Filomat 33:6 (2019), 1495-1504
https://doi.org/10.2298/FIL1906495B

Published by Faculty of Sciences and Mathematics,
University of Nis, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

Symmetric Functions of Binary Products of Fibonacci
and Orthogonal Polynomials

Ali Boussayoud?, Mohamed Kerada?, Serkan Araci®, Mehmet Acikgoz®, Ayhan Esid

*LMAM Laboratory and Department of Mathematics, Mohamed Seddik Ben Yahia University, Jijel, Algeria
YDepartment of Economics, Faculty of Economics, Administrative and Social Sciences, Hasan Kalyoncu University, TR-27410 Gaziantep, Turkey
¢Department of Mathematics, Faculty of Arts and Science, University of Gaziantep, TR-27310 Gaziantep, Turkey
4Department of Mathematics, Science and Art Faculty, Adiyaman University, TR-02040 Adiyaman, Turkey

Abstract. In this paper, we introduce a new operator in order to derive some new symmetric properties of
Fibonacci numbers and Chebychev polynomials of first and second kind. By making use of the new operator
defined in this paper, we give some new generating functions for Fibonacci numbers and Chebychev
polynomials of first and second kinds.

1. Introduction and preliminaries

In mathematics, orthogonal polynomials consist of polynomials such that any two different polynomials
in the sequence are orthogonal to each other under some inner product. The most widely used orthogonal
polynomials are the classical orthogonal polynomials, consisting of the Hermite polynomials, the Laguerre
polynomials, the Jacobi polynomials together with their special cases the Gegenbauer polynomials, the
Chebyshev polynomials, and the Legendre polynomials, cf. [8], [9].

Recent works including the symmetric properties of some known special polynomials, e.g., Bernoulli
polynomials, Euler polynomials, Genocchi polynomials and others, have been extensively investigated.
For details, see, [1], [2], [11], [12], [13], [14], [15], [19], [20], [21].

In this contribution, we shall define a new useful operator denoted by L;¥ for which we can formulate,

extend and prove new results based on our previous ones, see [5], [6], [7]. In order to determine generating
functions for Fibonacci numbers and Tchebychev polynomials of the first and second kind, we combine
between our indicated past techniques and these presented polishing approaches.

We shall handle functions on different sets of indeterminates (called alphabets, though we shall mostly
use commutative indeterminates for the moment). A symmetric function of an alphabet A is a function of
the letters which is invariant under permutation of the letters of A. Taking an extra indeterminate z, one
has two fundamental series

1

A2(A) = Taea(1 + za), 0,(A) = Toea(1 — za)
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the expansion of which gives the elementary symmetric functions A,(A) and the complete functions S,(A) :

A(A) = i Au(A)Z", 0,(A) = i S, (A)Z"
n=0 n=0

Let us now start at the following definition.

Definition 1.1. Let A and B be any two alphabets, then we give S,(A — B) by the following form:

HbeB(l B Zb)

Tl —an) = o SHA =B =4 -B)

with the condition S,(A — B) = 0 for n < 0 (see [3]).
Corollary 1.2. Taking A = 0in (1.1) gives
Mhes(1 - 20) = )" S,(-B)2" = L.(-B),
n=0
Further, in the case A = 0 or B = 0, we have
Z”: S$,(A = B)Z" = g,(A) X A,(—B).
n=0
Thus,
S,(A-B) = Zn: Su—x(A)Sk(=B)  (see [4]).
k=0

Since the summation is, indeed, limited to a finite number of nonzero terms, we have
Su(x = B) = x"So(=B) + x"1S1(—=B) + X" 2Sy(=B) + - -,

where Si(—B) are the coefficients of polynomials S,(x — B) for 0 < k < n.
Notice that Sy(—B) = 0 for k > n. Let B = {b, ], ..., b} be an alphabet of cardinality n, we have

Sy(x—=b-b—-b—-..-Db)=(x—-D)". (see[8])
Choosing B = {1,1,1, ..., 1} yields to two binomial coefficients as

Sy(=n) = (—1)k(Z) and Sy(n) = (” * '; B 1).

By combining (1.4) with (1.5), we obtain

Sk(A — kx) = Si(A) — (’;)xlsk_l(A) ok (i)xk.

(1.1)

1.2)

(1.3)

(1.4)

(1.5)

Definition 1.3. Let g be any function on R", then we consider the divided difference operator as the following form

_ g(xl/' © o Xig Xi1, '.xﬂ) _gg(xll' X Xixl, 'xn)

P (9) = ,

Xi — Xi+1

where g° is given by

GO(X1, - X Xig1, Xp) = G(X1, -+ - Xim1, Xig1 X, Xig2 =+ Xp)
(see [23] ).
Definition 1.4. The symmetrizing operator L;* is defined by [7]

J k
[k fler) — e f(e2) .
aerf (e1e2)*(e1 — e2) (ke
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In this part, we are now in a position to provide Lemma 1 for Theorem 1. Also we derive the new

generating functions of the products of some known polynomials.

Lemma 2.1. Let E = {ey, e2}, we define the operator L, as follows:

k
Lelezf( 1) - kk—(E)f(e ) i Kk €1€2f(61)
€16

12

forall k € N (see [7]).

Theorem 2.2. Let E and A be two alphabets, respectively, {e1, ez} and {ay, ay, ...}, then we have

Z—:O SVI (_A) 88162 (e]f'-n)zn k-1
T = LS el (e e s Z Suriet (4) D (€2,
€1 €2 n=0
forall k € N.

. -1
Proof. By applying the operator L% to the series f(e;) = (Z Sy (-A) e’fz”) = (Ae2(=A)) ™", we have
n=0

—k -k
Lelezf(el) - Lelez

z Su-Aeiz Y S, (~Aean
n=0

n=0

2 (61 - 62)

Y Su(-A) etz — ¥ S, (—A) elrtkzn
n=0 n=0

el (61 - e) (Aelz(_A) X /\ezz(_A))

Z S (—A) Deyey (e1")2"
-1 | u=0

61{615 elz(_A) X Aezz(_A)

On the other hand,

L;"EZ [2 Su(A)elZ"
n=0

&Y Sy(A)eiz" — &k ¥ S, (A)elz"
n=0 n=0

L;IZZ f (61 )

Kek (e1 — e2)

_ 6 _6162 2
B ee (ZS (A) €1 — e J

@2.1)
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k-1 k on
66—66‘ 86’—66
L[ S, (A 2”+ZS(A) ]

k e1—e e1—e
elelé -0 1= n=k+1 172
1

W‘S

-1 — B
T [ Sn (A) €€ 0o, (2" — 52! Z Snsks1 (A) Deyey (e 2" ]
1 2 n=0 n=0

Thus, this completes the proof. [J

3. On The Generating Functions

In this part, we now derive the new generating functions of the products of some known polynomials.
Indeed, we consider Theorem 1 in order to derive Fibonacci numbers and Tchebychev polynomials of
second kind if k = 1.

Theorem 3.1. Let E and A be two alphabets, respectively, {e1, e} and {ay, a}, then we have

e1e202a22% — may(er + e2)(a1 + a2)z + (a1 + a2)? — myay
2

/\elz(_A) X /\ezz(_A)

Y Suea@r +2)de,e, (€5 )2" = 31)
In the case E = {1, y} and A = {1, x}, with substituting e; =41 = 1, e, = x and 4, = y in (3.1), we have

xy?2? —x(1+x)(1+y)z+ (1 +x)? —x
(1-2)(1-x2)(1-yz) (1 —xy2)

Y Suea(1+0)8,(1 + )z = (3.2)
n=0

representing a new generating function of the products S,,.»(1 + x)S,(1 + y).
Corollary 3.2. For n € N, we have

Spi2(1+x) = 5,(1 + x) + x(x + 1)S,,(x).
Proof. From (3.2), we have

xy?z? —x(1+x)(1+y)z+ (1 +x)? —x
(1-2)1-zx)(1-zy) (1 -zxy)

Z Spiz(1+ 1)Su(1 + 1))2"
n=0

1 - xyz? x(1+ x)
(1-2)(1-2zx) (1—zy)(l—zxy)+ (1—2zx)(1 = zxy)

Since

1 - xyz?
(1-2)(1-2zx)(1-zy) (1 -zxy)

Z Su(1+2)S,(1 + y)z" = (see [7])

we have
Y Suwa(1+0)8u(1+ 92" = Y Su(1+0)S,(1+ 2" + Y x(1+ )8, (x)Su(1 + y)2".
n=0 n=0 n=0

By comparing the coefficients of z" on the both sides of the above, we have
Sp2(1+x) = S5,(1 4+ x) + x(x + 1)S,,(x)

as desired. [
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For the case E = {e;, —e;} and A = {a1, —a,} with replacing e; by —ey, a; by —a; in (3.1), we have

—e1e202a32% + maz(er — e2)(ar — a2)z + (a1 — ap)* + aray

(3.3)

é Sne2(a1 + [=a2D)Sn(er + [-e2])z" = (1 —ae1z) (1 + aze12) (1 + a1e22) (1 — azer2)

By the expression of (3.3), we have some corollaries as follows:

Assuming
am—a =1 eg—e=1
1 2 ’ and 1 2 ’
map =1, e1ep =1,

in (3.3) gives

2+z-22
1-z—-422-23+24

(o)
Z Pn+2FnZn
n=0

representing a new generating function for the binary product of Fibonacci numbers F,,. From this applica-
tion, we can state the following corollary.

Y Sualar + [=a2])S,er + [-es)"

n=0

Corollary 3.3. The following identity holds true:
FyioFy = Spia(a1 + [-a2])Su(er + [—e2]).

Also we give a new generating function for the binary product of Fibonacci numbers by the following
theorem.

Theorem 3.4. For n € IN, the generating function of the binary product of Fibonacci numbers is given by

. 1
n _
ZF”HF"Z C1-2z-222+27%
n=0
Proof. We have

(o]
Z FpoFnZ"
n=0

(Fps1 + Fo)Fuz"

[: 14

(o]
FuaFa2" + ) | F2"
n=0

I}
o

n

Since
P21 = see [8
Z n 1-z-422-23+z4 (see [8)
n=0
we have
< 1+z 1-72
F F ZVI — =+ 7
é n+2n 1—z—422—Z3+Z4 1_2—422—Z3+Z4
therefore

- 1
F, F7"= — ——— .
; el 1-2z-222+73
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Upon setting
al—a2=2, and 61—€2=2,
apay = 1, €16y = 1,
in (3.3) yields

5z + 422 — 73
1-4z—-10z2 - 423 + z*

(o8]
Z Pn+2Pnzn
n=0

that means a new generating function of the binary product of Pell numbers F,. By comparing the
coefficients z" on both sides of (3.5), we have the following corollary.

Z Spsi(ar + [-a2])Su-1(e1 + [-e2])Z" =
n=0

Corollary 3.5. The following identity holds true:
Pyi2Py = Spa(ar + [-a2])Sp-1(er + [—e2]).

The generating function of the binary product of Pell numbers is given by means of the following
theorem.

Theorem 3.6. For n € IN, the generating function of the product of Pell numbers is given by

- 27 + 272
P, P2 = .
; e e 1022 — 423 4 2

Proof. We have

Z PpioPpz" = Z(zpn+1 +P,)P,2"
n=0 n=0

= 2) PuaPu2"+) P
n=0 n=0

Since
0 3
zZ—2z
P7" = 6
nzza e v vy g il )
we have
(o) 1 (o] (o)
Y PuntPuzt = 5| Y PuaPuz" = ) P2,
n=0 n=0 n=0
therefore
- 27 + 272
P,1P,Z" = .
nZ:; e T 1022 — 423 +
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By taking
eg1—e =1, e1ep =1, 4aq1a, = -1,
and changing
(a1 — a) to2(a1 —ar)

in (3.3), we derive a new generating function involving the product of Fibonacci numbers with Tchebychev
polynomial of second kind
—1+4(a; — a2)* — 2(ay — ap)z — 2%

Pur

Y Sua2m + [-2m:])S,(er + [-ea])z"

n=0

Z un+2(a1 - aZ)PnZn
n=0

with
Puyr=1-2(@ —a)z+B3-4(n —u2)2)22 +2(m —a) 2 + 24
We deduce the following both corollary and theorem.
Corollary 3.7. The following identity holds true:
Su+2(2a1 + [-2a2])Su(e1 + [—e2]) = Upya(ar — a2)F.

Theorem 3.8. We have the following a new generating function of the product of Fibonacci numbers and Tchebychev
polynomials of second kind as

2(a1 —ap) —z

Z un+1(a1 - aZ)Fnzn = 2
=0 Ur

Proof. For the proof of this theorem, the following generating function is first considered:

—1+4(a; —a2)*> — 2(a1 — ap)z — 22

Z Uyso(a1 — ap)Fpz" P
n=0 ur

1422 A @) +2(a — @)z
Pur Pur '

Foata [14] derived the following generating function

1+ 22

Z un(al - aZ)FnZn =

P .
n=0 ur

By making use of the generating function given by Foata, we see the following series manipulation:

—2(a1 —ap)+z
Pur

Z Ups2(ar — a)Fpz" - Z Un(ar — a2)Fpz" — 2(ay — a2)
n=0 n=0

—2(a1 —ap) +z

Y Unola —m)Fz" + ) Unar —m)F,2" = —=2(a1 - )
n=0 n=0

Pur

(o] _2 _
Z[Umz(‘ll —ap) + Uy(ar — ap)]F,z" ZAm —m) vz
=0

—2(ay — a2) Pur

—2ay —
2y -y 2 P2

Z 2(ay — ax)Uy41(ay — a2)Fpz"

= Pur
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Thus it is proved by the following generating function.

2(a1 —ap) —z
Pur '

Z Uns1(ar — ax)Fuz" =
1n=0
Choosing 4; and e; for i = 1,2 such that
e1e = a1ap; = —1
and changing
(a1 — a2) to 2(a; — ap) and (e; — e3) to 2(e; — e2)
in (3.3), we get a new generating function involving the square of Tchebychev polynomials of second kind

22 =1 +4(a1 — )* — 4(a1 — ax)(e1 — &)z

Y Swra(2a1 + [~2021),(2e1 + [~2e2])z"

P
n=0 uu

Y. Unoalar - ) Uy (o1 - e2)2"

1n=0
with
Puu =1 -4(e1 — e)(@1 — @2)z + (411 = a2)* + 4(er — e2)* = 2)2° — d(e1 — e2)(a1 — @2)2° + 2*.
Thus we get the following both corollary and theorem.
Corollary 3.9. The following identity holds true:
Sn+2(2a1 + [-2a2])S,(2e1 + [-2e2]) = Uns2(a1 — az)Un(er — e2).
Theorem 3.10. We have a new generating function of the product of Tchebychev polynomials of second kind as

2(a1 —ap) — 2(e; — ez)z.

Z Upri(ar — ax)Uy(ey — e2)z" =
n=0

Puu
Proof. We have,
Z Upi2(ar — ax)Uy(ey — e2)z" = Z[Z(ﬂl —a)Upi1(ar — az) — Uy(ar — a2) Uy (eq — e2)z"
n=0 n=0

=2(a1 — a) Z Ups1(ar — ax)Uy(e1 — €2)2" — Z Un(ar — a)Un(er — e2)z".

n=0 n=0

Since

- . 1-22

Z Uy (ar — ax)Uy(er — e2)z" = P (see [8,9])

— uu
S0

- 2 —ay) —2(e1 —e)z  1-22

Y Uneolas ~ a)Uses — ez = 20y — g B2 222 122

o uu uu
therefore

2(a1 —ap) = 2(e1 — 62)2.

Y Uil - a)Un(er = e)z" = 5
i uu
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Furthermore,

n+2_ _ n+2
St 2y + [2a,]) = 220 . - fz“” (see [10])

we have a mixed generating function including the product of Tchebychev polynomials of the second and
first kinds

—1+2(a1 — a2)% = 2(a1 — @) (e1 — e2)z + 22

7

Y Twsalor = @) Un(er — e2)2" = b
n=0 Tu

with
Pry =1—4(e1 — e)(m — a2)z + (4(a1 — 12)* + 4(er — e2)° = 2)2° — &(e1 — e2)(a1 — @2)2° + 2*.
Thus we conclude with the following theorem.

Theorem 3.11. We have a new generating function including Tchebychev polynomials of the second and first kinds

(a1 — a2) — 2(e1 — ex)z + (a1 — 612)22.

Z Tpi1(ar — a2)Uy,(e1 — e2)z" =

n=0 PTU

Proof. we see that

Y 201 = a2)Tya (a1 = @) = Tolar = a2)] U (er — e)2"

Y Tuia(ar = a2)Ui (e - e2)2"
n=0 n=0

2@ - 1) Y Twaa(ar = m)Us(er - e2)2" = ) Tular = a)Un(er — e2)2".

n=0 n=0
On the other hand, we know that
- 1-2(a1 — ap)(e1 — e2)z + (a1 — ap)? — 1)22
Z Tu(ar — ax)Uy(er — e2)z" = (@ - m)e ;))TU @m — ) ) (see [8,9])
n=0

from which it follows

= 211 - 1) [(@1 — a2) (1 + 22) = 2(e1 — e2)z]
Z Tuva(ar — ax)Un(er — e2)z" = P -
n=0 TU

1-2(a1 — m)(er — e2)z + (2(a1 — ap)* — 1)2?

Pru

7

therefore

> — 1) = 2(e1 — e2)z + (a1 — 12)22
Z Tus1(ar — a2)Un(er — e2)z" = = a) ~ 2 5 )2 + (@ = )27
=0 Tu

4. Conclusion

In this paper, we have derived Theorem 1 by making use of symmetrizing operator given by Definition
3. By making use of Theorem 1, we have obtained Theorem 2 which is led to a new generating function
for a class of new family of complete functions. By the Theorem 2, we have written some new generating
functions for the binary products of Fibonacci numbers, Pell numbers and Tchebychev polynomials of the
first and second kinds.

In our forthcoming investigation, we plan to establish further results and properties associated with
some generalized forms of the above-mentioned families of polynomials.
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