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Numerical Algorithms for Solving the Least Squares Symmetric
Problem of Matrix Equation AXB + CXD = E

Shi-Fang Yuana, Ming-Zhao Lia, Yong Tiana

aSchool of Mathematics and Computational Science, Wuyi University, Jiangmen 529020, P. R. China

Abstract. This paper focuses on the least squares symmetric problem of matrix equation AXB + CXD = E.
The explicit expressions for least squares symmetric solution with the least norm of matrix equation
AXB + CXD = E are derived. Numerical algorithms and numerical examples show the feasibility of our
methods.

1. Introduction

Throughout this paper, the symbols Rn, Rm×n, SRn×n and In denote the set of all real vectors with n
coordinates, the set of all m × n real matrices, the set of all n × n real symmetric matrices, and the identity
matrix of order n, respectively. e j is the jth column of the identity matrix In. For A ∈ Rm×n, AT and A+ denote
the transpose and the Moore–Penrose generalized inverse of matrix A, respectively. For A = (ai j) ∈ Rn×n,
the trace of matrix A is denoted by tr(A) = a11 + a22 + · · · + ann. We define the inner product: 〈A,B〉=tr(ABT)
for all A,B ∈ Rm×n. Then Rm×n is a Hilbert inner product space and the norm of a matrix generated by this
inner product is the matrix Frobenius norm denoted by ‖ · ‖. The notation A ⊗ B stands for the Kronecker
product of A and B. For matrix A ∈ Rm×n, denote by the stretching function

vec(A) = (aT
1 , a

T
2 , . . . , a

T
n )T, (1)

where a j is the j-th column of matrix A. For matrices A,B and C with appropriate dimension, we have the
following results associated with the stretching function and Kronecker product:

vec(ABC) = (CT
⊗ A)vec(B). (2)

In this paper, we mainly discuss the following problem.
Problem I. Given A ∈ Rm×n, B ∈ Rn×s, C ∈ Rm×n, D ∈ Rn×s and E ∈ Rm×s, let

HL = {X|X ∈ SRn×n, ||AXB + CXD − E|| = min
X0∈SRn×n

||AX0B + CX0D − E||}.

Find XH ∈ HL such that

||XH || = min
X∈HL
||X||. (3)
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The solution XH of Problem I is called the least squares symmetric solution with the least norm of matrix
equation

AXB + CXD = E. (4)

Linear matrix equations play an important role in matrix theory and have extensive applications. For
instance, the well-known discrete Lyapunov matrix equation AXAT

−X + Q = 0 and continuous Lyapunov
matrix equation AX + XAT + Q = 0 (Q is a symmetric matrix.) occur in many branches of control theory,
such as stability analysis and optimal control. The Sylvester matrix equation AX + XB = C has found huge
applications in optimal control and neural networks [11,13, 26].

Direct and iterative methods for solving the matrix equations such as AXB = C, AXB + CYD = E and the
extended Sylvester matrix equation (4) have been widely investigated. See [3-6, 12-18, 21-29, 32-37], and
references cited therein. For the extended Sylvester matrix equation (4),Mitra [20] and Tian [30] considered
the solvability condition for complex and real matrix equation (4), respectively. Hernández and Gassó [11]
obtained the explicit solution of matrix equation (4). Mansour [19] studied the solvability condition for
matrix equation (4) in the operator algebra. Huang [10] obtained necessary and sufficient conditions for
existence of a solution or a unique solution of quaternion matrix equation (4).

Matrix decomposition is an efficient tool to study the least squares problems of matrix equations. There
are many important results about the matrix equations. For example, see [2, 7, 8, 9, 16, 17, 25, 36] for
more details. However, to our knowledge, the understanding of the problem for finding the least squares
constraint solutions of the matrix equation (4) has not yet reached a satisfactory level. The reason is that
there seems to have some difficulties in finding the constrained solutions or least squares constrained
solutions of matrix equation (4) by using these matrix decomposition methods mentioned above.

In [37, 38], whether the least squares problems of matrix equations or inverse eigenvalue problems
over some constrained matrix sets, the authors found it was efficient to change them into the unconstrained
problems. They solved them by using the Kronecker product, vec-operator and Moore-Penrose generalized
inverse. Recently Yuan and Liao [39] proposed a matrix-vector product method to solve the least squares
Hermitian problem of the complex matrix equation (4).We think the idea is also suitable for Problem I. Our
methods are to change the constrained problem of matrix equation (4) into a unconstrained problem of a
system of real equations.

We now briefly survey the contents of our paper. In Section 2, we introduce a matrix-vector product
of Rm×n and discuss the structure of AXB + CXD over X ∈ SRn×n by the product. In Sections 3 and 4, we
provide two methods and two algorithms to study Problem I. In Section 5, we discuss Kronecker product
method for solving Problem I. Finally, in Section 6, we give numerical examples to illustrate the theoretical
results in this paper.

2. The structure of AXB + CXD over X ∈ SRn×n

The main aim of this section is to propose the structure of AXB + CXD over X ∈ SRn×n for solving
Problem I. We first introduce a matrix-vector product of Rm×n,which is similar to the matrix-vector product
of Cm×n in [39].
Definition 1. Let x = (x1, x2, . . . , xk)T, y = (y1, y2, . . . , yk)T

∈ Rk and A = (A1,A2, . . . ,Ak), Ai ∈ Rm×n,
(i = 1, 2, . . . , k), B = (B1,B2, . . . ,Bs) ∈ Rk×s, Bi ∈ Rk, (i = 1, 2, . . . , s). Define

1. A � x = x1A1 + x2A2 + · · · + xkAk ∈ Rm×n;
2. A � (x, y) = (A � x,A � y);
3. A � B = (A � B1,A � B2, . . . ,A � Bs).

Obviously, A � x is the linear combination of matrices A1,A2, . . . ,Ak. If Ai ∈ Rm then A � x = Ax. The
relationship of A � x with Kronecker product is A � x = A(x ⊗ In).
Definition 2. For matrix A = (ai j) ∈ Rn×n, let a1 = (a11, a21, . . . , an1), a2 = (a22, a32, . . . , an2), . . . , an−1 =
(a(n−1)(n−1), an(n−1)), an = ann, and denote by vecS(A) the following vector:

vecS(A) = (a1, a2, . . . , an−1, an)T
∈ R

n(n+1)
2 . (5)
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For i, j = 1, 2, . . . ,n, let Ei j = ( fst) ∈ Rn×n, where

fst =

 1, (s, t) = (i, j),

0, otherwise.

Let

KS = (E11,E21 + E12, . . . ,En1 + E1n,E22,E32 + E23, ,En2 + E2n, . . . ,E(n−1)(n−1),En(n−1) + E(n−1)n,Enn). (6)

Note that KS ∈ Rn× n2(n+1)
2 . We can get the following conclusions.

Lemma 3. Suppose X ∈ Rn×n, then

X ∈ SRn×n
⇐⇒ X = KS � vecS(X). (7)

Theorem 4. Suppose A ∈ Rm×n, B ∈ Rn×s, C ∈ Rm×n, D ∈ Rn×s and X ∈ SRn×n. Let A = (A1,A2, . . . ,An),
Ai ∈ Rm is the ith column vector of matrix A, C = (C1,C2, . . . ,Cn), Ci ∈ Rm is the ith column vector of matrix
C,

B =



B1

B2

...

Bn


, D =



D1

D2

...

Dn


,

where B j ∈ Rs is the jth row vector of matrix B,D j ∈ Rs is the jth row vector of matrix D. Then the following
conclusion holds.
(i) AEi jB = AiB j.
(ii) Let Fi j ∈ Rm×s (i, j = 1, 2, . . . ,n, i ≥ j), where

Fi j =

 AiB j + CiD j, i = j,

AiB j + A jBi + CiD j + C jDi, i > j,
(8)

AXB + CXD = (F11,F21, . . . ,Fn1,

F22,F32, . . . ,Fn2, . . . ,F(n−1)(n−1),Fn(n−1),Fnn) � vecS(X).

Proof. (i) Obviously.
(ii) By (i) and Lemma 3, we can get

AXB + CXD
= A(KS � vecS(X))B + C(KS � vecS(X))D
= ((AKS) � vecS(X))B + ((CKS) � vecS(X))D
= (AE11B,A(E21 + E12)B, . . . ,A(En1 + E1n)B, . . . ,AE(n−1)(n−1)B,

A(En(n−1) + E(n−1)n)B,AEnnB) � vecS(X) + (CE11D,C(E21 + E12)D, . . . ,
C(En1 + E1n)D, . . . ,CE(n−1)(n−1)D,C(En(n−1) + E(n−1)n)D,CEnnD) � vecS(X)

= (AE11B + CE11D,A(E21 + E12)B + C(E21 + E12)D, . . . ,
A(En1 + E1n)B + C(En1 + E1n)D, . . . ,AE(n−1)(n−1)B + CE(n−1)(n−1)D,
A(En(n−1) + E(n−1)n)B + C(En(n−1) + E(n−1)n)D,AEnnB + CEnnD) � vecS(X)

= (F11,F21, . . . ,Fn1,F22, . . . ,Fn2, . . . ,F(n−1)(n−1),Fn(n−1),Fnn) � vecS(X).
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3. Method I for the solution of Problem I

For A ∈ Rm×n,B ∈ Rn×s, C ∈ Rm×n,D ∈ Rn×s,E ∈ Rm×s, set

G =



〈F11,F11〉 (F11,F21〉 · · · (F11,Fnn〉

〈F21,F11〉 (F21,F21〉 · · · (F21,Fnn〉

...
...

...

〈Fnn,F11〉 (Fnn,F21〉 · · · (Fnn,Fnn〉


, e =



〈F11,E〉

〈F21,E〉
...

〈Fnn,E〉


. (9)

where Fi j is in the form of (8). Obviously, G ∈ R
n(n+1)

2 ×
n(n+1)

2 , e ∈ R
n(n+1)

2 . By Theorem 4, we can provide the
method I for the solution of Problem I. The following lemma is also necessary to derive the results.
Lemma 5 [1]. (i) The matrix equation Ax = b, with A ∈ Rm×n and b ∈ Rm, has a solution x ∈ Rn if and only if

AA+b = b, (10)

in this case it has the general solution

x = A+b + (In − A+A)y, (11)

where y ∈ Rn is an arbitrary vector. The solution of the matrix equation Ax = b with the least norm is
x = A+b.

(ii) The least squares solutions of the matrix equation Ax = b, with A ∈ Rm×n and b ∈ Rm, can be
represented as

x = A+b + (In − A+A)y, (12)

where y ∈ Rn is an arbitrary vector. The least squares solution of the matrix equation Ax = b with the least
norm is x = A+b.
Theorem 6. The set HL of Problem I can be expressed as

HL =
{
X

∣∣∣∣X = KS � [G+e + (I n(n+1)
2
− G+G)y]

}
, (13)

where y ∈ R
n(n+1)

2 is an arbitrary vector. Problem I has a unique solution XH ∈ HL in the form

XH = KS � (G+e). (14)

Proof. By Theorem 4, the least squares problem

‖AXB + CXD − E‖ = min

with respect to the symmetric matrix X is equivalent to

GvecS(X) = e.

By Lemma 5, it follows that
vecS(X) = G+e + (I n(n+1)

2
− G+G)y,

X = KS � [G+e + (I n(n+1)
2
− G+G)y],

and the unique solution XH is in the form

XH = KS � (G+e).
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We next discuss the consistency of matrix eqution (4). Since the normal equation GvecS(X) = e is not
useful to the consistent condition, we propose the following result by Lemma 5 and Theorem 6. Clearly,

AXB + CXD = E⇐⇒ NvecS(X) = vec(E), (15)

where

N = (vec(F11),vec(F21), . . . ,vec(Fn1),vec(F22), . . . ,vec(Fn2), . . . ,

vec(F(n−1)(n−1)),vec(Fn(n−1)),vec(Fnn)) ∈ Rms× n(n+1)
2 . (16)

Corollary 7. The matrix equation (4) has a solution X ∈ SRn×n if and only if

NN+vec(E) = vec(E). (17)

In this case, denote by HE the solution set of (4). Then

HE =
{
X

∣∣∣∣X = KS � [G+e + (I n(n+1)
2
− G+G)y]

}
, (18)

where y ∈ R
n(n+1)

2 is an arbitrary vector. The least norm problem

||XE|| = min
X∈HE
||X||

has a unique solution XE ∈ HE and XE can be expressed as

XE = KS � (G+e). (19)

Furthermore, if (17) holds, then the matrix equation (4) has a unique solution X ∈ HE if and only if

rank(N) =
n(n + 1)

2
. (20)

In this case,

HE =
{
X

∣∣∣KS � (G+e)
}
. (21)

Algorithm 1 For Problem I
Input: A,B,C,D and E (A ∈ Rm×n, B ∈ Rn×s, C ∈ Rm×n,

D ∈ Rn×s and E ∈ Rm×s).
(a) Compute KS by (6).
(b) Compute G and e by (9).
(c) Compute N by (16) and vec(E).
(d) If (17) and (20) hold, then calculate XE(XE ∈ HE) according to

(19). Otherwise go to next step.
(e) If (17) holds, then calculate XE(XE ∈ HE) by (19). Otherwise go

to next step.
(f) Calculate XH(XH ∈ HL) according to (14).

Output: The solutions XH and XE of Problem I.
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4. Method II for the solution of Problem I

In the discussions of the consistency for matrix equation (4) in Section 3, we can provide the method II
for the solution of Problem I by (15) and Lemma 5.
Theorem 8. The set HL of Problem I is in the form

HL =
{
X

∣∣∣∣X = KS � [N+vec(E) + (I n(n+1)
2
−N+N)y]

}
, (22)

where y ∈ R
n(n+1)

2 is an arbitrary vector. Problem I has a unique solution XH ∈ HL in the form

XH = KS � [N+vec(E)]. (23)

Corollary 9. The matrix equation (4) has a solution X ∈ SRn×n if and only if (17) holds. In this case, denote
by HE the solution set of (4). Then

HE =
{
X

∣∣∣∣X = KS � [N+vec(E) + (I n(n+1)
2
−N+N)y]

}
, (24)

where y ∈ R
n(n+1)

2 is an arbitrary vector. The least norm problem

||XE|| = min
X∈HE
||X||

has a unique solution XE ∈ HE and XE can be expressed as

XE = KS � [N+vec(E)]. (25)

Furthermore, if (17) holds, then the matrix equation (4) has a unique solution X ∈ HE if and only if

rank(N) =
n(n + 1)

2
. (26)

In this case,

HE =
{
X

∣∣∣X = KS � [N+vec(E)]
}
. (27)

Algorithm 2 For Problem I
Input: A,B,C,D and E (A ∈ Rm×n, B ∈ Rn×s, C ∈ Rm×n,

D ∈ Rn×s and E ∈ Rm×s).
(a) Compute KS by (6).
(b) Compute N by (16) and vec(E).
(c) If (17) and (26) hold, then calculate XE(XH ∈ HE) according to

(25). Otherwise go to next step.
(d) If (17) holds, then calculate XE(XE ∈ HE) by (25). Otherwise go

to next step.
(e) Calculate XH(XH ∈ HL) according to (23).

Output: The solutions XH and XE of Problem I.

5. Method III for the solution of Problem I

The method in [37, 38] is based on Kronecker product, Moore–Penrose generalized inverse and vec-
operation. In this section, we briefly recall this method for solving Problem I. Given the matrices A ∈ Rm×n,
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B ∈ Rn×s, C ∈ Rm×n, D ∈ Rn×s and E ∈ Rm×s, let K ∈ Rn2
×

n(n+1)
2 be of the following form

K =
1
√

2



√
2e1 e2 · · · en−1 en 0 0 · · · 0 · · · 0 0 0

0 e1 · · · 0 0
√

2e2 e3 · · · en · · · 0 0 0

0 0 · · · 0 0 0 e2 · · · 0 · · · 0 0 0

...
...

...
...

...
...

...
...

...
...

0 0 · · · e1 0 0 0 · · · 0 · · ·
√

2en−1 en 0

0 0 · · · 0 e1 0 0 · · · e2 · · · 0 en−1
√

2en


. (28)

For a matrix X = (xi j) ∈ SRn×n, let x1 = (x11,
√

2x21, . . . ,
√

2xn1), x2 = (x22,
√

2x32, . . . ,
√

2xn2), . . . , xn−1 =

(x(n−1)(n−1),
√

2xn(n−1)), xn = xnn, and denote by vecK(X) the following vector:

vecK(X) = (x1, x2, . . . , xn−1, xn)T
∈ R

n(n+1)
2 . (29)

Let M = (BT
⊗ A + DT

⊗ C)K. Thus the least squares problem

‖AXB + CXD − E‖ = min

with respect to the symmetric matrix X is equivalent to the following least squares unconstrained problem

‖MvecK(X) − vec(E)‖ = min .

We summarize the conclusions and an algorithm as follows.
Theorem 10. The set HL of Problem I can be expressed as

HL =
{
X

∣∣∣∣vec(X) = KM+vec(E) + K(I n(n+1)
2
−M+M)y

}
, (30)

where y ∈ R
n(n+1)

2 is an arbitrary vector. Problem I has a unique solution XH ∈ HL in the form

vec(XH) = KM+vec(E). (31)

Corollary 11. The matrix equation (4) has a solution X ∈ SRn×n if and only if

MM+vec(E) = vec(E). (32)

In this case, denote by HE the solution set of the matrix equation (4), and HE can be expressed as

HE =
{
X

∣∣∣∣vec(X) = KM+vec(E) + (I n(n+1)
2
−M+M)y]

}
, (33)

where y ∈ R
n(n+1)

2 is an arbitrary vector. The least norm problem

||XE|| = min
X∈HE
||X||

has a unique solution XE ∈ HE and XE can be expressed as

vec(XE) = KM+vec(E). (34)

Furthermore, if (32) holds, then the matrix equation (4) has a unique solution X ∈ HE if and only if

rank(M) =
n(n + 1)

2
. (35)
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In this case,

HE =
{
X

∣∣∣vec(X) = KM+vec(E)
}
. (36)

Algorithm 3 For Problem I
Input: A,B,C,D and E. (A ∈ Rm×n, B ∈ Rn×s, C ∈ Rm×n,

D ∈ Rn×s and E ∈ Rm×s)
(a) Compute K by (28).
(b) Compute M = (BT

⊗ A + DT
⊗ C)K and vec(E).

(c) If (32) and (35) hold, then calculate XE(XE ∈ HE) by (34).
(d) If (32) holds, then calculate XE(XE ∈ HE) by (34). Otherwise go

to next step.
(e) Calculate XH(XH ∈ HL) by (31).

Output: The solutions XH and XE of Problem I.

6. Numerical Verification

Based on the discussions in Sections 2-5, we now give numerical examples to show the feasibility of
Algorithms 1, 2, 3. At first, we compare Algorithms 1, 2, 3 and derive them in Table 1, where X(i)

H i = 1, 2, 3
are denoted the solution of Problem I computed by Algorithms 1, 2, 3, respectively.

Table 1. the comparation of Algorithms 1, 2 and 3

Algorithm 1 Algorithm 2 Algorithm 3
linear equation GvecS(X) = e NvecS(X) = vec(E) MvecK(X) = vec(E)

consistent condition NN+vec(E) = vec(E) NN+vec(E) = vec(E) MM+vec(E) = vec(E)

XH X(1)
H = KS � [G+e] X(2)

H = KS � [N+vec(E)] vec(X(3)
H ) = KM+vec(E)

coefficiency matrix G ∈ R
n(n+1)

2 ×
n(n+1)

2 N ∈ R
ms× n(n+1)

2 M ∈ R
ms× n(n+1)

2

size of K,KS KS ∈ R
n× n2(n+1)

2 KS ∈ R
n× n2(n+1)

2 K ∈ R
n2
×

n(n+1)
2

We now report our numerical examples. When the consistent conditions for matrix equation (4) hold,
Examples 1, 2 consider the numerical solutions of Problem I for X ∈ SRn×n, respectively. In Example 3, by
using a matrix to perturb the matrix E of Example 2, we can obtain the inconsistent matrix equation (4). Thus
we can analyze the least squares solution with the least norm for matrix equation (4). For demonstration
purpose and avoiding the matrices with large norm to interrupt the solutions of Problem I, we only consider
the cases of small n = 8 and take the coefficient matrices in Examples 1, 2, 3. We also consider the cases of
n = 20, 40, 60 and take the random matrices in Examples 4, 5.
Example 1. Let m = 7,n = 8, s = 10. Take

A = (Hankel(1 : m),−ones(m, (n −m))),

C = (−Toeplitz(1 : m), ones(m, (n −m))),

B = (Toeplitz(1 : n), zeros(n, (s − n))),D = (Hankel(1 : n),−ones(n, (s − n))),

X = Hadamard(n), E = AXB + CXD, where Toeplitz(1 : n), Hankel(1 : n) denote the Toeplitz matrix
and Hankel matrix whose first rows are (1, 2, . . . ,n), respectively, Hadamard(n) denotes the Hadamard
matrix with order n, and ones(m,n), zeros(m,n) denote the m × n matrices whose all elments are one
and zero, respectively. Obviously, X is a symmetric matrix. From Algorithms 1, 2, 3, we can obtain the
consistent matrix equations (4), MvecS(X) = vec(E), and NvecS(X) = vec(E). By using matlab 7.7, we obtain
rank(M) = 36, rank(N) = 36, ‖NN+e− e‖ = 2.5580×10−12, ‖MM+e− e‖ = 1.4974×10−12.We can see the matrix
equation (4) has a unique solution XE ∈ HE, and get ‖X(1)

E − X‖ = 1.8280 × 10−11, ‖X(2)
E − X‖ = 6.6084 × 10−14,

‖X(3)
E − X‖ = 6.4843 × 10−14, and ‖X(1)

E − X(2)
E ‖ = 1.8237 × 10−11. Note that GvecS(X) = e is consistent, we can

also get ‖GG+e − e‖ = 6.7066 × 10−8.
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Example 2. Suppose A,B,C,D X,E are the same as in Example 1. Let m = 5,n = 8, s = 10. From Algorithms 1,
2, 3, we can obtain the consistent matrix equations (4),MvecS(X) = vec(E) and NvecS(X) = vec(E). By using
matlab 7.7, we obtain rank(M) = 33, rank(N) = 33, ‖NN+e− e‖ = 1.6128×10−12, ‖MM+e− e‖ = 2.6489×10−12.
According to Algorithm 1, 2, 3, we can see the matrix equation (4) has infinite solutions and a unique
solution XE ∈ HE, and we can get ‖X(1)

E − X‖ = 2.8425, ‖X(2)
E − X‖ = 2.8425, ‖X(3)

E − X‖ = 2.8284, and
‖X(1)

E −X(2)
E ‖ = 6.8996×10−11.Note that GvecS(X) = e is consistent, we can also get ‖GG+e− e‖ = 1.3241×10−7.

Example 3. Suppose A,B,C,D X are the same as in Example 1, E = AXB + CXD + ones(m, s). Let m = 5,n =
8, s = 10. From Algorithms 1, 2, 3, we can obtain the inconsistent matrix equations (4), MvecS(X) = vec(E)
and NvecS(X) = vec(E). By using matlab 7.7, we obtain rank(M) = 33, rank(N) = 33, ‖NN+e − e‖ = 1.1430,
‖MM+e − e‖ = 1.1430. According to Algorithms 1, 2, 3, we can see the matrix equation (4) has a unique
solution XH ∈ HL, and we can get ‖X(1)

H − X‖ = 2.7752, ‖X(2)
H − X‖ = 2.7752, ‖X(3)

H − X‖ = 2.8937, and
‖X(1)

H −X(2)
H ‖ = 7.2709×10−10.Note that GvecS(X) = e is consistent, we can also get ‖GG+e− e‖ = 1.3094×10−7.

Example 4. Take
A = rand(m,n),B = rand(n, s),C = rand(m,n),D = rand(n, s).

Let X = hadamard(n), E = AXB + CXD. The numerical results are listed in Table 2.

Table 2. Numerical results for Example 4.

(m,n, s) rank(N) ‖NN+e − e‖ ‖MM+e − e‖ ‖X(1)
H − X‖ ‖X(3)

H − X‖
(15, 20, 30) 210 3.9388 × 10−6 1.0965 × 10−10 6.5320 × 10−9 1.6664 × 10−11

(30, 40, 50) 820 1.7264 × 10−9 1.9869 × 10−9 1.9869 × 10−7 1.7493 × 10−10

(50, 60, 70) 1830 1.3029 × 10−8 1.0133 × 10−8 6.7614 × 10−10 8.4034 × 10−7

Example 5.Take
A = rand(m,n),B = rand(n, s),C = rand(m,n),D = rand(n, s),

where rand(m,n) denotes the m×n random matrix. Let X = hadamard(n), E = AXB+CXD+1000ones(m, s).
The numerical results are listed in Table 3.

Table 3. Numerical results for Example 5.

(m,n, s) rank(N) ‖NN+e − e‖ ‖MM+e − e‖ ‖X(3)
H − X‖ ‖X(1)

H − X(3)
H ‖

(15, 20, 30) 210 1.4892 × 103 1.4892 × 103 1.1615 × 103 8.8607 × 10−9

(30, 40, 50) 820 1.5342 × 103 1.5342 × 103 814.2038 1.5352 × 10−7

(50, 60, 70) 1830 1.7561 × 103 2.2974 × 103 612.5633 7.6993 × 10−7

Examples 1-5 are used to show the feasibility of Algorithms 1, 2, 3.
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