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Abstract. In this paper the solutions of the following difference equation is examined:

Xn-7
Xp1 = —, n=0,1,2,3,..
1+x,3

where the initial conditions are positive real numbers.

1. Introduction

The study of difference equations is growing continuously for the last decade. Difference equations are
always attracting very much interest, because these equations appear in the mathematical models of some
problems in biology, ecology and physics, and numerical solutions of differential equations [22-31]. In fact,
they occupy a central position in applicable analysis and will continue undoubtedly to play an important
role in mathematics as a whole. Recently, a lot of interest in studying the periodic nature of nonlinear
difference equations has been revealed. We refer readers to [1, 5-19 ] for some recent results concerning
among other problems and the periodicity of scalar nonlinear difference equations.

Cinar [2, 3, 4] has studied the following problems with positive initial values:

Xn+l = Lr
1+ ax,x,-1
Xn+l = L/
=1 +ax,x,_1
_ AXp-1
Yl = 7 bx,x,-1”

forn=0,1,2, ..., respectively.
Simsek et al. [20, 21, 22, 25] studied the following problems

Xn-3

Xp4l = 77—
" 1+x,,_1'
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x X5
n+l = 77
1+ x,-0 !
P Xn-5
n+l — 37~ —
1+ Xn-1Xn-3 ’
_ Xn-3
Xnyl =

1+ x,.X,1Xn_2
with positive initial values for n = 0, 1,2, ..., respectively.
In [28], Stevi¢ solved the problem

Xn—-1
Xn+l = m fOl’ n= 0, 1,2,...,

where x_1, xp € (0, 00). This result was generalized to the equation of the following form:

Xn-1
Xpe1 = —— for n=0,1,2,..,

Uk (xn)
where x_1,x9 € (0, ).

In this paper we investigated the following nonlinear difference equation:

Xn-7
=7 1n=0,1,23,.. 1
xn+1 1 + xﬂ_s 7 n 0/ 7“7 3/ ( )

where X_7,X-6,X-5,X-4,X-3,X-2,X-1,X0 € (0/ OO)

2. Main Result

Theorem 2.1. Consider the difference equation (1). Then the following statements are true.
a) The sequences {xsn-7},{Xsn—6}, {Xsn—5}, {Xsn-a}, {xsn-3}, {xsn-2}, {xsn-1}, {xsn} are decreasing and there exist
ay,ay, ...,ag > 0 such that

lim xg,-7 = a1, lim xg, ¢ = a2, lim xg,5 = a3, lim xg, 4 = a4, lim xg,3 =as,
n—00 n—o00 n—00 n—00 n—00

lim Xgn—2 = dg, lim Xgn—1 = Ay, lim Xgn = ag,
n—oo n—oo

n—o0
b) lim X8n—7 lim Xgp-3 = 0, lim X8n—6 lim Xgn—2 = O, lim X8n-5 lim Xgn-1 = 0, lim X8n—4 lim Xsn = 0,
n—oo n—oo n—oo n—oo n—oo n—oo n—oo n—oo
or ajas =0, axag =0, aza; =0, agag =0.
c) If there exist ng € IN = Z,, such that x,4.1 < x,—3 for all n > ng , then lim x,, = 0.
n—oo

d) The following formulas hold:

no 2j

1
Xgn+1 — X—7 = (X1 — X_7) Z H TM;
.

=0 i=1

n 2j

1
Xgn2 — X—6 = (X2 — X_6) Z H Trn,
i

=0 i=1

n 2j

1
Xgn+3 = X-5 = (X3 — X_5) E | | —1+x4- 1;
i

=0 i=1

n 2j

1
Xgn+a = X—g = (Xg — X—4)Z H o
1

=0 i=1
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n 2j+1

1
Xgn+5 — X-3 = (X1 — X_7) z | | Tros
i

=0 i=1

n 2j+1

1
Xgni6 — X2 = (X2 — X_¢) Z H sz;'z;
i

=0 i=1

n 2j+1

1
Xgn+7 — X-1 = (X3 — X_5) Z H m;
i

=0 i=1

Xgn+s — X0 = (X4 — X_4)

e) If xgu41 — a1 # 0 then xg,45 — 0asn — oo. If xgu40 — ap # 0 then xgy6 — 0as 1 — oo, If xgp3 = a3 # 0
then xg,47 = 0asn — oco. If xgya — as # 0 then xg,8 — 0asn — oo.

Proof. a) Firstly, we consider the equation (1). From this equation we obtain
xn+1(1 + xn—S) = Xp-7-
If x,,_3 € (0, +0), then (1 + x,,_3) € (1, +0). Since x,,_7 > x,+1, n € IN, we obtain that

lim xg,—7 = a1, lim xg,—¢ = ap, lim xg,—5 = a3, lim xg,—4 = a4, lim xg,—3 = as,

n—oo
lim xg,_» = ag, lim xg,_1 =ay, lim xg, = ag.
n—oo n—oo n—oo
b) In view of the equation (1), we obtain

X8n-7

X+l = 7 -
" 1+ X8n-3

Taking limit as n — oo on both sides of the above equality, we get
n=8n = lim xg,_y lim xg,—3 =0 or aias = 0.
n—oo n—oo

Similarly,
n=8n+1 = lim xg,-¢ lim xg,_» =0 or aas =0;
n—oo n—oo

n=8n+2 — lim xg,_5 lim xg,_1 =0 or asa; =0;
n—oo

n—oo

n=8n+3 = lim xg,_4 lim xg, =0 or azag = 0.
n—o0

n—oo

¢) If there exist ny € N suchthat x,3>x,,; forall n>ng, thena, <ag¢<ay as;<a;<as,
ay <ag <ay, as <ap < as. Using (b), we get

a1as = 0, arxde = O, asday = 0, asag = 0.

Then, we see that
lim x, = 0.

n—oo

d) Subtracting x,_7 from the left and right-hand sides of equation (1), we obtain

1

m(xn—3 = Xp-11)- )

Xp+1 — Xp-7 =
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From (2), the following formula

Xin-15 — Xan—23 = (X1 — x_y) []i; ) ‘1+;41 3

Xan-14 = Xan-22 = (X2 — x-6) [ 1155 L m}ﬁ
Xan-13 — Xan-21 = (X3 — X_5) Hl 1 1”41 W

X4n-12 = X4n-20 = (X4 — X—4) H, 1 1+x4,

n>4 for

holds. Replacing n by 2j in (3) and summing from j = 0 to j = n we obtain

Xgne1 — X—7 = (X1 — X_7) Z?:o Hizil
) Xgn+2 — X6 = (X2 — X—6) Ljg lei
Xgn+s — X5 = (X3 — X-5) Xjg lei
Xgn+a — Xy = (Xa — X-g) g H?il

n=0,1,2,..

Also, replacing n by 2j + 1 in (3) and summing up elements from j = 0 to j = n we obtain

1
1+x4i37
1

1 T4+x4i07

1 14+x4i1

1
T4+x4°

2j+1
Xgnas — X3 = (01— x7) Lo [T 5
2j+1
_ Xgnie — X2 = (02 = x-6) oo 1. 12—
n=0,1,2,..,) S
Xgne7 — X1 = (03— x-5) Nig [T 11—
2j+1
Xgnsg = Xo = (X4 — X- 4)2] o [1;2; ! 1+1x4f’
Now, we obtained of the above formulas,
. 1.
Xgn+1 = X— 7(1 - 1+x 3 Z] 0 H 1 1+x4i3 )/
Ty,
X8n+2 = X— 6(1 1+y 5 Z] =0 H 1 T+xsi2 )’
Ty,
x8n+3 = X- 5(1 - 1+\z 1 Z] =0 H 1 T4+x4i1 )/
Xanes = X_g(1 = 22 T [T, 7).
2j+1
Xgn+5 = X-3(1 — ] DI =)
2]+1 1 .
Xsn6 = X-2( i-o T
2 +1
Xgn+7 = X 1(1 - 1+x 1 Z] =0 H ! 1+,}4‘._1 );
— 21+1 1
Xgnss = Xo(1 = ]+r0 ] =0 Hz 1 1+X4,)
e) Suppose that a; = a5 = 0. By d) we have
n  2j
. . X_3 1
lim x = lim x_7(1 - ZH—
n—oo Bn+l n—oo 7( 1+x3 0 i 1+ x4i-3 )l

2j

a1=0:1+x3 iH1+x4
. 1—

j=0 i=

Similarly,
n 2j J+ 1

lim xg,45 = lim x_3(1 —
n—o0 n—oo

+X3ZH1+X4,

1384

(8)
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o 2j+1
X_7 1
=x_a(1 -
5 =X 3( 1+x_3]Z:;41:1[1+x4,_3
T+xs S 1
_ -3 _
%=0= X_7 _ZH1+X41—3 ®)
j=0 i=1
From (8) and (9),
1+x3 §i2’ 1+L3_5iTT 1 10)
=0 icl 1+ X4i-3 X_7 i 1+ X4i-3

thus, x_y > x_3. If we take xg,_7 > xg,—3 and are taking limit as # — oo on both sides, we get

lim Xgp—7 > hm Xgp—3 = A1 > ds.

n—oo

Suppose that a, = a6 = 0. Hence similar to the previous we have

1 <, 2 1 >, I
- ZHHM o ZH T a

] 1=

thus, x_¢ > x_,. If we take xg,_¢ > xg,—2 and are taking limit as # — oo on both sides, we get

lim X8n—-6 > lim Xgn—2 = Ap > dg.
n—oo n—oo

Suppose that a3 = a7 = 0. Hence similar to the previous we have

T4 o 1 T4 o 1
=2 115 N | Ewomn (12)
X-1 T i1 + Xgi1 X5 T i1 + Xy
thus, x_s > x_q. If we take xg,_5 > xg,—1 and are taking limit as n — co on both sides, we get
lim xg,_5 > lim xg,_1 = a3z > ay.
n—oo n—o00
Suppose that a, = ag = 0. Hence similar to the previous we have
o) 2 oo 2j+1
1+xp t[ 1 1+x0 Z] (13)
X0 0 i 1+ X4,‘ T i 1+ xy

thus, x_4 > xo. If we take xg,—4 > xg, and are taking limit as # — oo on both sides, we get

lim X8n—4 > hm Xgy = dg4 > 4g.

n—oo

Hence we obtain x_4 > x¢, x_5 > x_1, X_¢ > X_p, X_7 > x_3. We face a contradiction which completes the
proof of the theorem. O
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