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Metrics Transformations Preserving the Types of One-dimensional
Minimal Fillings

S. Yu. Lipatova

aLomonosov Moscow State University

Abstract. Given a class F of metric spaces and a family of transformations T of a metric, one has to describe
a family of transformations T′ ⊂ T that transfer F into itself and preserve some types of minimal fillings.
The article considers four cases. First, when F is the class of all finite metric spaces, T =

{
(M, ρ)→ (M, f ◦ρ) |

f : R>0 → R>0

}
, and the elements of T′ preserve all non-degenerate types of minimal fillings of four-point

metric spaces and finite non-degenerate stars, and we prove that T′ =
{
(M, ρ) → (M, λρ + a) : a > λaρ

}
.

Second, when F is the class of all finite metric spaces, the class T consists of the maps ρ → Nρ, where
the matrix N is the sum of a positive diagonal matrix A and a matrix with the same rows of non-negative
elements. The elements of T′ preserve all minimal fillings of the type of non-degenerate stars. It has been
proven that T′ consists of maps ρ → Nρ, where A is scalar. Third, when F is the class of all finite additive
metric spaces, T is the class of all linear mappings given by matrices, and the elements of T′ preserve all
non-degenerate types of minimal fillings, and we proved that for metric spaces consisting of at least four
points T′ is the set of transformations given by scalar matrices. Fourth, when F is the class of all finite
ultrametric spaces, T is the class of all linear mappings given by matrices, and we proved that for three-
point spaces the matrices have the form A = R(B + λE), where B is a matrix of identical rows of positive
elements, and R is a permutation of the points (1, 0, 0), (0, 1, 0) and (0, 0, 1).

1. Introduction

The concept of minimal filling first appeared in the papers of M. L. Gromov [3] in the following form.
LetM = (M, ρ), where M is a closed Riemannian manifold with a distance function ρ at it, andW = (W, d),
where a compact manifold W with the boundary M is such that d does not decrease the distances between
points from M, thenW is called a filling ofM. Gromov’s problem consists in describing the greatest lower
bound of the volumes of the fillings, as well as describing the spacesW at which the greatest lower bound
is achieved, and which are referred to as minimal fillings.

This problem was preceded by another one. The Steiner problem is an optimal connection problem
for a finite set of points in a metric space. We need to determine a Steiner minimal tree, i.e., a shortest
network connecting a given finite set of points in the plane. A mapping Γ : V → X is called a network in a
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pseudo-metric space X = (X, d) parameterized by a connected graph G = (V,E), or a network of type G [1]. The
vertices and edges of a network Γ are defined as restrictions of the mapping Γ onto the vertices and edges of
the graph G. The length of an edge Γ : vw→ X is the value d

(
Γ(v),Γ(w)

)
, and the length d(Γ) of the network Γ is

the sum of the lengths of all its edges. The boundary ∂Γ of the network Γ is the restriction of the mapping Γ
onto the boundary ∂G of the graph (an arbitrary subset of the vertex set). If M ⊂ X is a finite subset, and
M ⊂ Γ(V), then we say that the network Γ connects the set M. The vertices of graphs and networks which are
not boundary ones are referred to as interior. The value smt(M) = inf

{
d(Γ) : Γ is a network connecting M

}
is called the length of a shortest network. A network such that d(Γ) = smt(M) is called a shortest network, [2],
or a Steiner minimal tree.

In the Steiner problem it is natural to consider finite metric spaces as the space X. In this case possible
fillings are metric spaces having the structure of one-dimensional stratified manifolds (that can be consid-
ered as weighted graphs with non-negative weight functions). It was proved in [2] that the change of a
metric ρ by the metric λρ + a, λ > 0, a > λaρ, where aρ is a number dependent on the metric ρ, does not
change the type of a minimal filling. We will prove the converse assertion and obtain the other results we
described in the abstract.

The work was supported by the Russian Foundation for Basic Research (grant No. 16-01-00378-a) and
the program “Leading Scientific Schools” (grant no. NSh-6399.2018.1).

2. Preliminaries

Let M be an arbitrary finite set and G = (V,E) a connected graph. We say that G connects M and M is
the boundary of the graph G if M ⊂ V. The boundary of a graph G is denoted by ∂G. Now, letM = (M, ρ)
be a finite pseudo-metric space, G = (V,E) a connected graph connecting M, and ω : E → R+ a mapping
into nonneggative real numbers usually called a weight function generating the weighted graph G = (G, ω).
The weight of a weighted graph G is the value ω(G) equal to the sum of weights of all edges of the graph.
The function ω generates a pseudo-metric dω on V, namely: the distance between vertices of the graph
G is the least weight of paths connecting those vertices. If for any points p and q from M the inequality
ρ(p, q) ≤ dω(p, q) holds, then the weighted graphG is called a filling of the spaceM and the graph G is called
the type of this filling. The number mf(M) = infω(G), where the infimum is taken over all fillings G of the
spaceM, is called the weight of minimal filling, and a filling G such that ω(G) = mf(M) is called a minimal
filling.

Definition 1. A finite pseudo-metric spaceM = (M, ρ) is called additive if M can be connected by a weighted
treeG = (G, ω) such that ρ coincides with the restriction of dω onto M (see [1]). The treeG in this case is said
to be generating.

Statement 2.1 ([1]). Let the minimal filling G = (G, ω) of a spaceM = (M, ρ) be a star, where its interior vertex v
is connected with all points pi ∈ M, 1 ≤ i ≤ n, n ≥ 3. In this case the spaceM = (M, ρ) is additive and its minimal
fillings are its generating trees (i.e., the trees generating the distance function).

Let G = (V,E) be an arbitrary tree. Let v ∈ V be its interior vertex of degree (k + 1) ≥ 3 adjacent with k
vertices w1, . . . ,wk from ∂G. Then the vertex set {w1, . . . ,wk} and also the edge set {vw1, . . . , vwk} are called
moustaches. The number k is called the degree of the moustaches and the vertex v is called the common vertex
of the moustaches.

A tree is called binary if the degree of any of its vertices is 1 or 3 and the set of boundary vertices consists
of exactly the vertices of degree 1.

Statement 2.2 ([1]). Let M = {p1, p2, p3, p4} and ρ be an arbitrary pseudo-metric on M. Assume ρi j = ρ(pi, p j). In
this case the weight of a minimal filling G = (G, ω) of the spaceM = (M, ρ) can be found by means of the formula
1
2

(
min{ρ12 + ρ34, ρ13 + ρ24, ρ14 + ρ23} + max{ρ12 + ρ34, ρ13 + ρ24, ρ14 + ρ23}

)
.

If the minimum in this formula is equal to ρi j + ρrs, then the type of the minimal filling is a binary tree with
moustaches {pi, p j} and {pr, ps}.
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Statement 2.3. For every additive space the only non-degenerate minimal filling is its non-degenerate generating
tree.

Statement 2.4 ([1]). A criterion of additivity of f space is the 4 points rule: for any four points pi, p j, pk, pl the values
ρ(pi, p j) + ρ(pk, pl), ρ(pi, pk) + ρ(p j, pl), ρ(pi, pl) + ρ(p j, pk) are the lengths of sides of an isosceles triangle whose base
does not exceed its other sides.

3. Maps of the form (M, ρ) → (M, f ◦ ρ)

We consider the case when F is the class of all finite metric spaces, T = {(M, ρ)→ (M, f ◦ ρ) : f : R>0 →

R>0}, where f is applied to the only positive part of metric ρ(x, y), extended to x = y by 0 and the
elements of T′ preserve all non-degenerate types of minimal fillings of four-point metric spaces and finite
non-degenerate stars.

For any a ∈ R we denote R>a = {x ∈ R : x > a}.

Theorem 1. Let f : R>0 → R>0 be a function such that for every metric space (M, ρ) the function f ◦ ρ is still a
metric on M, and non-degenerate stars and types of minimal fillings of four-point spaces are preserved. Then there
exists a real number C such that f + C is linear on R>0.

The proof of theorem 1 is based on two auxiliary results, lemmas 3.1 and 3.3.

Lemma 3.1. Let f : R>0 → R>0 be such a function that for every metric space (M, ρ), whose non-degenerate minimal
filling type is a star, the function f ◦ ρ is still a metric on M and all non-degenerate types of all minimal fillings of the
spaces (M, ρ) and (M, f ◦ ρ) are the same. Then there exists a real number C such that f + C is additive on R>0.

Proof. Show that there exists a number C such that for each k ∈N∪{0},N = 2k, any a, b ∈ R> 1
N

, and 1 = f +2C
the equality 1(a + b) = 1(a) + 1(b) holds. Let M = (M, ρ), M = {pi}

7
i=0, be a metric space whose minimal

filling G = (G, ω) is a star with an interior vertex v, connected with all points pi by the edges ei = vpi, and
ω(e0) = ω(e1) = ω(e2) = 1

N , ω(e3) = a, ω(e4) = b, ω(e5) = a − 1
N , ω(e6) = b − 1

N , ω(e7) = 2
N .

Since f ◦ ρ is a metric on M and the star G1 = (G, ω1) is a minimal filling of the spaceM1 = (M, f ◦ ρ)
due to Statement 2.1, for i , j the following equalities hold:

f
(
ρ(pi, p j)

)
= f

(
ω(ei) + ω(e j)

)
= ω1(ei) + ω1(e j).

Let us find all ω1(ei). We have

ω1(e0) =
ω1(e0) + ω1(e1) + ω1(e0) + ω1(e2) − ω1(e1) − ω1(e2)

2
=

f
(
ρ(p0, p1)

)
+ f

(
ρ(p0, p2)

)
− f

(
ρ(p1, p2)

)
2

=
f ( 2

N )
2
,

and for i ≥ 1 we obtain

ω1(ei) = f
(
ρ(p0, pi)

)
− ω1(e0) = f

(
ω(ei) + ω(e0)

)
− ω1(e0) = f

(
ω(ei) +

1
N

)
−

f ( 2
N )

2
.

Further,

f
(
a +

1
N

)
= f

(
ρ(p5, p7)

)
= ω1(e5) + ω1(e7) = f (a) + f

( 3
N

)
− f

( 2
N

)
,

f
(
b +

1
N

)
= f

(
ρ(p6, p7)

)
= ω1(e6) + ω1(e7) = f (b) + f

( 3
N

)
− f

( 2
N

)
,

f (a + b) = f
(
ρ(p3, p4)

)
= ω1(e3) + ω1(e4) = f

(
a +

1
N

)
+ f

(
b +

1
N

)
− f

( 2
N

)
=

f (a) + f (b) + 2 f
( 3
N

)
− 3 f

( 2
N

)
= f (a) + f (b) + x,
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where x := 2 f ( 3
N ) − 3 f ( 2

N ). We now show that for any k ∈ N the relation 2 f ( 6
N ) − 3 f ( 4

N ) = 2 f ( 3
N ) − 3 f ( 2

N ) is
valid. Let a = b = 3

N or a = b = 2
N , then using the last formula we get

f
( 6
N

)
= 2 f

( 3
N

)
+ x, f

( 4
N

)
= 2 f

( 2
N

)
+ x,

2 f
( 6
N

)
− 3 f

( 4
N

)
= 4 f

( 3
N

)
− 6 f

( 2
N

)
− x = x = 2 f

( 3
N

)
− 3 f

( 2
N

)
.

By induction on k we find that x = 2 f (3) − 3 f (2). Thus, for any k the number C is equal to 2 f (3)−3 f (2)
2 and

hence it does not depend on a and b, which can be chosen arbitrary because for any a, b ∈ R>0 there exists a
number k ∈N,N = 2k such that a, b ∈ R> 1

N
, and we can build an appropriateM. The latter implies that the

function f + 2C is additive on any open ray x > 1
N and, consequently, it is such on the whole ray x > 0.

Remark 1. If there are no additional restrictions on the additive function, then there are infinitely many
nonlinear functions that satisfy the equation f (a + b) = f (a) + f (b). This was proven in 1905 by Georg Hamel
using a Hamel basis.

Lemma 3.2. The functions not changing the types of minimal fillings are monotone increasing.

Proof. Show that if 0 < a < b, then f (a) < f (b). Take a set X = {pi}
4
i=1 and a function ρ : X × X → R>0 such

that ρ(p1, p2) = ρ(p2, p1) = ρ(p3, p4) = ρ(p4, p3) = a, for any x ∈ X the relation ρ(x, x) = 0 holds, and for all
remaining pairs of points the function ρ takes the value b. Evidently,

(
X, ρ

)
is a metic space. In accordance

with Statement 2.2, the filling of this space has the moustaches {p1, p2} and {p3, p4} because the minimum of
the sum of the lengths is attained at the corresponding opposite edges (it is equal to 2a). For a function f
not changing the types of minimal fillings after changing ρ by f ◦ ρ the moustaches remain the same and
hence 2 f (a) is the minimum of the sum of the lengths of opposite edges, i.e. f (a) < f (b).

Lemma 3.3. If 1 : R>0 → R is a monotone increasing additive function, then 1 is linear on R>0.

Remark 2. Here and below, not the functions of the form f (x) = kx+b but the restrictions of linear mappings
of R into itself are called linear functions on R>0.

Proof. Let 1 be nonlinear, then there exist x1, x2 > 0 such that 1(x1)
x1

= α > β =
1(x2)

x2
. Take ε > 0 so that

αx1 > β(x1 + ε). In this case there exists m ∈ N such that x2
m < ε and hence x2

m < x1 + ε, therefore there exists
a number k ∈N such that x1 <

kx2
m < x1 + ε.

But then the additivity of 1 implies that 1( kx2
m ) = β kx2

m < β(x1 + ε) < αx1 = 1(x1), which contradicts the
monotonicity.

Proof. [Proof of theorem 1] By Lemma 3.1, there exists a number C such that the function f + 2C is additive.
By Lemma 3.2, the function f is monotone increasing and so f + 2C is also monotone increasing, therefore,
in accordance with Lemma 3.3, f + 2C is linear.

4. Linear maps

We put ρi j = ρ(pi, p j) and ρ = (ρ12, ρ13, . . . , ρn−1,n) for any metric space (M, ρ), where M = {p1, . . . , pn}.

Notation 4.1. Denote by N the sum of a positive diagonal matrix A = diag(λ12, λ13, . . . , λn−1,n) and a matrix
B made of identical rows of nonnegative elements, and by C(ρ) the scalar product of a row of the matrix B
with the vector ρ.

Remark 3. Matrix N of the form A + B in notation 4.1 generates a map ρ 7→ ρ′ such that ρ′i j = λi jρi j + C(ρ).

We consider the case when F is the class of all finite metric spaces, the class T consists of the maps
ρ→ Nρ, where the matrix N is a matrix of the form 4.1, and the elements of T′ preserve all minimal fillings
of the type of non-degenerate stars.
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Lemma 4.1. Matrix N of the form A+B in Notation 4.1 where A = λE, generates a metrics transformation preserving
metrics and the types of non-degenerate minimal fillings.

Proof. By Remark 3, the transformation has the form ρ 7→ λρ + C(ρ); therefore, it preserves metrics and
non-degenerate types of minimal fillings.

Theorem 2. A matrix N in notation 4.1 preserves metrics and minimal fillings whose types are non-degenerate stars
if and only if A is a scalar matrix.

Proof. If A is scalar, then Lemma 4.1 implies that the matrix N preserves metrics and the types of non-
degenerate minimal fillings.

We now prove the converse assertion. Let A be not scalar. Show that the matrix N does not always
preserve the metrics and types of minimal fillings that are non-degenerate stars.

Suppose that the matrix N preserves all the metrics. Since A is not scalar, there exist a, b and c such
that λab , λac. Using Statement 2.3, we construct a metric space M = {1, . . . ,n} with metric ρ so that its
type of minimal filling is a non-degenerate star, where M is the set of all vertices of degree 1, and the type
of minimal filling of its image is not a star. Denote by (G, ω) the minimal filling, and let o be the interior
vertex of G. We set λi = ω(oi), where i is a boundary vertex. Since G is a star, we have ρi j = λi + λ j, where
ρi j = ρ(i, j). It follows that ρab + ρcd = ρac + ρbd, hence ρac = ρab + ρcd − ρbd.

To ensure that the type of minimal filling of the image of M is not a star, it is sufficient that ρ′ab + ρ′cd ,
ρ′ac + ρ′bd. Using Remark 3, we obtain λabρab + C(ρ) + λcdρcd + C(ρ) , λacρac + C(ρ) + λbdρbd + C(ρ), hence
λabρab + λcdρcd , λacρac + λbdρbd, i.e., λabρab + λcdρcd , λac(ρab + ρcd − ρbd) + λbdρbd. Combining similar terms,
we obtain

(λab − λac)ρab , (λbd − λac)ρbd − (λcd − λac)ρcd = (λbd − λac)(λb + λd) − (λcd − λac)(λc + λd)
= (λbd − λac)λb + (λac − λcd)λc + (λbd − λcd)λd.

We take λa = λb = 1 and choose λd and λc. If λbd − λcd = λac − λcd = 0, then in the resulting inequality we
get 0 on the right and non-zero on the left for any λd and λc. Now, let λac − λcd , 0 or λbd − λcd , 0. In the
first case, the inequality can be solved with respect to λc for λd = 1, λc ,

(λab−λac)ρab−(λbd−λac)λb−(λbd−λcd)λd

λac−λcd
, and

we can take a positive solution, for example:

λc =
∣∣∣∣ (λab − λac)ρab − (λbd − λac)λb − (λbd − λcd)λd

λac − λcd

∣∣∣∣ + 1.

In the second case, the inequality can be solved with respect to λd for λc = 1, and we can take a positive
solution. Thus, for N with non-scalar A it is always possible to construct a metric space such that one of its
minimal fillings has the type of a non-degenerate star, and for an N-image of this space, its minimal filling
is not a star.

5. Additive spaces

We consider the case when F is the class of all finite additive metric spaces, T is the class of all linear
maps given by matrices, and the elements of T′ preserve all non-degenerate types of minimal fillings.

Let us consider the set of pseudometrics K(n) inRn(n−1)/2. Each non-negativity condition and the triangle
inequality gives a (closed) half-space bounded by a hyperplane passing through the origin of coordinates
O, therefore K(n) is a convex closed cone with vertex at O. Note that the metrics correspond exactly to all
points of the cone K(n) that do not lie on the coordinate hyperplanes. In particular, all the interior points of
this cone correspond to metrics.

Definition 2. By a union of k-dimensional faces of the set X ⊂ RN we mean a subset Ek(X) of X such that for
any x ∈ Ek(X) there exists a ball of dimension k in X with the centre at x, but there does not exist a ball of
dimension k + 1 lying in X with the centre at x. We put E1(X) = E(X) and call it the union of edges. It is easy
to see that E

(
K(n)

)
is the union of rays starting at the origin of coordinates. Each of them will be called an

edge.
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Lemma 5.1. Let x ∈ K(n). Then x ∈ E
(
K(n)

)
if and only if any non-zero vector a ∈ Rn(n−1)/2 for which there exists

δ > 0 such that x + aε ∈ K(n) holds for any ε,−δ < ε < δ, is proportional (collinear) to x, that is, there exists λ ∈ R
such that λa = x.

Proof. Let x ∈ E
(
K(n)

)
, then if there existed a noncollinear non-zero vector a, then, together with the ray

{λx : λ ∈ R+} and the segment {x + aε : −δ < ε < δ}, the cone K(n) would contain their convex hull due to
the convexity of K(n). This hull contains a two-dimensional ball (circle) with centre at x, which contradicts
x ∈ E

(
K(n)

)
.

Let x < E
(
K(n)

)
, then there is a ball with center at x and dimension k > 1 lying in K(n). As a, we can take

any noncollinear x vector in this ball.

Lemma 5.2. The set K(n) is the convex hull of the set E
(
K(n)

)
.

Proof. Let xi be coordinates in the space Rn(n−1)/2. The set W = K(n) ∩ {
∑

xi = 1} is a convex polytope, and
K(n) is a cone over W with vertex O, since K(n) lies in the positive orthant, and each ray in this orthant
intersects {

∑
xi = 1}. The rays from E(K(n)) are rays starting at O and passing through the vertices of W.

Since a convex polyhedron is a convex combination of its set of vertices, K(n) is a convex combination of
the set E(K(n)).

Lemma 5.3. In order for a linear map A to transform a pseudometric into a pseudometric, it is necessary and sufficient
that

A
(
E
(
K(n)

))
⊂ K(n).

Proof. Necessity. If there exists x ∈ E
(
K(n)

)
such that A(x) < K(n), then this is the pseudometric that

transformed not into a pseudometric.
Sufficiency. By Lemma 5.2, any vector x of the cone K(n) can be represented by a convex combination of

vertices of the polytope multiplied by a nonnegative number, that is, by linear combination of edge vectors
with nonnegative coefficients. Any linear mapping transforms this combination into a combination of edge
images with the same coefficients, so the vector v remains in the cone K(n).

Lemma 5.4. Pseudometrics in which the set of n points is divided into 2 nonempty subsets U and V so that the
distances between points of the same subset vanish, belong to E

(
K(n)

)
.

Proof. Consider such an x ∈ E
(
K(n)

)
and a non-zero vector a ∈ Rn(n−1)/2 for which there exists δ > 0 such

that x + aε ∈ K(n) holds for any ε,−δ < ε < δ. Note that if xi j = 0, then ai j = 0, since otherwise for any
δ > 0 for ε = − δ2

ai j

|ai j |
the inequalities −δ < ε < δ are valid, but xi j + εai j < 0, so x + aε < K(n). Since the vector

a is non-zero, there exist i, j ∈ {1. . . n} such that ai j = d , 0. It follows from the triangle inequalities that
xu1v1 = xu2v2 holds for any u1,u2 ∈ U, v1, v2 ∈ V.

In the transition from x to x + aε, the zero distances transform into zero ones, that is, the partition into 2
subsets is preserved, and all nonzero distances remain equal. Since ai j = 0 follows from xi j = 0, then xi j , 0
also follows from ai j , 0, and xkl + aklε = xi j + ai jε for any xkl , 0 because in the transition from x to x + aε
the non-zero distances remain equal to each other. Since xi j , 0 and xkl , 0, then xi j = xkl and ai j = akl = d.
That is, for any i, j ∈ {1. . . n}, if xi j = 0 then ai j = 0, and if xi j , 0 then ai j = d, therefore x is collinear to a.

Notation 5.1. We denote by
i1,1
i1,2
. . .
i1,n1

−

i2,1
i2,2
. . .
i2,n2

− . . . −
ik,1
ik,2
. . .
ik,nk

(or A1 − A2 − . . . − Ak, A j = {i j,1, i j,2, . . . , i j,n j }) the set of

n-points pseudometric spaces, n = n1 + · · · + nk, for which there are k consecutive points on the real line
such that the map π taking i j,1, i j,2, . . . , i j,n j into jth point of the line is isometric.

Remark 4.
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1. Some of the corresponding points of the line may coincide. In particular, the set A1 − A2 − . . . − Ak
includes A1 − A2 − . . . − (A j ∪ A j+1) − . . . − Ak as such a subset where π(A j) = π(A j+1).

2. The fact that the points are successive means that they form a non-strictly increasing or non-strictly
decreasing sequence.

3. In the metric space M = {p1, . . . , pn} =
⊔k

i=1 Ai all its elements are considered as distinct. Further, we
will identify them with their numbers, that is, for any i ∈ {1. . . n} we put pi = i. When the points of a
metric space are rearranged, the sequence A1 −A2 − . . . −Ak changes if and only if there is a number
i ∈ {1. . . k} such that the set Ai changes.

Definition 3. The direction vector U−V in the notation of 5.1 is a pseudometric space from U−V in which
all nonzero distances are 1.

Statement 5.1. The matrix A preserving n(n−1)
2 linearly independent edges of a cone in n(n−1)

2 -dimensional space is
diagonal in coordinates codirected with the direction vectors of these edges.

Theorem 3. For n ≥ 4, the linear map A transforms additive metric spaces into additive metric spaces with the same
non-degenerate type of minimal filling if and only if A has the form ρ→ αρ.

Proof. Note that the set of all additive spaces in whose non-degenerate types of minimal fillings the vertices
i1, i2, . . . , in are connected sequentially, coincides with i1 − i2 − . . . − in, therefore all sets of the form A1 −

A2 − . . . −An, where #Ai = 1 holds for any i ∈ {1. . . n}, are preserved. Also, for each i ∈ {1. . . n− 1}, we have
A1 − . . . − (Ai ∪ Ai+1) − . . . − An = (A1 − . . . − Ai − Ai+1 − . . . − An) ∩ (A1 − . . . − Ai+1 − Ai − . . . − An). That
is, the preservation of all sets of the form A1 − A2 − . . . − An implies the preservation of all sets of the form
A1 − A2 − . . . − An−1, where A1,A2, . . . ,An−1 is a partition of M into n − 1 non-empty subsets.

Similarly, the conservation of all sets of the form A1 − A2 − . . . − Ak implies the preservation of all sets
of the form A1 − A2 − . . . − Ak−1, where A1,A2, . . . ,Ak−1 is a partition of M into k − 1 non-empty subsets.
The result is the preservation of all sets of the form U − V, where U,V is a partition of M into 2 non-empty
subsets.

Let n ≥ 5. Consider the matrix X, in each i jth column of which the coordinates of the direction vector
{i, j} − (M \ {i, j}) are written. By Definition 3, it holds Xi jkl = 1 if #({i, j} ∩ {k, l}) = 1, otherwise Xi jkl = 0. It
is not difficult to see that XT = X. To show that these vectors are linearly independent, we find the inverse
matrix Y, XY = YX = E, in the form

Yi jkl =


x, #

(
{i, j} ∩ {k, l}

)
= 1,

y, #
(
{i, j} ∩ {k, l}

)
= 2,

z, #
(
{i, j} ∩ {k, l}

)
= 0.

We have
1 = (XY)i ji j =

∑
(a,b),#({i, j}∩{a,b})=1

Yabi j = 2(n − 2)x,

hence, x = 1
2(n−2) ;

0 = (XY)i jkl = Xi jikYikkl + Xi jilYilkl + Xi j jkY jkkl+

+ Xi j jlY jlkl +
∑

(a,b),#({i, j}∩{a,b})=1,{k,l}∩{a,b}=ø

Yabkl = 4x + 2z(n − 4),

thus, 1
n−2 = −z(n − 4), whence z = − 1

(n−2)(n−4) ;

0 = (XY)i jil = x#
({
{a, b} : i ∈ {a, b}

}
\ {i, j} \ {i, l} ∪ { j, l}

)
+

+ Xi jilYilil + z#
({
{a, b} : j ∈ {a, b}

}
\ {i, j} \ { j, l}

)
= x(n − 2) + y + z(n − 3),
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therefore, 1
2 + y − n−3

(n−2)(n−4) = 0, so y = n−3
(n−2)(n−4) −

1
2 .

Thus, there exists an inverse matrix X−1 = Y, i.e., X is nondegenerate and, thus, its columns are linearly
independent.

Consider the 1−
2
3
. . .

n
direction vector, its first n− 1 coordinates (12, . . . , 1n) are 1, the remaining are 0. We

find its coordinates in the basis of the direction rays vectors of the form {i, j} − (M \ {i, j}), multiplying by
the matrix Y. The first n − 1 coordinates are (n − 2)x + y = 1

2 + y = n−3
(n−2)(n−4) , the remaining (n − 3)z + 2x =

1
n−2 −

n−3
(n−2)(n−4) = − 1

(n−2)(n−4) . In this new basis of n(n−1)
2 linearly independent vectors, the preservation of rays

of the form {i, j} − (M \ {i, j}) and Statement 5.1 imply that the matrix A is diagonal. All the coordinates of

the direction vector 1 −
2
3
. . .

n
are non-zero, so the scalarity of the matrix A follows from the preservation of

this edge.

Let n = 4. Then A preserves 1
2 −

3
4 , 1

3 −
2
4 , 1

4 −
2
3 , 1−

2
3
4

, 2−
1
3
4

, 3−
1
2
4

, and 4−
2
3
1

. Thus, A preserves 7 edges
of K(4), therefore, by Statement 5.1, the matrix A is diagonal in coordinates directed along any 6 linearly
independent edges of the cone, for example, all, except (1, 1, 1, 0, 0, 0) (linear independence is established by
testing the matrix of these six vectors). Since all the coordinates of this vector in the basis of the remaining
six ones are nonzero, the matrix A is scalar in these coordinates and, therefore, has the form ρ→ αρ.

Remark 5. For n = 3, Theorem 3 is not true. In this case all spaces are additive. For n = 3, the set of
metrics is a 3-faceted cone in 3-dimensional space; it is sufficient for the matrix to be only diagonal in the
coordinates directed along all its edges. For n = 2 there is only one distance, and the matrix degenerates
into a scalar.

Consider the case when F is the class of all finite ultrametric spaces, T is the class of all linear maps
given by matrices.

Statement 5.2. Ultrametric spaces are additive.

Proof. Consider an arbitrary subset of 4 points. The condition of ultrametry implies that in any triangle the
two largest distances are equal to each other, so we can choose the notation so that ρ12 = ρ13 = a and ρ23 = b,
a ≥ b. Let us check the 4 points condition (2.4) for this subset.

1) Let ρ14 = c < a, then ρ24 = ρ34 = a and ρ12 + ρ34 = ρ13 + ρ24 = 2a > b + c = ρ23 + ρ14.
2) Let ρ14 = a, then in an isosceles 234 all sides are not greater than a. The 3 cases are possible:

• ρ34 = ρ24 = c, a ≥ c ≥ b, so ρ12 + ρ34 = ρ13 + ρ24 = a + c ≥ a + b = ρ23 + ρ14,

• ρ34 = c, ρ24 = b, a ≥ b ≥ c, so ρ13 + ρ24 = ρ23 + ρ14 = a + b ≥ a + c = ρ12 + ρ34,

• ρ34 = b, ρ24 = c, a ≥ b ≥ c, this case is symmetric to the previous one, so it is treated exactly in the same
way.

3) Let ρ14 = c > a, then ρ24 = ρ34 = c and ρ12 + ρ34 = ρ13 + ρ24 = a + c ≥ c + b = ρ23 + ρ14.
The 4 points condition is satisfied for any subset, and, according to Statement 2.4, the space is addi-

tive.

Theorem 4. The matrix of a one-to-one linear map that maps any ultrametric space of 3 points to an ultrametric
point has the form A = R(B + λE), where B is a matrix of identical rows of positive elements, λ ∈ R, and R is the
permutation of the points (1, 0, 0), (0, 1, 0) and (0, 0, 1).

Proof. The set of all three-point ultrametric spaces is the union of the parts of the planes consisting of points
of the form (a, a, b), (a, b, a) and (b, a, a), so we can choose R so that S = R−1A translates these planes into
themselves.
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Since S = (si j) transforms the first plane into itself, for any vector (a, b), a ≥ b, we have (a, b)(s11 + s12, s13) =
(a, b)(s21 + s22, s23), hence s13 = s23 = z, s11 + s12 = s21 + s22 = c. Considering the remaining two planes, we
obtain

S =

c − y y z
x c − x z
x y c − y − x + z

 =

x y z
x y z
x y z

 + (c − x − y)E = B + λE.
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