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Abstract. A number of basic properties of R-compact spaces in the category Tych of Tychonoff spaces and
their continuous mappings are extended to the category ZUnif of uniform spaces with the special normal
bases and their coz-mappings.

1. Introduction

E. Hewitt introduced the class of R-compact (Tychonoff) spaces [19]. That class was independently
defined by L. Nachbin [24] in terms of uniformities. The important topological and uniform properties of
IR-compact spaces are established in works of T. Shirota [25] and S. Mréwka [22]. From a categorical point
of view IR-compact spaces coincide with epi-reflective hull of the real line in the category Tych of Tychonoff
spaces and their continuous mappings [12, 18]. Various problems of the theory of R-compact spaces are
investigated in the books [4, 10, 15, 27]. Spectral Theorem for R-compact spaces is given in [9].

R-compact extensions over the special bases (separating nest-generated intersection ring (s.n.-g.i.r.) or
strong delta normal base) have been investigated in [2, 3, 16, 26]. For any uniform space uX the set Z,
of zero-sets of all uniformly continuous functions forms s.n.-g.i.r. or strong delta normal base [4]. It is
naturally arisen the category ZUnif, whose objects are uniform spaces uX with base Z,, and morphisms
are coz-mappings (where a mapping f : uX — vY between uniform spaces uX and vY is coz-mapping,
if f~4(Z,) € Z.) [8, 14]. The Wallman-Shanin compactification 8, X = w(X, Z,) and the Wallman-Shanin
realcompactification v, X = v(X, Z,) both are defined over the base Z, [8]. In the category ZUnif a uniform
space uX is R-compact if X = v, X. The category Tych is a full subcategory of ZUnif.

In this work it is shown that a number of basic properties of IR-compact spaces in the category Tych can
be extended to the category ZUnif.

2. Preliminaries and Notations

Assume R is the real line with the ordinary metric p(x, y) = |x — y| and the uniformity ur generated by
the metric p, N is the set of natural numbers, I = [0, 1] is the unit segment with the metric and uniformity
induced from R. If f : X — Yis a mapping and F C X, then f|r : F — Yis the restriction of fon F. If Y = R,
then a mapping f : X — R is a function, where Z(f) = f7}(0) and X \ Z(f) = f1(R\ {0}). R¥ is the set of
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all functions from X into R. If A ¢ RX and F C X, then Z(A) = {Z(f) : f € A} and Alr = {flr : f € A}. For
a system F = {Fs}ses of sets | UF = U,es Fs is the union and (F = (.5 Fs is the intersection of elements
from 7. For systems ¥ and ¥’ their inner intersectionis ¥ AF’ ={FNF :Fe ¥ ,F e F'}). U ¥’ = {X]},
thenF AX={FNX:Fe ¥}

All spaces are assumed to be Tychonoff and for any compactum we use its unique uniformity. Denote by
Tych the category of Tychonoff spaces and their continuous mappings. For a space X € Tych denote by C(X)
(C*(X)) the set of all (bounded) continuous functions on X. We will assume Z(C(X)) = Z(X). Elements of
Z(X) are called zero-sets and elements of CZ(X) = {X\ Z : Z € Z(X)} are called cozero-sets. A uniform space
uX is a Tychonoff space X with a uniformity u on it. Uniformities are given by uniform coverings [20]. If uX
is a uniform space and Y C X, then uly is the restriction of the uniformity u on Y and [Y]x is the closure of Y
in X. For a uniform space uX we denote by U(uX) (U*(uX) ) the set of all (bounded) uniformly continuous
functions on uX. Then Z(U(uX)) = Z, is the set of all u-zero-sets and the family CZ, = {X\Z : Z € Z,}
is the set of all u-cozero-sets. A covering consisting of cozero-sets (u-cozero-sets) is called cozero-covering
(u-cozero-covering). The set Z, forms on uX a base of closed sets of the uniform topology [5] and this base is a
separating nest-generated intersection ring (s.n-g.i.r.) [6]. That base is defined in [26] and it is a normal base
in the sense of [13]. The mapping f : uX — vY between uniform spaces uX and vY is called coz-mapping, if
fUZy) c€ Zyor fH(CZ,) € CZ, [14]. All uniform spaces and coz-mappings form the category ZUnif [14].
Objects uX and vY in ZUnif are called coz-homeomorphic, if there exists a bijective coz-mapping f : uX — vY
such that the inverse mapping f~! : vY — uX is a coz-mapping. Every Tychonoff space X with the fine
uniformity u is an element of ZUnif and every continuous mapping f : X — Y is uniformly continuous
f 1 ugX — vsY with respect to the fine uniformities u¢ and v on X and Y, respectively. Since Z,, = Z(X)
and Z,, = Z(Y), then f is a coz-mapping. Hence, the category Tych is a full subcategory of ZUnif.

In the case Y = IR, the coz-mapping f : uX — R is called coz-function. The set of all coz-functions on uX
is denoted by C(uX) and the set of all bounded coz-functions on uX is denoted by C*(uX). It is clear that
UuX) c C(uX) c C(X) (U'(uX) c C'(uX) c C*(X)). We note that Z,, = Z(C(uX)) [6].

A filter ¥ over the base Z, is called z,filter. A z,-filter F is a prime z,filter if ZU Z' € ¥ implies either
ZeF orZ' € F,where Z and Z’ are members of Z,.. If ¥ is a prime z,-filter and if x € X, then the point x
is a cluster point of ¥ if and only if z,-filter ¥ converges to x (= ((Z: Z € F} = {x}) [4].

The Wallman-Shanin (WS-) compactification w(X, Z,) of a uniform space uX is a f-like compactifica-
tion [23] and is denoted by f,X = w(X, Z,). Points of §,X are all maximal centered systems of elements
of the base Z, (further z,-ultrafilters) and §,X is endowed with the Wallman-Shanin (WS-)topology [1].
The compactification ,X is an epi-reflective functor g, : uX — f,X, that is coz-homeomorphic embedding.
Compacta in the category ZUnif are precisely elements of epi-reflective hull £([0, 1]) of the unit segment in
ZUnif [8].

The following is a characterization of WS-S-like compactifications.

Theorem 2.1. For every uniform space uX there exists exactly one (up to a homeomorphism) B-like compactification
BuX with equivalent properties:

(I) Every coz-mapping f from uX into a compactum K has a continuous extension p,, f from p,X into K.
(IT) uX is C;,-embedded into ,X.

() BuX is a completion of X with respect to the uniformity us.
(IV) For any finite family {Z,}*_, of u-zero-sets if "% _ Z,, = 0, then 0% _[Z,]5,x = 0.
(V) For any finite family {Z,}* _, of u-zero-sets [Nt _, Z,]g,x = N*_ [Z,1p,x-

n=1

(VI) Distinct z,-ultrafilters on uX have distinct limits in $,X.

In the above formulated theorem a uniform space uX is C;-embedded into a uniform space vY if X is
topologically a subspace of Y and C*(vY)|x = C*(uX), i.e. each bounded coz-function on uX can be extended
to a bounded coz-function on vY [7], the uniformity uy on X has a base of all finite u-cozero-coverings [8].

Compact uniform spaces in the category ZUnif have the next characterizations.

Corollary 2.2. For a uniform space uX the following are equivalent:
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(1) uXisacompactum in ZUnif.

(2) X is complete with respect to the uniformity us.

3) X =p8.X

(4) uX is coz-homeomorphic to the closed uniform subspace of a power of I.

All z,~ultrafilters with CIP (countable intersection property) are the part v, X of the compactification , X.
The Wallman-Shanin (WS-) realcompactification is the set v, X with the topology induced from the compactum
BuX topology [26]. Moreover, the WS-realcompactification v, X is an epi-reflective functor v, : uX — v, X,
that is coz-homeomorphic embedding [8]. Realcompacta in the category ZUnif are precisely elements
of the epi-reflective hull £(IR) of the real line R in ZUnif [8]. The following characterizations of the
WS-realcompactification take place.

Theorem 2.3. For every uniform space uX there exists exactly one (up to a coz-homeomorphism) realcompact space
v, X contained in the B-like compactification B, X with equivalent properties:

(I) Every coz-mapping f from uX into a R-z,-complete uniform space vR has an extension to a coz-mapping f
from v, X into vR.
(I) Every coz-mapping f from uX into a separable metric uniform space u,M has an extension to a coz-mapping f
from v, X into upM.
(IT) v,X is a completion with respect to the uniformity uz,.
p p YUy
(IV) uX is C,-embedded into v, X.
(V) v, X is a completion with respect to the uniformity uz.
(VI) For any countable family {Z,,},en of u-zero-sets if NyenZy = 0, then Nyen[Zyly,x = 0.
(VII) For any countable family {Z,}nen of u-zero-sets NpeNlZnlo,x = [NuenZnlv,x-
(VIII) Every point of v, X is a limit of unigue countably centered z,-ultrafilter on uX.
yp q Yy

Remind, that a uniform space vR is called R-z,-complete if every CIP z,-ultrafilter converges.

In the above theorem a uniform space uX is C,-embedded into a uniform space vY if X is topologically
a subspace of Y and C(vY)|x = C(uX), i.e. each coz-function on uX can be extended to a coz-function on
vY [7], the uniformity u?, on X has a base of all countable u-cozero-coverings and the uniformity uZ is weak
generated by C(uX) [8].

A uniform space uX is called R-compactum in ZUnif, if X = v, X. It follows immediately from Theorem
2.3 that X = v, X if and only if uX is coz-homeomorphic to some closed uniform subspace of R““%), that is
C,-embedded into RE“X),

The following corollaries are immediate consequences of Theorem 2.3.

Corollary 2.4. The WS-realcompactification v, X of a uniform space uX is the largest subspace of the B-like compact-
ification B, X such that uX is C,-embedded into it and v, X is the smallest R-compactum between X and B, X.

Corollary 2.5. For a uniform space uX the following are equivalent:
(1) uXis R-compactum in ZUnif.
(2) X is complete with respect to the uniformity uz,.
(3) X is complete with respect to the uniformity uZ.
4) X=v,X.
(5) uXis coz-homeomorphic to a closed uniform subspace of a power of R.

Further, for simplicity, R-compact in the category ZUnif of uniform spaces will be called R-compactum,
and R-compact in the category Tych Tychonoff spaces will be called R-compact space.
As R-compacta are elements of £(IR) in ZUnif, then from [12, 18] it follows:

Proposition 2.6. ([8]) A closed subspace of an R-compactum, product of any family of R-compacta, intersection of
any family of R-compacta is an R-compactum.

We note that the intersection £(R) N Tych in ZUnif coincides with the class of R-compact Tychonoff
spaces.

In this paper the most of properties of R-compact spaces in the category Tych are extended on the
category ZUnif.
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3. Properties of R-Compacta
Proposition 3.1. A metrizable space with a countable base is R-compactum with respect to the metric uniformity.

Proof. Let X be a metrizable space with a countable base and d be a metric which generates the topology
on X. Denote by u the uniformity induced by d. Then Z, = Z(X). Since (X, d) is a paracompactum with a
countable base, then the fine uniformity u of the space X consists of all countable cozero-coverings. Then
any CIP z,-ultrafilter p is a Cauchy filter with respect to the fine uniformity u¢. It is therefore evident that
u C uy, hence p is a Cauchy filter with respect to the metric uniformity u. Any metric space is weakly
complete (= any CIP Cauchy filter converges [21]). Hence, Np # 0. Thus, X is an R-compactum with respect
to the metric uniformity. O

Corollary 3.2. Any metrizable space with a countable base is an R-compact space.

Proof. A metrizable space with a countable base is weakly complete with respect to the metric uniformity.
Hence the fine uniformity is weakly complete, therefore every CIP z-ultrafilter has nonempty intersec-
tion. O

Remind that a Polish space is a complete metrizable space with a countable base [9].
Corollary 3.3. Any Polish space is an R-compactum with respect to the metric uniformity.

Theorem 3.4. Let uX be an R-compactum and f : uX — vY be a coz-mapping between uniform spaces uX and vY.
If F C Y and F is an R-compactum with respect to the uniformity vlr, then f~Y(F) = N is an R-compactum with
respect to the uniformity uly.

Proof. Assume v’ = uly, v = vlg, and g = fly : N — F (we note that g is a coz-mapping). Let p be
an arbitrary z,-ultrafilter on N over the base Z,,. Then the families £ = {Z € Z, : ZN N € p} and
7*(p) = {Z € Zy : g7 (Z) € p} are prime CIP z,- and z,-filters on X and F, respectively [27]. So there exist
x € N and y € Ng#(p). We show that x € N and x € Np.

Suppose that x ¢ N. Then f(x) ¢ F. Hence, y # f(x). Therefore in the base Z, there exist zero-set
neighborhoods f(x) € Z and y € Z’ such that ZN Z’ = 0. Since y € Ng*(p), then Z' N F € g¥(p), i.e.
gHZ'NnF) = gYZ') NN € p. The preimage f~}(Z) is a zero-set neighborhood of x, hence f~(Z) € &,
ie. f(Z)NN €p. Since g1 (Z)NN = f1(Z') NN, then (f1(Z) N N) N (f"1(Z’) N N) € p. Hence, from
fYZ)n f71(Z") # 0, we have a contradiction, Z N Z’ # 0. Thus, x € N.

Now suppose that x ¢ Np. Then there exists Z € p such that x ¢ Z. Since [Z]y = [Z]x NN and x € N, then
x & [Z]x. Hence there is a zero-set neighborhood Z’ € Z,, such that x € Z’ and Z’ N [Z]x = 0. Moreover,
ZNZ =0. Further, sincex € Z’NN,then Z’ € £. ThenZ’ "N € p. Hence, ZN (Z'NN) #0,i.e. ZNZ #10,
which is a contradiction. Thus, x € Np. O

Corollary 3.5. Let uX be an R-compactum and G be a u-cozero-set in X. Then G is an IR-compactum with respect
to the uniformity ulg.

Proof. Since G is a u-cozero-set in uX, there exists a function f € U(uX), f : uX — Rsuch thatG = f~(R\{0}).
According to Proposition 3.1, R \ {0} is an IR-compactum because it is a metric space with a countable base.
Hence, by Theorem 3.4, G is an R-compactum with respect to the uniformity u|s. O

Corollary 3.6. ([9]) Let X be an R-compact space and G be a cozero-set in X. Then G is an R-compact space.

Proof. Since G is a cozero-set in X, then there exists a function f € C(X), f : X — Rsuch that G = f}(R\ {0}).
According to Proposition 3.1 R \ {0} is an R-compact space because it is a metric space with a countable
base. Hence, by Theorem 3.4, G is an R-compactum with respect to the uniformity u¢|c. Then moreover G
is an R-compact space. [

The next theorem (and its corollary) is a generalization of results from [15, 8.10(a)].
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Theorem 3.7. If uX is C,-embedded into vY, then [X],,y = v, X.

Proof. If uX is C,-embedded into vY, then uX is C,-embedded into v,Y [7]. Since [X],,y is a subspace of
v,Y, then uX is C,-embedded into [X],,y. Because [X],,y is an R-compactum as closed subspace of the
R-compactum v, Y, we have [X],,y = v, X (see Proposition 2.6, Corollary 2.4). [J

Corollary 3.8. ([15]) Let uX and vY be R-compacta and uX is C,-embedded into vY. Then X is closed in Y.
Proof. By the condition X = v,Xand Y = v,Y. Then [X]y = [X],,y = v, X =X. O

Definition 3.9. ([22]) A subset F of a space X is said to be G;s-closed, if for each x ¢ F there exists a Gs-subset
G such that x € G and GNF = 0. Gs-closure of F is the set of all x € X which satisfy the condition: whenever
G is Gs-set containing x, then GNF #  and the Gs-closure of F is denoted by G5 — cIxF. A subspace F is said
to be Gs-dense in X, if X = Gy — clxF, i.e. if each Gs-set in X meets F.

Theorem 3.10. Every Gs-closed subset F of an R-compactum uX is an R-compactum with respect to any uniformity
von F such that Z, NF C Z,.

Proof. Let F be a Gs-closed subset in X and v be a uniformity on F such that Z, A F € Z,. Let p be an
arbitrary z,-ultrafilter over the base Z,. Let £ = {Z € Z,, : ZNF € p)}. It is easy to check that £ is a prime
CIP z,-filter on uX. Hence, £ is contained in the unique CIP z,-ultrafilter 4 on uX [27] and since uX is an
R-compactum, {x} = Ng € NE. We show that x € F and x € Np.

Assume, to the contrary, x ¢ F. Since F is Gs-closed in X, then there is a Gs-set G = NienO; such thatx € G
and G N F = 0. By properties of the base Z, [7] there are zero-set neighborhoods Z; € Z, (i € IN) such that
x € Z; C O;. Since the prime z,-filter £ converges to x, then Z; € & for all i € N. If we suppose that Z; N\ F #
foralli € IN, then Z; N F € p (i € N). Hence we have a contradiction (;en(Zi N F) = (MNjen Zi) N F # 0, since p
is a prime CIP z,-ultrafilter on F. On the other hand, (e Zi € G and GNF = 0. Thus, there exists an index
k € N such that x € Z; and Z; N F = 0. But Z; € &, hence Z; N F € p, which is impossible. Thus, x € F.

Suppose that x ¢ Np. Then there exists Z € p such that x ¢ Z. Since [Z]r = [Z]x N F and x € F, then
x ¢ [Z]x. Then there is a zero-set neighborhood Z’ € Z,, such that x € Z, and Z'’ N Z = 0. It is evident that
7' € & Therefore Z' N F € p implies (Z’ NF)NZ € pand Z' N Z # 0, which is a contradiction. Thus, x € Np
and F is an R-compactum with respect to the uniformity v. 0O

Corollary 3.11. ([22]) Every Gs-closed subspace of an R-compact space is also an R-compact space.

Proof. It follows, as we noted above, from the fact that an R-compact space X is an R-compactum with
respect to the fine uniformity u or over the base ZX). O

Theorem 3.12. The following are equivalent:

(I) uX is an R-compactum.
(II) For any y € B,X \ X there exists a continuous function h : p,X — I such that h(y) = 0 and h(x) > 0 for all
xeX

Proof. (I) = (II). Since X = v, X, then there exists a unique z,-ultrafilter p, without CIP, that converges to
y € B,X \ X. Then there exists a sequence {Z;};cn C p, such that (e Z; = 0. We can assume that Z; = Z(g;),
where g; : uX — I is a coz-function (i € IN). Therefore, by the properties of C(uX) [6], it follows that
g = Zien(9i/2") : uX - R is a coz-function and Z(g) = N;en Zi, i-e. Z(g) = 0. For each i € N, g;(x) > 0 for all
x € X, hence g(x) # 0 forall x € X and g cannot be coz-extendable to Y = XU{y} with respect to the uniformity
induced from the compactum f,X. Suppose g has a coz-extension § : Y — RR. For each i € IN it takes place
[Zi]y = Z; U{y}. Because §is continuous, then we have §(y) = §(;enlZily) € [F(Nien Z1)Ir = [9(Z(9))]r = 0.
It is a contradiction. It can be supposed that g(x) > 1 for all x € X.

Since C(uX) is inversion-closed, then f = 1/g is a coz-function [6] and f : uX — I. Then the function f
can be extended to the function g, f : f,X — I [17,26]. If B, f(y) # 0, then § = 1/B,,f is a coz-extension of g
to Y. So, B.f(y) =0and f(x) > 0 for all x € X. Assume h =, f.

(II) = (I). It follows from Corollary 3.5 and Proposition 2.6, because uX is an R-compactum as the
intersection of cozero subspaces of ,X, which are R-compacta. [
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Corollary 3.13. ([22]) The following are equivalent:

(I) X is an R-compact space.
(I) Forany y € BX \ X there exists continuous function h : X — I such that h(y) = 0 and h(x) > 0 for all x € X.

Proof. If X is endowed by the fine uniformity u¢, then X is an R-compactum with respect to the uniformity
ugand C(usX) = C(X). O

Definition 3.14. A uniform space uX is said to be strongly C;-embedded into a uniform space vY if X is a
topological subspace of Y and for any bounded coz-function g € C*(1X) there exists a bounded coz-function
h € C*(vY) such that h|x = g and supl|h| = sup|gl|, where suplh| = sup{h(y) : y € Y} and sup|g| = sup{g(x) : x € X}.
If u = uy, v = vy are the fine uniformities, then the space X is strongly C*-embedded into the space Y.

Theorem 3.15. Let uX be a uniform space such that X = \J,en Xun. For each n € IN let u,, be a uniformity on X,
such that X, is strongly C;, -embedded in uX and X, is an R-compactum with respect to the uniformity u,. Then uX
is an R-compactum.

Proof. Let y € B, X\ X. If y ¢ U, en[Xulp,x for all n € IN, and since $,X is a Tychonoff space, then there
exists a continuous function f, : ,X — I such that f,(y) = 0 and f,(x) = 27" for all x € [X;]g,x. Then
Jn = falx is a coz-function and ,g, = fu [6]. The series g = L,engx is uniformly converging, so g € C(uX)
and g : uX — I [6]. It is therefore evident that f,9(y) = 0 and g(x) > 0 for all x € X.

Now suppose that y € [Xi]g,x for some k € IN. Because uX is strongly C;, -embedded in uX, and uX
is Cj-embedded in B, X, then u; X is C;, -embedded in §,X [7]. Hence [Xils,x = Bu, Xk [7]. Since Xj is an
R-compactum with respect to the uniformity u, there exists a continuous function g : 8, Xy — I such that
9(y) = 0 and g(x) > 0 for all x € X (by Theorem 3.12). By strongly C;, -embeddedness of u;X into uX there
exists a bounded coz-function h € C*(uX) such that hlx, = glx, and sup|h| = sup|g|. Hence h(x) > 0 for all
xeX.

Let f,hh : uX — [—o0, +00] be a continuous extension of & [6]. Then f,hlx, = h|x, implies B,h(y) = 0 and
h(x) > 0 for all x € X. Thus, uX is an R-compactum. [J

Corollary 3.16. Let X be a Tychonoff space such that X = |J,en Xn and every X, is R-compact and strongly
C*-embedded subspace of X (n € IN). Then X is an R-compact space.

Proof. 1f X is endowed with the fine uniformity u; and all X, are endowed by the fine uniformities (1),
we get the result. [

Remark 3.17. It is known that every closed subspace of a normal space is strongly C*-embedded (by the
Brouwer-Tietze-Uryshon Theorem [11, Theorem 2.21]). So, we obtain the next corollary.

Corollary 3.18. ([22]) Let X be a normal space such that X = | J,,en X, where any X, is a closed R-compact subspace
of X. Then X is an R-compact space.

Definition 3.19. Let uX, vY be uniform spaces and X C Y. A uniform space uX is said to be z,-embedded in
oY, if Z, A X =2,

It is clear, that C,-embeddedness implies z,-embeddedness. Simple examples demonstrate that z,-
embeddedness need not imply C,-embeddedness. We note, if X is z-embedded in Y, then X is z,, ’ -embedded
iny,ie. va ANX=2Z, fr where 1y, v are fine uniformities on X and Y, respectively.

Below we formulate some problems.

(I) Let Z € Z,, for a uniform space uX. Which of the following statements are equivalent:
(1) aset Z is C,,-embedded in X;
(2) aset Zis C’;lz—embedded in X;
(3) aset Z is zy,-embedded in X.
(II) Let S € CZ, for a uniform space uX. Is S z,),-embedded in uX?
(IIT) Let uX be a uniform space such that X = \J,qn Xu. For each n € N let u,, be a uniformity on X, such that X,
is z,,,-embedded in uX and X,, is an R-compactum with respect to the uniformity u,. Is uX anR-compactum?

Remark 3.20. In the category Tych, A. Chigogidze proved the Spectral Theorem for R-compact spaces [9].
So, the following problem naturally arises: Prove the Spectral Theorem for R-compacta in the category ZUnif.



A.A. Chekeev, T.]. Kasymova / Filomat 33:5 (2019), 1463-1469 1469

Acknowledgement

The authors express their deep gratitude to the referee for corrections in the original draft of the paper

and for many helpful and constructive remarks.

References

(1]
[2]
[3]
[4]
[5]
[6]
(7]

(8]

[9]
[10]
[11]
[12]
[13]
[14]
[15]

[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]

[25]
[26]
[27]

J.M. Aarts, T. Nishiura, Dimension and Extensions, North-Holland, 1993, 331 p.

A.R. Alo, H.L. Shapiro, Normal bases and compactifications, Math. Ann. 175 (1968) 337-340.

A.R. Alo, H.L. Shapiro, M. Weir, Realcompactness and Wallman realcompactifications, Portugal. Math. 34 (1975) 33-43.

A.R. Alo,H.L. Shapiro, Normal Topological Spaces, Cambridge University Press, 1974, 306 p.

M.G. Charalambous, Inductive dimension theory for uniform spaces, Annales Univ. Sci. Budapest, Sec. Math. 17 (1974) 21-28.
A.A. Chekeev, Uniformities for Wallman compactifications and realcompactifications, Topology Appl. 201 (2016) 145-156.

A A. Chekeev, B.Z. Rakhmankulov, A.I. Chanbaeva, On Cj,- and C,-embedded uniform spaces, TWMS ]. Pure Appl. Math. 9
(2018) 173-189.

A A. Chekeev, T.]. Kasymova, Ultrafilter-completeness on zero-sets of uniformly continuous functions, Topology Appl. 252 (2019)
27-41.

A. Chigogidze,V.V. Fedorchuk, Absolute Retracts and Infinite-Dimensional Manifolds, Nauka, Moscow, 1992 (in Russian).

R. Engelking, General Topology, Berlin, Heldermann, 1989. 626 p.

V.V. Fedorchuk, V.V. Filippov, General Topology. Basic Constructions, Moscow, FML, 2006. 336 p. (in Russian).

S.P. Franklin, On epi-reflective hulls, Gen. Topol. Appl. 1 (1971) 29-31.

O. Frink, Compactifications and seminormal spaces, Amer. ]. Math. 86 (1964) 602-607.

Z. Frolik, A note on metric-fine spaces, Proc. Amer. Math. Soc. 46 (1974) 111-119.

L. Gillman, M. Jerison, Rings of Continuous Functions, The Univ. Series in Higher Math., Van Nostrand, Princeton, N.J., 1960,
303 p.

H. Gordon, Rings of functions determined by zero-sets, Pacific J. Math. 36 (1971) 133-157.

A.W. Hager, On inverse-closed subalgebra of C(X), Proc. Lond. Math. Soc. 19 (1969) 233-257.

H. Herrlich, Categorical topology, Gen. Topol. Appl. 1 (1971) 1-15.

E. Hewitt, Rings of real-valued continuous functions, I, Trans. Amer. Math. Soc. 64 (1948) 45-99.

J.R. Isbell, Uniform Spaces, Mathematical Survey, Providence, 1964, 175 p.

K. Morita, Topological completions and M-spaces, Sci. Rep. Tokyo Kyoiky Daigaku 10 (1970) 49-66.

S. Mréwka, Some properties of Q-spaces, Bull. Acad. Polon. Sci. 5 (1957) 947-950.

S. Mréwka, -like compactifications, Acta Math. Acad. Sci. Hungaricae 24 (1973) 279-287.

L. Nachbin, On the continuity of positive linear transformations, Proc. Internat. Congress Math., Cambridge, Mass, 1950, vol. 1,
Providence (1952) 464—465.

T. Shirota, A class of topological spaces, Osaka Math. . 4 (1952) 23-40.

A K. Steiner, E.F. Steiner, Nest generated intersection rings in Tychonoff spaces, Trans. Amer. Math. Soc. 148 (1970) 589-601.

M. Weir, Hewitt-Nachbin Spaces, North-Holland, NY, 1975, 270 p.



