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Abstract. For a graph G, the graph R(G) of a graph G is the graph obtained by adding a new vertex for
each edge of G and joining each new vertex to both end vertices of the corresponding edge. Let I(G) be
the set of newly added vertices, i.e I(G) = V(R(G)) \ V(G). The generalized R-vertex corona of G and H; for
i=1,2,..,n, denoted by R(G) @ A Hj, is the graph obtained from R(G) and H; by joining the i-th vertex
of V(G) to every vertex in H;. The generalized R-edge corona of G and H; for i = 1,2,...,m, denoted by
R(G)© AL, H;, is the graph obtained from R(G) and H; by joining the i-th vertex of I(G) to every vertex in H;.
In this paper, we derive closed-form formulas for resistance distance and Kirchhoff index of R(G) @ Al H;
and R(G) © AL H; whenever G and H; are arbitrary graphs. These results generalize the existing results.

1. Introduction

All graphs considered in this paper are simple and undirected. The resistance distance between vertices
u and v of G was defined by Klein and Randi¢ [9] to be the effective resistance between nodes # and v as
computed with Ohm’s law when all the edges of G are considered to be unit resistors. The Kirchhoff index
Kf(G) was defined in [9] as Kf(G) = Y., <, Tuo(G), where 1,,,(G) denotes the resistance distance between 1 and
v in G. These novel parameters are in fact intrinsic to the graph theory and has some nice properties and
applications in chemistry. For the study of resistance distance and Kirchhoff index, one may be referred to
the recent works ([2], [4], [5], ), [7]-[25]) and the references therein.

Let G = (V(G), E(G)) be a graph with vertex set V(G) and edge set E(G). Let d; be the degree of vertex i in
G and D¢ = diag(dy, d, - - - dy(g)) the diagonal matrix with all vertex degrees of G as its diagonal entries. For
a graph G, let A¢ and B denote the adjacency matrix and vertex-edge incidence matrix of G, respectively.
The matrix Lg = D¢ — Ag is called the Laplacian matrix of G, where Dg is the diagonal matrix of vertex
degrees of G. We use 111(G) > u2(G) > - -+ > u,(G) = 0 to denote the eigenvalues of L. For other undefined
notations and terminology from graph theory, the readers may refer to [6] and the references therein.

In [14], Lu et.al generalized the corona operation and defined the generalized R-vertex corona. For a
graph G, the graph R(G) of a graph G is the graph obtained by adding a new vertex for each edge of G and

2010 Mathematics Subject Classification. Primary 05C50; Secondary 0157.5

Keywords. Kirchhoff index, Resistance distance, Generalized inverse

Received: 19 November 2017; Accepted: 3 March 2019

Communicated by Paola Bonacini

Research supported by the Research Foundation of the Higher Education Institutions of Gansu Province, China (2018A-093),
the Science and Technology Plan of Gansu Province(18JR3RG206) and Research and Innovation Fund Project of President of Hexi
University(XZZD2018003).

Email address: 1iuqun@fudan. edu.cn (Qun Liu)



Q. Liu / Filomat 33:6 (2019), 1593-1604 1594

joining each new vertex to both end vertices of the corresponding edge. Let I(G) be the set of newly added
vertices, i.e [(G) = V(R(G)) \ V(G).

Definition 1.1([14]) The generalized R-vertex corona of G and H; for i = 1,2,...,n, denoted by R(G) &
AL Hi, is the graph obtained from R(G) and H; by joining the ith vertex of V(G) to every vertex in H;.

Definition 1.2 The generalized R-edge corona of G and H; fori =1,2,...,m, denoted by R(G) © A2, H;, is
the graph obtained from R(G) and H; by joining the ith vertex of I(G) to every vertex in H;.

Bu et al. investigated resistance distance in subdivision-vertex join and subdivision-edge join of graphs
[2]. Liu et al. [12] gave the resistance distance and Kirchhoff index of R-vertex join and R-edge join of two
graphs. In [11], the resistance distance of subdivision-vertex and subdivision-edge corona are obtained.
Motivated by the results, in this paper we consider the generalization of the R-vertex corona and the R-edge
corona to the case of n(m) different graphs and we obtain the resistances distance and the Kirchhoff index
in terms of the corresponding parameters of the factors. These results generalize the existing results in [13].

2. Preliminaries

The {1}-inverse of M is a matrix X such that MXM = M. If M is singular, then it has infinite {1}- inverse
[1]. For a square matrix M, the group inverse of M, denoted by M, is the unique matrix X such that
MXM = M, XMX = X and MX = XM. It is known that M* exists if and only if rank(M) = rank(M?) ([1],[3]).
If M is real symmetric, then M* exists and M* is a symmetric {1}- inverse of M. Actually, M* is equal to the
Moore-Penrose inverse of M since M is symmetric [3].

It is known that resistance distances in a connected graph G can be obtained from any {1}- inverse of G
([4]). We use MY to denote any {1}- inverse of a matrix M, and let (M),, denote the (1, v)- entry of M.

Lemma 2.1 ([3]) Let G be a connected graph. Then

7uv(G) = (L(Gl))uu + (Lg))vv - (Lg))uv - (L(Gl))vu = (Lé)uu + (Lé)vv - Z(L?;)uv
Let 1, denotes the column vector of dimension n with all the entries equal one. We will often use 1 to
denote an all-ones column vector if the dimension can be read from the context.

Lemma 2.2 ([2]) For any graph G, we have Lél: 0.
Lemma 2.3 ([24]) Let

A B
v-(2 o)
be a nonsingular matrix. If A and D are nonsingular, then

M—l

(A-l +A'BSICA! —A-1BS™! )

-S71CA™ s
(A- BD‘lC)‘1 —A"1BS1
—-S-1ca1 -1 i

where S =D — CA™'B.
For a square matrix M, let tr(M) denote the trace of M.
Lemma 2.4 ([15]) Let G be a connected graph on n vertices. Then

Kf(G) = ntr(LY) = 17LY1 = ntr(LE).
Lemma 2.5([10]) Let G be a connected graph of order n with edge set E. Then
Z ruv(G) =n-1
u<v,uveEE

For a vertex i of a graph G, let T(i) denote the set of all neighbors of i in G.
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Lemma 2.6([2]) Let G be a connected graph. For any i, j € V(G),
G =M1+ ) rg(G)—d;t Y ru(G)).
keT(i) kI€T(i)

Lemma 2.7 ([12]) Let G be a graph of order n. For any a,b > 0 satisfying b # a, we have

aL g -1 1 .
(L +al, b]nxn) =(Lg+al,)" + a(b—— n) Jnxn,

where j,x, denotes the n X n matrix with all entries equal to one.
Lemma 2.8 ([13]) Let

A B
=5 o)

be a symmetric block matrix. If D is nonsingular, then

- H* ~H*BD™
~\ -D'B"H* D'+ D 'BTH*BD"!

is a symmetric {1}-inverse of L, where H = A — BD"!BT.
Lemma 2.9 ([9]) Let k be a cut-vertex of a graph, and let 7 and j be vertices occurring in different
components which arise upon deletion of k. Then r;; = rj + ;.

3. The resistance distance and Kirchhoff index of R(G) @ A7_ H;

In this section, we focus on determing the resistance distance and Kirchhoffindex of generalized R-vertex
corona R(G) @ A, H; whenever G and H;(i = 1,2, ..., n) be an arbitrary graph.
Theorem 3.1 Let G be a connected graph with n vertices and m edges and let H; be a graph with ¢
vertices fori =1,2,...,n. Then R(G) & A, Hi have the resistance distance and Kirchhoff index as follows:
(i) For any i, j € V(G), we have
2 2 4 2
riRG)BALH) = (L + 3(LE)j — LY = 57i(G).
3 3 3 3
(ii) For any i, j € V(Hy)(k = 1,2, ...,n), we have
rRG)BALH) = (L, + 1) i + (Lo + 1) — 2L, + L) i

(iii) For any i, j € R(G), we have
2
Vi]'(R(G) O /\?le,‘) = grij(G).
(iv) Forany i € V(G), j € V(H)(k =1,2,...,n), we have
rij(R(G) B AL H) = ri(R(G)) + rtj(Fr),

where F;, = H; V {0}, i.e, Fy is the graph obtained by adding new edges from an isolated vetrtex v to every
vertex of Hy.
(v) Forany i € V(Hy), j € V(H;), we have

rij(R(G) B AL H) = ra(R(G)) + rig(Fx) + rj(Fy),

where Fy = Hi V {v}, i.e, Fy is the graph obtained by adding new edges from an isolated vetrtex v to every
vertex of H.
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(vi) Kf(R(G) @ ALL H))

n ti

- 2 m 1 n-1 1
= 2 Zt,- ZK ——tDL#——Z -
(n+2m+ A )[3n f(G) + >*5 r(DgLy) Tt Ll )+ 1

1 n
+2tr(QTLEQ)) - [% + oyl LEn e nTLES + )t + 'LES |,
i=1

where Q equals (1), ! = (dy,da, ..., d,), 5T = (t1,t2, .., 1)
Proof Let R(G) and Dg be the incidence matrix and degree matrix of G. With a suitable labeling for
vertices of R(G) @ AL H;, the Laplacian matrix of R(G) @ A, H; can be written as follows:

P+Ls -R(G) -Q
Lronr, b, = -R(G) 2l 0 |,
Q' o0 T

where
di+tp 0 0 0 i 0 0 0
_ 0 dz +t 0 0 _ 0 13; 0 0
P= 0 0 0 o Q 0 0 0V M
0 0 0 dy +ty 0 0 O 1y
Ly, + 1 0 0 .. 0
- 0 Lg+I, 0 . 0
0 0 0
0 0 0 .. Ly +I
First we begin with the computation of {1}-inverse of R(G) & AL H;.
By Lemma 2.8, we have
H = Lg+P-( -RG) -Q) i 0 ) -RUO)
¢ 0o T -Qf
-RY(G
o e )
tt 0 0 .. O ti 0 0 0
~ 0 0 .. 0] , 0 f 0 0
= Le#Da+| o o co |T2PerAd g g o
0 0 0 .. t, 0 0 O ty
= 3L,
soH* = L%

According to Lemma 2.8, we calculate -H*BD~! and —-D~'BTH".

Lt ( -RG) —Q )( %é’“ qu )
#
G

Lt ( -3RG) -QT )=( ILERG) 2LEQ)

~-H*BD' = -

and
IRT(G)L
_D—lBTH# — _(H#BD—l)T — ( 3 2 (TL)# G |.
5Q Lo
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We are ready to compute the D-'BTH*BD!.

D—lBTH#BD—l — %(I)m qu )( _RTQ(T(";) ) ( R(G) _Q )( %(I)m qu )

_ ( iR"(GLER(G) 3RT(GLEQ
- 2Q"LER(G) Q'L Q '

Based on Lemma 2.8, the following matrix

ZL# %LZR(G) ZL# Q
N = 1RT(G)L# 3In + 1RT(G)LER(G) 1RT(G)L Q ] )
$QLE 5QTLER(G) QTL# Q

is a symmetric {1}- inverse of Lrgymaz, H,
For any i, j € V(G), by Lemma 2.1 and the Equation (2) we have

T‘i]‘(R(G)E/\?:lH,‘) = (L )i + (L )]] (L )z] 7’1]( )

as stated in (i).
Foranyi,je€ V(Hy)(k =1,2,..,n), by Lemma 2.1 and the Equation (2), we have

riRG)BALH) = ((Ly, + 1) i+ (La + 1)) — 20, + 1) i,
as stated in (ii).
From the left side of above equation, we can obviously have
rif(F) = (Ly, + 1) i + (L, + 1)™)j5 — 2(La + 1) i,

where Fy = Hy V {v}, i.e, Fy is the graph obtained by adding new edges from an isolated vetrtex v to every
vertex of Hy.
For any 7, j € R(G), by Lemma 2.1 and the Equation (2), we have

rij(R(G) B AL H) = 1ij(R(G)).
By Lemma 3.1 in [7], r;j(R(G)) = %rij(G), so 7;j(R(G) @ AL H;) = %rij(G), as stated in (iii).

Foranyie V(G), j€ V(Hy)(k =1,2,..,n), since i and j belong to different components, then by Lemma
2.9, we have

rij(RG) B AL H) = r(R(G)) + r¢j(Fr),

as stated in (iv).
Foranyi € V(Hy), j € V(H;), by Lemma 2.9, we have

rij(R(G) B AL H) = 1a(R(G)) + ri(Fx) + rp(F1),

as stated in (v).
By Lemma 2.4, we have

n
(n+m+ Z £)tr(N) — 1TN1T
i=1

Kf(R(G)m A

(n+m+ Z £) (%tr(ﬁg) + tr(%lm + }IRT(G)LZR(G)) +

+r(T™ + Q'LEQ)) - 1"N1T

(n+m+2t)[ KfQ)+ 75 + 31 YL+ @b

i<ji,jeE(G)
+2(LE)ij] + tr(T7 + QTLEQ)) - 1TN1™.
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By Lemma 2.4, we get

Y R+ 2Lk

i<ji,jeE(G)

»-lkl»—‘

KfRG)BALLH) = (n+m+ Z f )( Kf(G)+ 5 +

—ri{(G)] + (T~ + Q'LEQ)) - 1"N1"
1

- (n+m+Zt)( KfG)+—+%tr(
+tr (T + Q'LEQ)) - 1"N1".

Note that the eigenvalues of (L(H;) + I,) (i = 1,2,...,n) are u1(H;) + 1, uo(Hy) + 1, ..., uy,(H;) + 1. Then

n t; 1
_1 _
(T = ; ]; PGRESE 3)

By Lemma 2.2, 1= 0 and (17 (RT(G)LQ) 1)T = 17 (QTLER(G)) 1, then

1™N1 = g + }Lﬂ (RT(G)LER(G))1+17 (RT(G)LEQ) 1

+1"T'1+17(Q"LEQ) 1.
Note that R(G)1 = 71, where ! = (d1,d>, ..., d,,), then 1T (RT(G)L# R(G)) n'LEn, so

1
1'™N1 = % + g LEm 4 7T LEQL+ 17T 11+ 17 (Qrto)1. ()

LetR; = L(H;) +1,(i = 1,2, ..., n), then

R7' 0 0 0 1,
Tr-14T _ T 4T T 0 R' 0 0 1,
1T = (17 17 - 1) o 0 0
0 0 0 RN 1,
n n
Y T@H) 1)1 =) (5)
i=1 i=1
and
1, 0 0 0
0 1, 0 0
TAT _ T 4T ... 1T t
Q" = (1 1 )l o o . 0
0 0 0 1,
= (tll t2/ ceey ti’l) = 6T' (6)

Plugging (3), (4), (5) and (6) into Kf(R(G) @ AL, H;), we obtain the required result in (vi).
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4. The resistance distance and Kirchhoff index of R(G) ©6 /\:';IH

In this section we focus on determing the resistance distance and Kirchhoff index of generalized R-edge
corona R(G) © A, H; whenever G and H;(i = 1,2, ..., n) be an arbitrary graph.

Theorem 4. 1 Let G be a connected graph w1th n vertices and m edges, Let H; be a graph with ¢; vertices
fori=1,2,..,m. Then R(G) © A’ H; have the resistance distance and Kirchhoff index as follows:

(i) For any i, j € V(G), we have

Vij(R(G) S /\ﬁlHi) = (L )i + (L )]] (L )z] Tz]( )-
(ii) For any i, j € V(Hy)(k = 1,2, ...,m), we have
m 1 .., |
rifRG)© Ao i) = (B + Ly = 5= jndi + (L + L = 50
1
_Z(LH1 + Itk - rtk]tk)ijl'
(iiif) For any i, j € R(G), we have
m 2
T’i]'(R(G) S Ai:lHi) = gT{j(G).
(iv) Foranyi € V(G), j € V(H)(k =1,2,...,n), we have
rij(R(G)© AL H) = 1i(R(G)) + r4j(Fr),
where Fr = Hi V {v}, i.e, Fy is the graph obtained by adding new edges from an isolated vetrtex v to every
vertex of H.
(v) Forany i € V(Hy), j € V(H;), we have
rii(R(G)© AL H) = 1a(R(G)) + rix(Fx) + ra(Fy),

where Fy, = H; V {0}, i.e, Fy is the graph obtained by adding new edges from an isolated vetrtex v to every
vertex of Hy.

(vi) Kf(R(G) © AL, Hj)
- (n+2m+zn:tt) 2 KF(G )+T+1tr(DL n-1.yy
N V) 3n 2 ¢ lljlp,(H)+1
+= tr(FTRT(G)L# R(G)F)) [T + énTL‘én + Z ti + gnT(G)L*gR(G)é + 7 LES
=1

I\J|>—‘

2 HQ+ 1) + 6TRT(G)L# R(G)(S]

where F equals (7), il = (dy,da, ..., dy), 6T = (11,0, ...,0,12,0, ..., 0..., tn,).
Proof Let R(G) and Dg be the incidence matrix and degree matrix of G. With a suitable labeling for
vertices of R(G) © A" H;, the Laplacian matrix of R(G) © A", H; can be written as follows:

Lc + D¢ —R(G) 0
Lryenr b = —-R7(G) p -M
0 M Q
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where
24 0 0 0 1, 0 0 0
| 0o 245 0 0 _| 0 1o 0
P= 0 . 0 o M=l 0 0 ’
T
0 0 0 2+ tm mxm 0 0 0 1t,,1 mx (b +ta+-+t,)

LH1 + It1 0 0 0

~ 0  Ly+I, 0 0

Q= 0 0o . 0

0 0 0 Ly, + 1,

Let A =Lc +Dg, B =( —R(G) O)IBTz(_R(G))andD:( P —M)'

First, we will compute D~!. By Lemma 2.3, we have

Ly, + 1, 0 0 .. 0 1, 0 0 .. 0
. 0 Ly, +1, 0 .. 0 o 1, 0 .. 0
0 0 0 0 0 .. .. 0
0 0 0 .. Ly, +1I 0 0 0 1y,
24t 0 0 0 Y' (1 0 o 0
0 24t 0 0 0 1, 0 0
0 0 0 0 0 0
0 0 0 2+t, 0 0 0 ;
(Lo, + I, = 537 i) ™! 0 0 .. 0
g1 0 (L, + 1, = 5 j) ™ 0 0
0 0 0
0 0 0 o Ly, +1, — 5,

According to Lemma 2.3, we have

24 0 0 0 1y 0 0 0
0 2+t 0 0 0 17 0 0
_ -1a4T _ 2 _ t
P=-MQ™M =\ 0 . .. 0 0 0 . .. 0
0 0 0 .. 2+t 0 0 0 .. 17
(Leg, + 1) 0 0 0 I, 0 0 0
0 (L, + 1) 0 0 0 1, 0 0
0 0 0 0 0 .. 0
0 0 0 .. Ly, +I,)" 0 0 0 1,
:21}11/
so (P -MQ'M")™ = 1I,,.
By Lemma 2.3, we have
o ? 0 .. 0 1] oT 0 0
0 L 0 .. 0 0o 1T o 0
_p-1 -1 _ _ 2+t t
PEMS™ ==t o 0" . . 0 0 0 .. . 0
0 0 0 .. 5 0o 0 o0 .. 17
Lo, +1In = 55 T0)7? 0 0 0
0 (L, + 1, = 75 J0)™" 0 0
0 0 0

0 0 0 o (Lm, +1, — 52 i,)
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%1? 0 o0 0
L uT g 0
=" 8 00 o |7F @
0 0 o0 %12'[
L 1T p-1 T -1 %Im F
Similarly, -S"M"'P~" =N",soD™" = T g1

Next we begin with the computation of {1}-inverse of Lrenr H;-
By Lemma 2.8, we have

1 T
H = Lg+Dc-( R(G) o)(ZFI;" Tﬂ RéG))

T
- Le+Dc—( IRG) ROGF )( RO(G) )

= ELGr

so H* = 3Lf.
According to Lemma 2.8, we calculate -H*BD~! and —-D~!BTH".

-H*BD™!

L, F
# _ m
-3t ( -R(G) o)( ZF g
#
G

2
3
2% ( -3R(G) -R(GF )=( 3LERG) ZLER(G)F )

and

_D—lBTH# — _(H#BD—l)T — ( %RT(G)LE )

2FTRT(G)LE,
We are ready to compute the D-'BTH*BD!.

. . 1, F \(-R'G 1, F
D-'BTH*BD™! = %(ZFq"f 5_1)( ) ))LZ(—R(G) 0)( el 5_1)

IRT(G)LER(G)  iRT(G)LER(G)F
IFTRTLER(G)  3F'RTLER(G)F

Based on Lemma 2.3 and 2.8, the following matrix

2, LLER(G) SLCRGE
N=| 3RUOLE  3lu+iR'(GLER(G)  F+3R'(GLER(G)F ®)

2FTRT(G)LY,  FT + LFTRT(G)LER(G) 7' + 2FTRT(G)LER(G)F

is a symmetric {1}- inverse of LrGyon H;-
For any i, j € V(G), by Lemma 2.1 and the Equation (8), we have

i} 2 2 4 2
rij(R(G)© AL H) = g(Ué)ii + g(Lé)jj - §(Uf;)ij = grij(G)r

as stated in (i).
Foranyi,je€ V(H)(k =1,2,...,m), by Lemma 2.1 and the Equation (8), we have

o 1 .
rif(R(G) e /\ﬁlH") = (LHk + Il‘k - m]tk)ﬁl + (LHk + Itk - m]tk)jjl

1 .
—2(Ly, + 1y, — m]tk ijlz
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as stated in (ii).
From the left side of above equation, we can obviously have

r(Fx) = (Lo + 1)+ (L + 1) 75 = 2L + 1),

where Fy = Hi V {v}, i.e, Fy is the graph obtained by adding new edges from an isolated vetrtex v to every
vertex of H.
For any i, j € R(G), by Lemma 2.1 and the Equation (8), we have

rij(R(G)© AL H) = 1ij(R(G)).

By Lemma 3.1 in [7], 7/(R(G)) = r”( ), so r,j(R(G) O A H)) = r,-]-(G), as stated in (iii).
Foranyie V(G), j € V(H)(k=1,2,...,m), since i and j belong to different components, then by Lemma
2.9, we have

rij(R(G)© AL H) = 1¢(R(G)) + rtj(Fr),

as stated in (iv).
For any i € V(Hy), j € V(H;), by Lemma 2.9, we have

riji(R(G)© AL H)) = 1a(R(G)) + rin(Fx) + rp(F1),

as stated in (v).
By Lemma 2.4, we have

Kf(RG) O AL H) = (n+m+ i t)tr(N) —1°N1
=
= (n+m+ Z f )( t(LE) + tr(;lm + %RT(G)L‘(*;R(G))+
(S + 5PTRTL*gR(G)F)) ~1™N1
- (n+m+Zt>[ KFO+ 5+ MCRCeY
i<t
F2(LE) ]+ tr (s ; 3PTRT(G)L#R(G)F)) 17N
By Lemma 2.5, we get
Kf(RG) O AL H) = (n+m+ Z t )[ KfQ)+ 75 + %i<j;§(c)[2<L*é>ii +2(LE)jj

—1i{(G)] + tr (5*1 + 5PTR(G)TL’S;R(G)F)) -1'N1

- (n+m+2t)( 1<ij)+%+3 HDcL: 1

+r (5-1 + 5FTR(G)TL?;R(G)P)) ~1™N1

Note that the eigenvalues of (L, + I, — ﬁjti) (i=1,2,..,m)are py(H;) + 1, po(Hi) + 1, ..., uy,(H;) + 1. Then

m t

_ 1

i=1 j=
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By Lemma 2.2, L1= 0 and (17 (RT(G)LQ) 1)T = 17 (Q"LER(G)) 1, then

1™~N1 = 24 %1T (RT(G)LLR(G)) 1+ 17F1+17F"1

+§1TRT(G)L§§R(G)F1 +175711 + §1T (F'RT(G)LER(G)F)1.

Note that R(G)1 = 7, where " = (dy, d, ..., dy), then 1T (RT(G)LER(G)) 1 = n"LE m, so

m 1 _
1'N1 = >+ gnTUgn + ' LEQG)1+1"T "1+ 17 (Q'LEQ) 1. (10)
LetR; = Ly, + I, = 57 jiu,(i = 1,2,...,m). Then

1

R' 0 0 0 \( 1
Te-14T _ T 4T T 0 R 0 0 1;
1571 = (1t1 L, - 1tm) 0 6 0 .
0 0 0 RN 1,
= Z 1E(LH" + It,- - o+ i’l' ]'ti)_llti = E Z ti(z + ti)/ (11)
=1 =1
and
, 0 0 0
1 0 1 0 0
TrT T 4T ... 4T t
vE E( Lo L L) 0 0 .. 0
0 0 O 1,
1 1 .7
= = ==5". 12
z(tllol rortZrOr /O /tm) 26 ( )

Plugging (9), (10), (11) and (12) into Kf(R(G) © A',H;), we obtain the required result in (vi).

i
5. Conclusion

In this paper, using the Laplacian generalized inverse approach, we obtained the resistance distance
and Kirchhoff indices of R(G) @ AL H; and R(G) © A", H; whenever G and H; are arbitrary graph. These
results generalize the existing results in [13].
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