗, (12)

where 1r+rw2 is the total radial acceleration toward the center, i.e. the centripetal acceleration and additional
acceleration 1r toward the center.

Finally, note that the previous results can be experimentally verified, because when we measure the
weight or acceleration of a spinning body, we measure the sum of the gravitational acceleration and d~Vb/dt.

b) Assume that d~1
dt is collinear with ~1. If w′ , 0, then 1t = rw′ , 0 has an influence to the spin velocity.

According to case a) the influence of 1t is equivalent to − 1
3 w′. So, we neglect 1t and replace w′ by 2

3 w′. If we
replace rw2

1
by θ, then for the averagings we obtain

〈~Vb · (cosα, sinα, 0)〉 ≈
1

2π

∫ π

−π

3
2 rw21 cosϕ( 4

3 rw′ − 1 sinϕ sinα)(wr1 cosϕ)dα

[r2w4 + 12(cos2 ϕ + sin2 ϕ cos2 α) − 21rw2 cosα sinϕ]2
+

+
1

2π

∫ π

−π

r2w2(−1 cosϕ)(rw21′ cosϕ)dα

[r2w4 + 12(cos2 ϕ + sin2 ϕ cos2 α) − 21rw2 cosα sinϕ]2
=

=
−1
2π

∫ π

−π

r2w21 cos2 ϕ(rw21′ − 2rww′1)dα

[r2w4 + 12(cos2 ϕ + sin2 ϕ cos2 α) − 21rw2 cosα sinϕ]2
=

=
r

4π
dθ2

dt
cos2 ϕ

∫ π

−π

dα
[θ2 − 2θ cosα sinϕ + cos2 ϕ + sin2 ϕ cos2 α]2

,

and

〈~Vb ·
~b∗〉 ≈

1
2π

∫ π

−π

3
2 rw21 cosϕ( 4

3 rw′ − 1 sinϕ sinα)(r2w3
− wr1 cosα sinϕ)dα

[r2w4 + 12(cos2 ϕ + sin2 ϕ cos2 α) − 21rw2 cosα sinϕ]2
−

−
1

2π

∫ π

−π

rw(r2w3
− wr1 cosα sinϕ)(rw21′ cosϕ)dα

[r2w4 + 12(cos2 ϕ + sin2 ϕ cos2 α) − 21rw2 cosα sinϕ]2
=

=
1

2π

∫ π

−π

(r2w3
− wr1 cosα sinϕ)[2r2w2w′1 − r2w31′] cosϕdα

[r2w4 + 12(cos2 ϕ + sin2 ϕ cos2 α) − 21rw2 cosα sinϕ]2
=

= −
r

4π
dθ2

dt
cosϕ

∫ π

−π

(θ + cosα sinϕ)dα

[θ2 − 2θ cosα sinϕ + cos2 ϕ + sin2 ϕ cos2 α]2
.

Note that 〈~Vb〉 is a function ofθ = rw2

1
and its derivative. For example with the mentioned approximation

~Vb ≈ −λrw~b one can obtain

〈~Vb〉 ≈
~b∗

rθ
2

d
dt

1
1 + θ2 .
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Example 2. Let us consider a spinning circle as a gyroscope, where w is a constant and the vector ~b∗

rotates with a constant angular velocity Ω around the vertical axis, i.e. around the vector ~1 and the angle
between the vector ~b∗ and the vertical axis is a constant angle ϕ. So we can write

~b∗ = (a cos Ωt, a sin Ωt, c),

where a = sinϕ and c = cosϕ. Using that ~w = w~b∗ = w(a cos Ωt, a sin Ωt, c), where w is a constant, we obtain

~w′ = Ωwa(− sin Ωt, cos Ωt, 0), ~w′′ = −Ω2wa(cos Ωt, sin Ωt, 0).

These formulas should be replaced in the general formulas for arbitrary ~b∗,

~r′ = wr~t, ~r′′ = −rw2(~t ×~b∗) +~t · r(~w′ ·~b∗) −~b∗(~w′ ·~t)r + ~1,

~r′′′ = −[rw3
− r(~w′′ ·~b∗)]~t − 3rw(~w′ ·~b∗)(~t ×~b∗) +~b∗(−(~t · ~w′′) +

3
2

w[(~t ×~b∗) · ~w′])r −
3
2

w(~1 ×~b∗) +
d~1
dt
.

Note that ~w′ · ~b∗ = 0, because w = const. The unit tangent vector ~t, which is orthogonal to ~b∗ at the initial
moment t = 0 can be parameterized by ~t = (−c sinα, cosα, a sinα). We use also that ~1 = (0, 0,−1), where
1 = const.

In order to avoid large expressions, we will make the calculations at the moment t = 0, such that

~b∗ = (a, 0, c), ~w′ = aΩw(0, 1, 0), ~w′′ = −aΩ2w(1, 0, 0).

Hence after all these substitutions, for the derivatives of ~r we obtain

~r′ = wr(−c sinα, cosα, a sinα),

~r′′ = −rw2(c cosα, sinα,−a cosα) − arwΩ cosα(a, 0, c) − (0, 0, 1),

~r′′′ = −(rw3 + ra2wΩ2)(−c sinα, cosα, a sinα) − (a, 0, c)raΩw sinα(Ωc −
3
2

w) +
3
2

aw1(0, 1, 0).

Further we obtain

~r′ × ~r′′′ = −ar2w2Ω sinα(Ωc −
3
2

w)(c cosα, sinα,−a cosα) −
3
2

rw2a1 sinα~b∗,

(~r′ × ~r′′′) · ~r′′ = ar3w4Ω sinα(Ωc −
3
2

w) +
3
2

a2r2Ωw31 cosα sinα−

−1a2r2w2Ω sinα cosα(Ωc −
3
2

w) +
3
2
12rw2ac sinα,

(~r′,~r′′,~r′′′) = −ar3w4Ω sinα(Ωc −
3
2

w) + 1a2cr2w2Ω2 sinα cosα −
3
2
12rw2ac sinα − 3a2r2w3Ω1 sinα cosα,

~r′ × ~r′′ = r2w3~b∗ − ar2w2Ω cosα(c cosα, sinα,−a cosα) − 1rw(cosα, c sinα, 0),
|~r′ × ~r′′|2 = r4w6 + a2r4w4Ω2 cos2 α + 12r2w2(cos2 α + c2 sin2 α) − 21r3w4a cosα + 2ac1r3w3Ω cosα,

and hence

~Vb ≈ −λrw~b =
w4r4 sinα[ar3w4Ω(Ωc − 3

2 w) − 1a2cr2w2Ω2 cosα + 3
21

2rw2ac + 3a2r2w3Ω1 cosα]

[r4w6 + a2r4w4Ω2 cos2 α + 12r2w2(1 − a2 sin2 α) − 2a1r3w3 cosα(w − cΩ)]2
·

(r2w3~b∗ − ar2w2Ω cosα(c cosα, sinα,−a cosα) − 1rw(cosα, c sinα, 0))dα.
After some transformations, the approximative spin velocity over the whole circle and for arbitrary t,

can be written in the from

〈~Vb〉 ≈ −
1
π

r2w3

1
(~b∗ × ~1)·∫ π

0

sin2 α[r2w2Ω(Ωc − 3
2 w) − 1acrΩ2 cosα + 3

21
2c + 3arwΩ1 cosα](arwΩ cosα + 1c)dα

[r2w4 + a2r2w2Ω2 cos2 α + 12(c2 + a2 cos2 α) − 2a1rw cosα(w − cΩ)]2 .

The spin motion of the spinning circle in this case is a circle with radius R = |〈~Vb〉|/Ω, which can be tested.
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