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Abstract. In the present paper we consider the little-known Sampson operator that is strongly elliptic
and self-adjoint second order differential operator acting on covariant symmetric tensors on Riemannian
manifolds. First of all, we review the results on this operator. Then we consider the properties of the
Sampson operator acting on one-forms and symmetric two-tensors. We study this operator using the
analytical method, due to Bochner, of proving vanishing theorems for the null space of a Laplace operator
admitting a Weitzenböck decomposition. Further we estimate operator’s lowest eigenvalue.

1. Introduction

Let M be a smooth differentiable manifold of dimension n and 1 be a Riemannian metric on M. One can
associate a number of natural elliptic differential operators to the Riemannian manifold (M, 1), which arise
from the geometric structure of (M, 1). Usually these operators act in the space C∞(E) of smooth sections
of some vector bundle E over M. The most famous elliptic operator on a Riemannian manifold is the
Hodge-de Rham Laplacian ∆H which acts on C∞-sections of the vector bundle ΛqM of exterior differential
forms (see [4, p. 54]; [36, p. 204]). Forty five years ago J. H. Sampson has defined the second order
differential operator ∆S acting on C∞-sections of the vector bundle SpM of covariant symmetric tensors
defined on (M, 1) (see [38, p. 147]). The operator ∆S was defined as an analogue of ∆H. These operators, ∆S
and ∆H, are self-adjoint and strongly elliptic. Therefore their kernels are finite-dimensional vector spaces
on a compact (without boundary) Riemannian manifold. In addition, the Sampson operator ∆S admits the
Weitzenböck decomposition formula as well as the Hodge-de Rham Laplacian (see [38, p. 147]). Therefore
we can study this operator ∆S using the analytical method, due Bochner, of proving vanishing theorems for
the null space of a Laplace operator admitting a Weitzenböck decomposition, and further, we can estimate
its lowest eigenvalue (see, for example, [4, p. 53]; [36, p. 211]; [2, 5, 10, 14, 28, 29, 48]).

The Sampson operator and its Weitzenböck decomposition formula can be found in the monograph [4,
p. 356] and in papers from the following list [6, p. 237]; [47, p. 660]; [7, p. 456]; [15, p. 33]; [23, p. 21].
The authors of these papers and monograph have determined this operator and obtained its Weitzenböck
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decomposition but did not quote the source [38]. On the other hand, we were the first and only who began
to study the properties of this operator in details (see [3, 31, 33, 39, 41, 42, 44]). To these lists, we can add
two papers [24] and [25] in which there are terms “Sampson Laplacian” and “Sampson operator” but there are
no new results on the geometry of the Sampson operator.

The present paper is organized as follows. In the next paragraph, we give a brief review of the
Riemannian geometry of the Sampson Laplace operator ∆S. In the third and fourth paragraphs of the
paper we consider the properties of the Sampson operator acting on one-forms and symmetric two-tensors.
Theorems and corollaries of the present paper complement our results from the papers [3, 31, 33, 39, 41, 42,
44].

A part of these results was announced in our reports on the International Conference “XX Geometrical
Seminar” (May 20-23, 2018, Vrnjačka Banja, Serbia)

2. Preliminaries

2.1 Let us first fix some notation and conventions. Let (M, 1) be a Riemannian manifold of dimension
n ≥ 2 with its Levi-Civita connection ∇. Everywhere in what follows we denote by ΛqM = Λq(⊗T∗M)
and SpM = Sp(⊗T∗M) the vector bundles of differential q-forms and covariant symmetric p-tensors for the
cotangent bundle T∗M on M. Throughout this paper we will consider the vector spaces of their C∞-sections
denoted by C∞ΛqM and C∞SpM, respectively. The Riemannian metric 1 induces a metric on the fibres of
each of these spaces. If (M, 1) is a compact (without boundary) connected manifold then all these spaces
are also endowed with global scalar product 〈· , ·〉. In particular, the formula

〈ϕ,ψ〉 =

∫
M

1
p!
1(ϕ,ψ) dν1, (1)

where ϕ,ψ ∈ C∞SpM and dν1 is the volume element of (M, 1) determines the global scalar product or, in other
words, L2(M, 1)-scalar product on C∞SpM. In addition, if (M, 1) is not orientable, consider its orientable
double covering.

Next, if D is a differential operator between some tensor bundles over M, its formal adjoint D∗ is
uniquely defined by the formula 〈D · , ·〉 = 〈· ,D∗· 〉 (see [4, p. 460]). For example, the covariant derivative
∇: C∞(⊗p+1T∗M)→ C∞(⊗pT∗M) has the formal adjoint operator ∇∗ such that ∇∗: C∞(⊗pT∗M)→ C∞(⊗p+1T∗M)
(see [4, p. 54]).

We recall well-known facts of the Hodge-de Rham theory. Firstly, we write d: C∞ΛqM→ C∞Λq+1M for the
familiar exterior differential operator. Then the codifferentiation operator δ: C∞Λq+1M → C∞ΛqM is defined
as the formal adjoint to d with respect to the global scalar product (1) by the formula 〈dω,ω′〉 = 〈δω′, ω〉
for arbitrary ω ∈ C∞ΛqM and ω′ ∈ C∞Λq+1M. Secondary, one can construct the well-known Hodge-de Rham
Laplacian ∆H = δd+dδ, using the operators d and δ, which is a non-negative self-adjoint elliptic second-order
differential operator ∆H: C∞ΛqM → C∞ΛqM. In turn, we have an orthogonal (with respect to the global
scalar product (1)) Hodge decomposition on compact (without boundary) manifold (M, 1)

C∞ΛqM = Im ∆H ⊕ Ker ∆H = ( Im d| C∞Λq−1M ) ⊕ ( Im δ| C∞Λq+1M ) ⊕ Ker ∆H. (2)

The space Ker ∆H consists of harmonic q-forms on (M, 1) (see [36, p. 205]). It is a finite-dimensional vector
space Hq(M,R) with its dimension equal to the Betti number bq(M) of (M, 1) for q = 1, . . . ,n − 1. In
addition, the Hodge-de Rham Laplacian ∆H admits the Weitzenböck decomposition (see [4, pp. 57]) of the
form ∆H = ∆̄ + Hq, where ∆̄ = ∇∗∇ is the rough Laplacian, or in other words, the Bochner Laplacian (see [4,
p. 54]; [36, p. 210]; [2, p. 377, 379]), and Hq: ΛqM→ ΛqM is an algebraic symmetric operator that depends
linearly in a known way on the curvature tensor R and the Ricci tensor Ric of the metric 1. In particular, for
special case of 1-forms, we have ∆H = ∆̄ + Ric (see [4, p. 57]).
2.2 We will apply the above to the operator δ∗: C∞SpM→ C∞Sp+1M of degree 1 such that δ∗ = (p + 1) Sym◦∇
where Sym : ⊗p T∗M→ SpM is the linear operator of symmetrization. This means that δ∗ is a symmetrized
covariant derivative defined by equation (see [4, p. 356])

(δ∗ϕ)(X1,X2, . . . ,Xp,Xp+1) = (∇X1ϕ)(X2, . . . ,Xp,Xp+1) + · · · + (∇Xp+1ϕ)(X1,X2, . . . ,Xp,Xp) (3)
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for anyϕ ∈ C∞SpM and X1,X2, . . . ,Xp,Xp+1 ∈ TM. Then there exists its formal adjoint operator δ: C∞Sp+1M→
C∞SpM with respect to the L2(M, 1)-product which is called the divergence operator (see [4, p. 356]). Notice
that δ is nothing but the ⊗p+1T∗M restriction of ∇∗ to Sp+1M. The operators δ∗ and δ play the role somewhat
analogous to d and δ of the Hodge-de Rham theory.

Using the operators δ∗ and δ, Sampson has defined in [38, p. 147] the second order differential operator
∆S: C∞SpM → C∞SpM by the formula ∆S = δδ∗ − δ∗δ. He has proved that this operator is related to
variational problem (see [38, p. 148]). Namely, if we define the “energy” of symmetric tensor field ϕ by
E(ϕ) = 1/2 〈ϕ,∆Sϕ〉, then the equation ∆Sϕ = 0 is the condition for a free extremum of E(ϕ). At the
same time, the tensor field ϕ was called a harmonic symmetric tensor as an analog of harmonic forms of the
Hodge-de Rham theory (see [38, p. 148]).

It is easy to verify that if 〈∆Sϕ,ψ〉 = 〈ϕ,∆Sψ〉 for any ϕ,ψ ∈ C∞SpM on a compact (without boundary)
manifold (M, 1), then the operator ∆S is a self-adjoint operator with respect to the L2(M, 1)-product. In
addition, it can be directly verified that the principal symbol σ of the Sampson operator ∆S satisfies the
following condition σ(∆S)(θ, x)ϕx = −1(θ, θ)ϕx for an arbitrary x ∈ M and θ ∈ T∗xM − {0}. This means
that the Sampson operator ∆S is the Laplace operator and its kernel is a finite-dimensional vector space on a
compact (without boundary) manifold (M, 1) (see [4, pp. 52, 461-463]). We known that Fredholm alternative
guarantees the L2(M, 1)-orthogonal decomposition (see also [38, p. 150])

C∞SpM = Im ∆S ⊕ Ker ∆S, (4)

where subspaces Ker ∆S and Im ∆S are orthogonal complements of each other with respect to the global
scalar product (1). The space Ker ∆S consists of harmonic symmetric p-tensor fields on (M, 1) (see [38, p. 148]).

Proceeding from the above, we will always call ∆S the Sampson Laplacian. Compare the Sampson
Laplacian ∆S with the Bochner Laplacian ∆̄ = ∇∗∇. First, it is easy to see that these two operators coincide
if (M, 1) is a locally Euclidean space. Second, the operator ∆S − ∆̄ has the order zero and can be defined by
symmetric endomorphisms of the bundle SpM. This means that we have the Weitzenböck decomposition
formula ∆S = ∆̄ − Γp, and Γp: SpM → SpM is an algebraic symmetric operator that depends linearly in a
known way on the curvature tensor R and the Ricci tensor Ricc of the metric 1 (see [38, p. 147]). In particular,
for special case of 1-forms, we have ∆S = ∆̄ − Ricc (see also [32, 42, 43]).

2.3 At the end of this section we give a nontrivial example of a symmetric harmonic tensor. For this we recall
that a 1-dimensional immersed submanifold γ of (M, 1) is called a geodesic if there exists a parameterization
γ: xi = xi(t) for t ∈ I ⊂ R satisfying∇ẋẋ = 0. If each solution xi = xi(t) of the equations∇ẋẋ = 0 of the geodesics

satisfies the condition ϕ(ẋ, . . . , ẋ) = const for smooth covariant symmetric p-tensor ϕ and ẋ =
dxh

dt
·
∂

∂xk
,

then the equations ∇ẋẋ = 0 admit so called a first integral of the p-th order of differential equations of geodesics.
The equation δ∗ϕ = 0 is a necessary and sufficient condition for this [18, pp. 128-129]. The tensor field
ϕ ∈ C∞SpM, which satisfies the equation δ∗ϕ = 0, is well known in the theory of General Relativity as a
symmetric Killing tensor (see, for example, [1, 13, 32, 35, 39], [16, pp. 164-166]). The geometry of the vector
space Kp(M,R) of covariant symmetric Killing p-tensors was studied in our papers [40] and [45]. We recall
here that the space Kp(M,R) is always of finite dimension. In fact, we have the following local result

dim Kp(M,R) ≤ dim Kp(Sn,R) =
1
n
·

(
n + p
p + 1

)
·

(
n + p − 1

p

)
,

where Sn is a Euclidean unit sphere of dimension n ≥ 2 with the standard metric 10.
Next, we shall consider a divergence-free symmetric Killing p-tensor, which is determined by the two

conditions δ∗ϕ = 0 and δϕ = 0. An arbitrary a divergence-free symmetric Killing p-tensor ϕ belongs to
Ker ∆S. On the other hand, if the Riemannian manifold (M, 1) is compact (without boundary), then the
converse is also true. Namely, if we suppose that the conditions ϕ ∈ Ker ∆S and δϕ = 0 are satisfied on a
compact (without boundary) Riemannian manifold (M, 1), then 0 = 〈∆Sϕ,ϕ〉 = 〈δ∗ϕ, δ∗ϕ〉. From the formula
above we obtain δ∗ϕ = 0. Then ϕ is a symmetric Killing p-tensor. Therefore, we can formulate our first
theorem.
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Theorem 2.1. Let ϕ be a divergence-free symmetric Killing tensor on a Riemannian manifold (M, 1), then it satisfies
the following systems of differential equations

(i) ∆Sϕ = 0, (ii) δϕ = 0

for the Sampson Laplacian ∆S: C∞SpM→ C∞SpM. Conversely, if (M, 1) is compact and ϕ ∈ C∞SpM satisfies (i) and
(ii), then ϕ is a divergence-free Killing tensor.

In the papers [15] and [23] we consider a traceless symmetric Killing p-tensor (p ≥ 2) as a smooth sections
of a subbundle Sp

0M of SpM defined by the condition trace1 ϕ =
∑

i=1,...,n

ϕ(ei, ei,X3, . . . ,Xp) = 0 forϕ ∈ C∞Sp
0M

and the orthonormal basis {ei} of TxM at an arbitrary point x ∈ M. It is obvious that every traceless Killing
tensor is a divergence-free tensor. Therefore, an arbitrary traceless Killing p-tensor (p ≥ 2) is a harmonic
symmetric tensor. Then we can formulate the following

Corollary 2.2. Let ϕ be a traceless symmetric Killing p-tensor (p ≥ 2) on a Riemannian manifold (M, 1) and
∆S: C∞SpM→ C∞SpM be the Sampson Laplacian, then ϕ belongs to Ker ∆S.

Remark. Some other examples of a harmonic symmetric tensor can be found in [31] and [42].

3. On the kernel and spectral properties of the Sampson Laplacian acting on one-forms

3.1 The explicit expression for ∆S is sufficiently complicated for p ≥ 2 but for the case p = 1, it has the form
∆S = ∆̄ − Γ1 where Γ1 = Ric. We obtain ∆S = ∆H − 2 Ric from the well known Weitzenböck decomposition
formula ∆H = ∆̄ + Ric for the Hodge-de Rham Laplacian ∆H (see also [32, 42, 43]). Using this formula, we
proved that the Sampson Laplacian ∆S: C∞S1M→ C∞S1M is dual to the Yano Laplacian �: C∞TM→ C∞TM
by the metric 1 (see [42]). This operator was defined by Yano in [48, p. 40] for the investigation of local
isometric, conformal, affine and projective transformations of compact (without boundary) Riemannian
manifolds (see details in [42]).

We recall that the vector field ξ on (M, 1) is called an infinitesimal harmonic transformation if the one-
parameter group ψ: (t, x) ∈ R ×M → ψt(x) ∈ M of infinitesimal point transformations of (M, 1) generated
by ξ consists of harmonic diffeomorphisms (see [43]). We proved in [42] that the kernel of Yano Laplacian
consists of all infinitesimal harmonic transformations on (M, 1). Therefore, the following theorem is true.

Theorem 3.1. Let (M, 1) be a Riemannian manifold and ∆S: C∞S1M → C∞S1M be the Sampson Laplacian. An
arbitrary ϕ ∈ C∞S1M belongs to Ker ∆S if and only if the vector field ξ corresponding to ϕ under the duality defined
by the metric g is an infinitesimal harmonic transformation on (M, 1).

Killing vectors are a classical object of the Riemannian geometry. They are infinitesimal isometric by
definition, i.e. the flow of such a vector field preserves a given metric. More precisely, a smooth vector field
ξ on a Riemannian manifold (M, 1) is said to be a Killing vector field if the Lie derivative of the metric tensor
1with respect to ξ is zero, that is Lξ1 = 0. The following theorem on infinitesimal isometric transformations
is a well known old result (see, for example, [5, p. 57] and [26, p. 44]). In addition, the following proposition
is a corollary of our Theorem 2.1.

Corollary 3.2. Let (M, 1) be a Riemannian manifold and ξ be a vector field on (M, 1). If ξ is an infinitesimal isometry
of (M, 1), it satisfies the following differential equations:

(i) ∆Sϕ : = ∆Hϕ − 2 Ric(ξ, · ) = 0, (ii) δϕ = 0

for the one-form ϕ corresponding to ξ under the duality defined by the metric g. Conversely, if (M, 1) is compact and
ξ satisfies (i) and (ii), then ξ is an infinitesimal isometry.
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We proved in [42, 43] that the set of all infinitesimal harmonic transformations of a compact Riemannian
manifold (M, 1) is a finite-dimensional vector space over R. From our Theorem 3.1 we conclude that the
Lie algebra of infinitesimal isometric transformation i(M) of (M, 1) is a subspace of this vector space. It
is well known that dim i(M) = 1/2 n(n + 1) on an n-dimensional Riemannian manifold (M, 1) of constant
curvature (see, for example, [26, pp. 46-47]). Killing 1-forms are just the metric duals to Killing vector fields.
Therefore, dim K1(M,R) = 1/2 n(n + 1) on an n-dimensional Riemannian manifold of constant curvature.
Remark. These statements concern the dimensions of the vector spaces of Killing one-forms and Killing
vector fields in a neighborhood of an arbitrary point of the Riemannian manifold (see, for example, [26, pp.
55-59]).

If we define dim Ker ∆S as the number of linearly independent (with constant real coefficients) one-
forms which correspond to infinitesimal harmonic transformations of (M, 1) under the duality defined
by the metric 1, then dim Ker ∆S ≥ 1/2 n(n + 1) on an n-dimensional Riemannian manifold of constant
curvature C. Therefore, we have the following local result.

Theorem 3.3. The dimension of the kernel of the Sampson Laplacian ∆S: C∞S1M → C∞S1M on an n-dimensional
Riemannian manifold of constant curvature is at least 1/2 n(n + 1).

Remark. We have proved that a holomorphic vector field on a nearly Kählerian manifold and the vector
field that transforms a Riemannian metric into a Ricci soliton metric are examples of infinitesimal harmonic
transformations (see [42, 43]). Therefore, all one-forms which correspond to these vector fields under the
duality defined by the metric 1 belong to ϕ ∈ Ker ∆S for the Sampson Laplacian ∆S: C∞S1M→ C∞S1M.
3.2 Let ϕ be an arbitrary one-form such that ϕ ∈ Ker ∆S. In accordance with the theory of harmonic maps
we define the energy density of the flow on (M, 1) generated by the vector field ξ = ϕ] as the scalar function
e(ξ) = 1/2 ‖ξ‖2 where ‖ξ‖2 = 1(ξ, ξ). Then the Beltrami Laplacian ∆Be(ξ) := − ∆̄ e(ξ) for the energy density
e(ξ) of an infinitesimal harmonic transformation ξ = ϕ] has the form (see [42])

∆B e(ξ) = ‖∇ϕ‖2 − Ric(ξ, ξ). (5)

We recall that the Ricci curvature of 1 is quasi-negative in a connected open domain if it is nonnegative
everywhere in U ⊂ M and it is strictly negative in all directions at some point of U. In this case, e(ξ) is a
subharmonic function. Then, using the Hopf’s maximum principle (see [9]), we can formulate the following

Theorem 3.4. Let (M, 1) be a Riemannian manifold and U ⊂M be a connected open domain with the quasi-negative
Ricci tensor Ric. If the energy density of the flow e(ξ) = 1/2 ‖ξ‖2 generated by ξ = ϕ] for an arbitrary one-form
ϕ ∈ Ker ∆S has a local maximum in some point of U, then ϕ is identically zero everywhere in U.

Remark. The last theorem is a direct generalization of the Theorem 4.3 presented in Kobayashi’s monograph
on transformation groups (see [26, p. 57]) and Wu’s proposition on a Killing vector which length achieves
a local maximum (see [46]).

We can formulate the following statement, which is a corollary of Theorem 3.4 (see also [42]).

Corollary 3.5. The Sampson Laplacian ∆S: C∞S1M → C∞S1M has a trivial kernel on a compact Riemannian
manifold (M, 1) with quasi-negative Ricci curvature.

3.3 A metric 1 is called Einstein if it satisfies the Einstein equation Ric = n−1s 1. A Riemannian manifold
(M, 1) is called Einstein manifold if the metric 1 is Einstein. In the case n = dim M ≥ 3, the scalar curvature s
of (M, 1) is constant (see [4, p. 44]).

Let (M, 1) be an n-dimensional (n ≥ 3) Einstein manifold then from the formula ∆S = ∆H − 2 Ric we
obtain ∆H = 2n−1sϕ for an arbitrary one-form ϕ ∈ Ker ∆S. Therefore, a nonzero one-form ϕ ∈ Ker ∆S is
the eigenform of the Hodge-de Rham Laplacian with eigenvalue λ = 2n−1s. The converse is also true. In
particular, if (M, 1) is compact (without boundary) then the scalar curvature s of (M, 1) must be positive.

Theorem 3.6. Let (M, 1) be an n-dimensional (n ≥ 3) Einstein manifold with scalar curvature s. Then an arbitrary
one-formϕ ∈ Ker ∆S if and only isϕ is an eigenform of the Hodge-de Rham Laplacian ∆H with eigenvalue λ = 2n−1s.
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In conclusion, we prove the following

Corollary 3.7. For any an n-dimensional (n ≥ 3) compact Einstein manifold (M, 1) with positive scalar curvature
one has the following L2(M, 1)-orthogonal decomposition

Ker ∆S = Ker ∆S ∩ ( Im d|C∞M) ⊕ Ker ∆S ∩ ( Ker δ|C∞S1M)

where Ker ∆S ∩ ( Im d|C∞M) consists of one-forms which corresponding to gradient infinitesimal harmonic transfor-
mations under the duality defined by the metric g and Ker ∆S ∩ ( Ker δ|C∞S1M) consists of Killing one-forms.

Proof. For the proof of this statement, we recall that the vector space C∞ΛqM has the following L2(M, 1)-
orthogonal decomposition (2). In particular, for q = 1 we have ϕ = θ + d f where f ∈ C∞M and θ ∈ C∞Λ1M
such that δθ = 0. Then, according to our Theorem 3.3, the equation ∆Sϕ = 0 can be rewritten in the form
∆H(θ+d f ) = 2n−1s(θ+d f ). In turn, from this equation we obtain the formula ∆̄(∆̄ f −2n−1s f ) = 0 that is based
on the following equality ∆Hu = ∆̄u = δdu for an arbitrary scalar function u ∈ C∞M. In this case, the scalar
function ∆̄ f − 2n−1s f is harmonic. Therefore, proceeding from the above formula and using the Bochner
maximum principle (see [5, p. 30]), we conclude that ∆̄ f = 2n−1s f +C for some constant C. In this case, we can
rewrite the equation ∆H(θ+ d f ) = 2n−1s(θ+ d f ) in the following form ∆Hθ− 2n−1sθ = −d(∆̄ f − 2n−1s f ) = 0.
By consequence we have the equations ∆Hθ = 2n−1sθ and ∆Hd f = 2n−1s d f . These equations mean that the
divergence-free one-form θ is a Killing one-form and the vector field ξ = (d f )] is a gradient infinitesimal
harmonic transformation. The proof is complete.
3.4 Denote by the constant λ an arbitrary eigenvalue of the Sampson Laplacian acting on one-forms, i.e.
∆Sϕ = λϕ for ϕ ∈ C∞S1M. Using the general theory of elliptic operators on a compact (without boundary)
connected oriented Riemannian manifold (M, 1), it can be proved that the Sampson Laplacian ∆S: C∞S1M→
C∞S1M has a discrete spectrum, denoted by Spec ∆S, consisting of real eigenvalues of finite multiplicity
which accumulate only at infinity, i.e. in symbols, we have Spec ∆S = {0 ≤ |λ1| ≤ |λ2| ≤ · · · → +∞} and
dim Vλa < +∞ for an arbitrary eigenvalue λa. In addition, the following theorem about eigenvalues of ∆S
and their corresponding one-forms is valid. Then the following theorem is true (see [42])

Theorem 3.8. Let (M, 1) be an n-dimensional (n ≥ 2) compact Riemannian manifold and ∆S: C∞S1M → C∞S1M
be the Sampson Laplacian defined on one-forms.

1. Suppose the Ricci curvature is negative then an arbitrary eigenvalue λa of ∆S is positive.
2. The eigenspaces of ∆S are finite dimensional.
3. The eigentensors corresponding to distinct eigenvalues are orthogonal.

Let ϕ be an eigenform of ∆S with eigenvalue λ then from the Weitzenböck decomposition formula
∆Sϕ = ∆̄ϕ − Ric(ξ, · ) for ξ = ϕ] we obtain

λ〈ϕ,ϕ〉 = 〈∇ϕ,∇ϕ〉 −

∫
M

Ric(ξ, ξ) dν1 ≥ −
∫

M
Ric(ξ, ξ) dν1. (6)

Let Ric ≤ µ · 1where µ is the upper bound of Ricci curvature of a compact (without boundary) Riemannian
manifold (M, 1). Then

∫
M Ric(ξ, ξ) dν1 ≤ µ 〈ϕ,ϕ〉. In this case, we conclude from (6) that λ≥−µ. In particular,

if (M, 1) is an Einstein manifold with constant scalar curvature s then λ ≥ −n−1s. We proved the following

Theorem 3.9. Let (M, 1) be an n-dimensional (n ≥ 3) compact Riemannian manifold and µ be the upper bound of its
Ricci curvature. Then an arbitrary eigenvalue λ of the Sampson Laplacian acting on one-forms bounded from below
by the number −µ. In particular, if (M, 1) is a compact Einstein manifold then λ ≥ −n−1s for the constant scalar
curvature s of (M, 1).

Let (M, 1) be an n-dimensional (n ≥ 3) Einstein manifold then Ric = n−1s 1 for the constant scalar curvature
s of (M, 1). Then from the formula ∆S = ∆H −2 Ric we obtain ∆Sϕ = −2n−1sϕ for an arbitrary one-form form
ϕ ∈ H1(M,R). This means that an arbitrary harmonic form is an eigenform of the Sampson Laplacian with
eigenvalue λ = −2n−1s. The converse is also true. We proved the following statement.
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Theorem 3.10. Let (M, 1) be an n-dimensional (n ≥ 3) Einstein manifold then an arbitrary one-form on (M, 1)
is harmonic if and only if it is an eigenform of the Sampson Laplacian with eigenvalue λ = −2n−1s for the scalar
curvature s of (M, 1).

From this theorem we obtain the following

Corollary 3.11. Let (M, 1) be an n-dimensional (n ≥ 3) compact and orientable Einstein manifold with negative
constant scalar curvature s. If its first Betti number b1(M) , 0, then the number of linearly independent (with
constant real coefficients) eigenforms of the Sampson Laplacian ∆S: C∞S1M → C∞S1M with eigenvalue −2n−1s
equals to b1(M).

Proof. It is well known that in a compact (without boundary) and orientable Riemannian manifold (M, 1),
the number of linearly independent (with constant real coefficients) harmonic one-forms is equal to the
first Betti number b1(M) of the manifold (M, 1). Therefore, if b1(M) , 0 for a compact (without boundary)
Einstein manifold (M, 1) then the Sampson Laplacian ∆S: C∞S1M→ C∞S1M has b1(M) linearly independent
eigenforms. In conclusion, we recall that if Ric = n−1s 1 > 0, then b1(M) = 0 (see [4, p. 57]). Therefore, the
constant scalar curvature s of (M, 1) must be negative.

In particular, if (M, 1) is the hyperbolic space (Hn, 10) with standard metric 10 having constant sectional
curvature which equals to −1, then we have ∆Sϕ = ∆Hϕ − 2(n − 1)ϕ for any one-form ϕ. In this case, the
eigenvalue of ∆S is −2(n − 1) for an arbitrary harmonic one-form ϕ.
Remark. More detailed information on the Sampson Laplacian can be found in our paper [42].

4. On the kernel and spectral properties of the Sampson Laplacian acting on symmetric two-tensors

4.1 In this section we consider the Sampson Laplacian ∆S: C∞S2M → C∞S2M acting on C∞-sections of
the bundle of covariant symmetric two-tensor fields S2M on M. In this case, we have the Weitzenböck
decomposition formula

∆Sϕ = ∆̄ϕ − Γ2(ϕ), (7)

where Γ2(ϕ) = (Rikϕk
j + R jkϕk

i ) − 2 Rik jlϕkl for the local components ϕi j of ϕ ∈ C∞S2M (see [47, p. 660]). Then
by direct calculations from (7) we obtain the formula trace1(∆Sϕ) = ∆̄ trace1ϕ for an arbitrary ϕ ∈ C∞S2M.
Therefore the following lemma holds.

Lemma 4.1. Let ∆S: C∞S2M→ C∞S2M be the Sampson Laplacian acting on C∞-sections of the bundle of covariant
symmetric two-tensor fields S2M over a Riemannian manifold (M, 1), then trace1(∆Sϕ) = ∆̄ trace1ϕ.

If ϕ is a harmonic symmetric 2-tensor field, then trace1(∆Sϕ) = ∆̄ trace1ϕ = 0. In this case, trace1ϕ is a
harmonic scalar function defined on (M, 1). In addition, if (M, 1) is a compact (without boundary) manifold,
then by the Bochner maximum principle for harmonic functions we conclude that trace1ϕ is a constant function
(see [5, p. 30]). In particular, when we have ∆Sϕ◦ = 0 for the traceless tensor ϕ◦ := ϕ − n−1( trace1ϕ)ϕ. We
proved the following

Corollary 4.2. Let ∆S: C∞S2M → C∞S2M be the Sampson Laplacian acting on C∞-sections of the bundle of
covariant symmetric two-tensor fields S2M over a compact Riemannian manifold (M, 1). Then the trace of an
arbitrary ϕ ∈ Ker ∆S is a constant function and ϕ◦ := ϕ − n−1( trace1ϕ)ϕ belongs to Ker ∆S.

We obtain the formula by direct calculations from the Weitzenböck decomposition formula (7):

1/2 ∆B‖ϕ‖
2 = −1(∆Sϕ,ϕ) + ‖∇ϕ‖2 − 1(Γ2(ϕ), ϕ) (8)

where ∆B = div ◦ grad is the Beltrami Laplacian on functions. In addition, for any point x ∈ M there exists
an orthonormal eigenframe e1, . . . , en of TxM such that ϕx(ei, e j) = µi δi j for the Kronecker delta δi j. Then we
have (see [4, p. 436], [3, p. 388])

1(Γ2(ϕx), ϕx) = 2
∑
i< j

sec(ei ∧ e j) (µi − µ j)2. (9)
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where sec(ei ∧ e j) = R(ei, e j, ei, e j) is the sectional curvature sec σx of (M, 1) in the direction of the two-plane
σx = span {ei, e j} at x ∈M. In this case, the formula (8) can be rewritten in the form

1/2 ∆B‖ϕ‖
2 = −1(∆Sϕ,ϕ) + ‖∇ϕ‖2 − 2

∑
i< j

sec(ei ∧ e j) (µi − µ j)2). (10)

In particular, if ϕ is a covariant harmonic symmetric 2-tensor, then from the formula (10) we obtain

1/2 ∆B‖ϕ‖
2 = ‖∇ϕ‖2 − 2

∑
i< j

sec(ei ∧ e j) (µi − µ j)2. (11)

Therefore, proceeding from the above formula and using the Hopf maximum principle (see [9]), we can
conclude that if the section curvature of (M, 1) is nonpositive at any point of a connected open domain
U ⊂ M and is in addition negative (in all directions σx) at a point x of U, then ‖ϕ‖2 is constant and ∇ϕ = 0
in U. If C > 0, then ϕ is nowhere zero. Now, at a point x where the section curvature sec(ei ∧ e j) is negative,
the left side of (11) is zero while the right side is nonnegative. This contradiction shows µ1 = · · · = µn = µ
and hence ϕ = µ · 1 for some constant µ everywhere in U.

On the other hand, the fact that ∇ϕ = 0 means that ϕ is invariant under parallel translation. In this
case, if the holonomy of (M, 1) is irreducible, then the tensor ϕ has a one eigenvalue, i.e. ϕ = µ · 1 for some
constant µ at each point of U. As a result, we have the following

Theorem 4.3. Let U be a connected open domain of a Riemannian manifold (M, 1) and ϕ be a harmonic symmetric
2-tensor field defined on U. If the section curvature of (M, 1) is negative semi-define at any point of U and the scalar
function ‖ϕ‖2 has a local maximum at some point of U, then ‖ϕ‖2 is a constant function and ϕ is invariant under
parallel translation in U. Moreover, if sec < 0 at some point of U or if the holonomy of (M, 1) is irreducible, then ϕ is
constant multiple of g at all points of U.

Let us consider a Hadamar manifold which is a complete simply connected nonpositively curved manifold
(M, 1) by definition (see [29, p. 381]). For this case we can prove the following

Corollary 4.4. Let (M, 1) be a Hadamar manifold or, in particular, a Riemannian symmetric manifold (M, 1) of the
non-compact type. If ϕ is a harmonic symmetric 2-tensor on (M, 1) such that

∫
M ‖ϕ‖

q d Vol1 < +∞ at least for one
q ≥ 1, then it is invariant under parallel translation. In addition, if the volume of (M, 1) is infinite, then ϕ ≡ 0.

Proof. Let ϕ is a non-zero harmonic symmetric 2-tensor on a Riemannian manifold with nonpositive
sectional curvature, then from the formula (11) we obtain

1/2 ∆B ‖ϕ‖
2
≥ ‖∇ϕ‖2 ≥ 0. (12)

This means that ‖ϕ‖2 is a subharmonic function. On the other hand, the following theorem was proved in [49,
p. 663]: Let u be a nonnegative subharmonic function on a complete manifold (M, 1), then

∫
M uq dν1 = ∞ for q > 1,

unless u is a constant function C. In our case, this means that C ·
∫

M d Vol1 < +∞ for ‖ϕ‖2 = C. From this we
conclude that if the volume of (M, 1) is infinite, then the harmonic symmetric 2-tensor ϕ is identically zero
on (M, 1).

Let (M, 1) be a compact manifold with nonpositive sectional curvature. Then based on (11) and the
Bochner maximum principle, we can conclude that the kernel of the Sampson Laplacian ∆S: C∞S2M →

C∞S2M consists of parallel symmetric 2-tensor tensor fields on (M, 1), i.e. from the condition ϕ ∈ Ker ∆S we
obtain ∇ϕ = 0. From this implies topological restrictions namely if a Riemannian manifold (M, 1) admits
a parallel symmetric 2-tensor field then (M, 1) is locally the direct product of a number of Riemannian
manifolds (see [18]). Another situation where the parallelism of ϕ is involved appears in the theory of
affine mappings, namely, as is point out in [34], ∇ϕ = 0 is equivalent with the fact that the identity map
IdM: (M, 1)→ (M, ϕ) is an affine map. Therefore, we can formulate the following statement.

Theorem 4.5. Let (M, 1) be a compact and connected Riemannian manifold with nonpositive sectional curvature
and ∆S: C∞S2M → C∞S2M be the Sampson Laplacian acting C∞-sections of the bundle of covariant symmetric
two-tensor fields S2M on (M, 1). If ϕ ∈ Ker∆S then IdM: (M, 1)→ (M, ϕ) is an affine map.
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4.2 Let us consider here the Sampson Laplacian ∆S: C∞S2M→ C∞S2M on a compact manifold (M, 1). Denote
by the constant λ an arbitrary eigenvalue of the Sampson Laplacian acting on symmetric 2-tensor fields,
i.e. ∆Sϕ = λϕ for some ϕ ∈ C∞S2M. We recall that all nonzero eigentensor ϕ ∈ C∞S2M corresponding
to a fixed eigenvalue λ form a vector subspace of C∞S2M denoted by Vλ(M) and called the eigenspace
corresponding to the eigenvalue λ. Using the general theory of elliptic operators on a compact (without
boundary) connected oriented Riemannian manifold (M, 1), it can be proved that the Sampson Laplacian
∆S: C∞S2M→ C∞S2M has a discrete spectrum, denoted by Spec ∆S, consisting of real eigenvalues of finite
multiplicity which accumulate only at infinity, i.e. in symbols, we have Spec ∆S = {0 ≤ |λ1| ≤ |λ2| ≤ · · · →

+∞ and dim Vλa < +∞ for an arbitrary eigenvalue λa, a = 1, 2, . . . . Now we prove the following theorem.

Theorem 4.6. Let (M, 1) be an n-dimensional (n ≥ 2) compact and connected Riemannian manifold and ∆S: C∞S2M→
C∞S2M be the Sampson Laplacian acting on C∞-sections of the bundle of covariant symmetric two-tensor fields S2M.

1. Suppose the section curvature is negative then an arbitrary eigenvalue λa of ∆S is positive.
2. The eigenspaces of ∆S are finite dimensional.
3. The eigentensors corresponding to distinct eigenvalues are orthogonal.

Proof. 1. Let ϕ ∈ Vλa (M) be a non-zero eigentensor corresponding to the eigenvalue λa, that is ∆Sϕ = λaϕ,
then we can rewrite the formula (7) in the form λaϕ = ∆̄ϕ − Γ2(ϕ). In addition, for any point x ∈ M there
exists an orthonormal basis e1, . . . , en of TxM such that ϕx(ei, e j) = µi δi j for the Kronecker delta δi j. Then,
using (6), we obtain the integral formula

λa〈ϕ,ϕ〉 = −2
∫

M

∑
i< j

sec(ei ∧ e j) (µi − µ j)2 dν1 + 〈∇ϕ,∇ϕ〉. (13)

Now we suppose that the section curvature of (M, 1) is negative, then from (13) we obtain λa > 0. Therefore,
if the section curvature of (M, 1) is negative then the Sampson Laplacian ∆S: C∞S2M → C∞S2M has the
spectrum Spec ∆S = {0 < λ1 ≤ λ2 ≤ · · · → +∞}.
2. The eigenspaces of ∆S are finite dimensional because it is an elliptic operator.
3. Let λa , λb and ϕa, ϕb be the corresponding eigenforms. Then 〈∆Sϕa, ϕb〉 = λa 〈ϕa, ϕb〉 and 〈∆Sϕb, ϕa〉 =
λb 〈ϕb, ϕa〉. Therefore 0 = (λa − λb) 〈ϕa, ϕb〉 and since λa , λb it follows that 〈ϕa, ϕb〉 = 0, that ϕa and ϕb are
orthogonal. This completes the proof of our Theorem 4.5.

If we assume that trace1ϕ = C for some constant C , 0 then from the equation ∆Sϕ = λϕ we obtain
λ = 0, since the identity trace1(∆Sϕ) = ∆̄ trace1ϕ holds for an arbitrary ϕ ∈ C∞S2M (see our Lemma 4.1).
Therefore, if ϕ ∈ C∞S2M is an eigentensor corresponding to the eigenvalue λ , 0 of the Sampson Laplacian
∆S: C∞S2M→ C∞S2M on a compact manifold (M, 1) then trace1ϕ is not a nonzero constant function.

Proceeding from the above, we will distinguish two cases. Firstly, we will consider the Sampson
Laplacian ∆S: C∞S2M → C∞S2M acting on covariant symmetric two-tensor fields with nonzero traces.
Secondary, we will consider the Sampson Laplacian ∆S: C∞S2

0M → C∞S2
0M acting on C∞-sections of the

bundle of covariant symmetric traceless two-tensor fields S2
0M on M.

Letϕ ∈ C∞S2M be an eigentensor of ∆S corresponding to the eigenvalue λ and trace1ϕ be a non-constant
function. Then by direct calculations we obtain the formula ∆̄ trace1ϕ = λ trace1ϕ. The investigation of the
Laplace equation ∆̄ f = λ f for the non-constant scalar function f = trace1ϕ is a priori a problem of analysis.
In particular, we recall the following well-known classical results. If (M, 1) is a compact and connected
Riemannian manifold, then there exists a sequence 0 = λ0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λa ≤ . . . of non-negative
negative real numbers with finite multiplicities, and L2(M, 1)-orthonormal basis { f1, f2, . . . , fa, . . . } of real
scalar C∞-functions such that ∆̄ fa = λa fa (see [28, p. 77]). This assertion agrees with our Theorem 4.6.
Moreover, from above, we can conclude that if an eigenvalue λ of the Sampson Laplacian ∆S: C∞S2M →
C∞S2M corresponds to some covariant symmetric two-tensor field ϕ with nonzero trace, then it is non-
negative.

Moreover, if λ is an eigenvalue of ∆̄ and f ∈ C∞M, f , 0, is an associated eigenfunction, i.e. ∆̄ f = λ f ,
then λ = R( f ) for the Rayleigh quotient R( f ) on a scalar function f , 0 which is defined by the equality
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R( f ) = 〈d f , d f 〉 · 〈 f , f 〉−1 (see [28, p. 91]). Therefore, if ϕ ∈ C∞S2M is an eigentensor of ∆S such that trace1ϕ
is a non-constant scalar function and λ is an associated eigenvalue, then λ = R( trace1ϕ). As a result we
have the following

Theorem 4.7. Let (M, 1) be a compact and connected Riemannian manifold and ∆S: C∞S2M → C∞S2M be the
Sampson Laplacian acting C∞-sections of the bundle of covariant symmetric two-tensor fields S2M on (M, 1). If
ϕ ∈ C∞S2M is an eigenfunction of ∆S such that trace1ϕ is a non-constant scalar function and λ is an associated
eigenvalue, then λ = R( trace1ϕ) ≥ 0.

Further, we will estimate the first eigenvalue λ1 of the Sampson Laplacian ∆S: C∞S2M→ C∞S2M in the case
when its eigentensor ϕ has trace1ϕ , 0. In this case, the following theorem is true.

Theorem 4.8. Let (M, 1) be a compact and connected Riemannian manifold with the diameter d(M) and the Ricci
curvature Ric ≥ (n − 1) K. If the eigentensor ϕ ∈ C∞S2M which corresponds to the first nonzero eigenvalue λ1 of
the Sampson Laplacian ∆S: C∞S2M → C∞S2M has the non-constant trace1ϕ, then λ1 ≥ nK for the case K > 0,
π2

4d(M)2 ≤ λ1 ≤
nπ2

d(M)2 for the case K = 0 and λ1 ≥
exp − (1 + (1 − 4(n − 1)2 d(M)2 K)1/2)

2(n − 1)2 d(M)2 for the case K < 0.

In particular, if (M, 1) is a compact hyperbolic manifold (H2, 10) with n ≥ 3 and standard metric 10 having constant
sectional curvature which equals to −1, then there exists a constant C = C(n) > 0 such that λ1 ≥ C · Vol(M)−2.

Proof. For the proof our theorem it is sufficient to recall the following well-known facts. Suppose that d(M)
denotes the diameter of a compact and connected Riemannian manifold (M, 1) with the Ricci curvature
Ric ≥ (n − 1) K for some constant K. Then we have the following three cases (see [28, pp. 114, 116]). The

first, if K < 0 then λ1 ≥
exp − (1 + (1 − 4(n − 1)2 d(M)2 K)1/2)

2(n − 1)2 d(M)2 . The second, if K > 0, then λ1 ≥ n K. The third,

if K = 0, then λ1 ≥
π2

4d(M)2 for the first eigenvalue λ1 of ∆̄.

We recall here that the third result belongs to P. Li and S.-T. Yau (see [34]) and must be compared with

a result of S. T. Chen: λ1 ≤
nπ2

d(M)2 (see [11]). In particular, if (M, 1) is a compact n-dimensional (n ≥ 3)

hyperbolic manifold (Hn, 10) with standard metric 10, then there exists a constant C = C(n) > 0 such that
λ1 ≥ C · Vol(M)−2 (see [12]).

Next, we will consider the Sampson Laplacian acting on the smooth sections of the vector bundle of
trace-free symmetric 2-tensor fields S2

0M on a compact Riemannian manifold (M, 1). The following obvious
statement is true.

Theorem 4.9. The Sampson Laplacian ∆S maps S2
0M to itself.

Let (M, 1) be an n-dimensional compact and oriented Riemannian manifold with strictly negative sectional
curvature and ∆S: C∞S2M → C∞S2M be the Sampson Laplacian acting on trace-free symmetric 2-tensor
fields. If we denote by Kmax the maximum of the negative defined sectional curvature of (M, 1), i.e.
sec(σx) ≤ Kmax in all directions σx at each point x ∈M, then from (13) we obtain the integral inequality

λa〈ϕ,ϕ〉 ≥ −2nKmax

∫
M

∑
i< j

(µi − µ j)2 dν1 + 〈∇ϕ,∇ϕ〉 ≥ 0 (14)

for an arbitrary eigenvalue λ1 corresponding to a non-zero eigentensor ϕ ∈ C∞S2
0M of ∆S. If the condition

trace1ϕ = µ2
1 + µ2

2 + · · · + µ2
n = 0 holds then it is not difficult to prove the following equality

‖ϕ‖2 = µ2
1 + µ2

2 + · · · + µ2
n =

1
n

∑
i< j

(µi − µ j)2.

In this case, from (14) one can obtain the integral inequality

(λa + 2n Kmax)
∫

M
‖ϕ‖2 dν1 ≥ ‖∇ϕ‖2 ≥ 0. (15)
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Then from (15) we conclude that λa ≥ −2n Kmax for an arbitrary eigenvalue λa. In turn, if the first eigenvalue
λ1 = −2n Kmax, then its corresponding 2-tensor field ϕ is invariant under parallel translation. In this case, if
the holonomy of (M, 1) is irreducible, then at each point of (M, 1) the tensorϕmust have the formϕ = µ ·1 for
some constant µ. But in our case, trace1ϕ = 0 and, consequently, we have µ = 0. The following statement
is true.

Theorem 4.10. Let (M, 1) be an n-dimensional (n ≥ 2) compact Riemannian manifold and ∆S: C∞S2M→ C∞S2M
be the Sampson Laplacian acting on trace-free symmetric 2-tensor fields. Then the first eigenvalue of ∆S satisfies
the inequality λ1 ≥ −2n Kmax for the maximum Kmax of the strictly negative sectional curvature of (M, 1). If
λ1 = −2n Kmax , then the trace-free symmetric 2-tensor field ϕ corresponding to λ1 is invariant under parallel
translation. In particular, if the holonomy of (M, 1) is irreducible, then this relation means that ϕ ≡ 0.

Remark. Suppose now that (Hn, 10) is a compact n-dimensional (n ≥ 3) hyperbolic manifold with standard
metric 10 having constant sectional curvature which equals to −1. Then the first eigenvalue λ1 of the
Sampson Laplacian ∆S: C∞S2

0M→ C∞S2
0M satisfies the inequalities λ1 ≥ 2n.

5. Spectrum of the Sampson Laplacian acting on TT-tensors

We recall here the definition of the well known Lichnerowicz Laplacian ∆L acting on C∞(⊗p T∗M). It is
an elliptic linear differential operator of second order ∆L: C∞(⊗p T∗M) → C∞(⊗p T∗M) for p ≥ 0 which is
determined by ∆LT = ∆̄T + Γp(T) for an arbitrary T ∈ C∞(⊗p T∗M) (see [4, p. 54]). It is self-adjoint with
respect to the L2(M, 1)-product, and coincides on S0M = C∞M with ordinary Laplacian on C∞-functions.

Let us consider here the Lichnerowicz Laplacian ∆L: C∞S2M → C∞S2M acting on symmetric 2-tensor
fields that has the form ∆Lϕ = ∆̄ϕ + Γ2(ϕ) for an arbitrary ϕ ∈ C∞S2M (see, for example, [47]). Then we
have the following equation

∆Sϕ = ∆Lϕ − 2Γ2(ϕ). (16)

Let (M, 1) be a manifold of the constant sectional curvature C, then Rik jl = C (1i j1kl − 1il1 jk) and Rik =
(n − 1) C 1ik. In this case, the equation (16) can be rewritten in the form

∆Sϕ = ∆Lϕ − 4n Cϕ. (17)

for any ϕ ∈ C∞S2M.
We recall here that a TT-tensor (Transverse Traceless tensor) is by definitions a symmetric divergence free

and traceless covariant 2-tensor (see, for instance, [22]). Such tensors are of fundamental importance in
stability analysis in General Relativity (see, for instance, [19, 20, 37]) and in Riemannian geometry (see [4]).
In turn, Boucetta has proved in [6] that the eigenvalues of the Lichnerowicz Laplacian acting on TT-tensors
which is defined on a Euclidian unit sphere Sn are given by µa = a(n + a− 1) + 2(n− 1) for a ≥ 2. Then using
(17) we conclude that the following theorem is true.

Theorem 5.1. The eigenvalues of the Sampson Laplacian ∆S defined on the Euclidian unit sphere Sn and acting on
TT-tensors are given by λa = a(n + a − 1) − 2(n + 1) for a ≥ 2.
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