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Determinants Involving the Numbers of the Stirling-Type
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Abstract. By the LU factorization, we evaluate a determinant involving the complete symmetric functions.
From a viewpoint of symmetric functions, some results for the evaluations of the determinants of the
matrices consisting of the numbers of the Stirling-type are given.

1. Introduction

The q-Stirling numbers of the second kind [21] obey the recurrence

Sq(n, k) = qk−1Sq(n − 1, k − 1) + [k]qSq(n − 1, k), n, k ≥ 1,

with Sq(n, 0) = 0 and Sq(0, k) = δk,0. In 2003, Ehrenborg [9] obtained a beautiful determinant identity
involving the q-analogue of the Stirling numbers:

det(Sq(s + i + j, s + j))0≤i, j≤n = q(s+n+1
3 )−(s

3)
n∏

k=1

[s + k]k
q, (1)

where s and n be nonnegative integers. In his paper, Ehrenborg gave two nice proofs of this result, one
bijective and one based upon factoring the matrix.

Let S̃q(n, k) = q−(
k
2)Sq(n, k) be the q-Stirling numbers of the second kind due to Carlitz [4, 5, 27]. Recently,

Cai, Ehrenborg and Readdy [3] proved the following identity by using RG-words:

det(S̃q(s + i + j, s + j))0≤i, j≤n =

n∏
k=1

[s + k]k
q. (2)

These interesting works motivate us to evaluate the determinants involving the numbers of the Stirling-
type. The purpose of this paper is to use the method of LU factorization to evaluate a determinant involving
the complete symmetric functions. By the connections between the complete symmetric functions and the
Striling numbers and their generalizations, we obtain some evaluations of the determinants involving the
numbers of the Stirling-type including the above results in a unified approach.
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2. A determinant involving complete symmetric functions

Let n be a positive integer. For k = 0, 1, 2, . . ., the complete symmetric function of degree k in n variables
x1, x2, . . . , xn is the sum of all monomials of total degree k in the variables. Namely,

hk(x1, x2, . . . , xn) =
∑

1≤i1≤i2≤···≤ik≤n

xi1 xi2 · · · xik ,

which can also be alternatively written as

hk(x1, x2, . . . , xn) =
∑

i1+i2+···+in=k
i j≥0

xi1
1 xi2

2 · · · x
in
n .

In particular, the first few cases are

h0(x1, x2, . . . , xn) = 1,

h1(x1, x2, . . . , xn) =

n∑
i=1

xi,

h2(x1, x2, . . . , xn) =
∑

1≤i≤ j≤n

xix j,

h3(x1, x2, . . . , xn) =
∑

1≤i≤ j≤k≤n

xix jxk.

The complete symmetric functions can be characterized by the following identity:

n∏
i=1

(1 − xit)−1 =
∑
k≥0

hk(x1, x2, . . . , xn)tk.

It is easy to check that for n > k ≥ 1 the following recurrence holds

hn−k(x1, x2, . . . , xk) = hn−k(x1, x2, . . . , xk−1) + xkhn−k−1(x1, x2, . . . , xk), (3)

with initial conditions h0(x1, x2, . . . , xk) = 1 and hn−k(x1, x2, . . . , xk) = 0 if n < k.
It is well known that determinants of matrices whose entries are symmetric functions have a rich, very

developed theory. In his famous book of enumerative combinatorics, Stanley [26, Theorem 2.7.1] obtained
a very general determinant identity involving the complete symmetric functions by using the method of
lattice path. As a useful and simple consequence, in this paper the following evaluation of a determinant
involving the complete symmetric functions is recovered by using the LU factorization method.

Proposition 2.1. Let s and n be nonnegative integers. Then the following identity holds:

det(hi(x0, x1, . . . , xs+ j))0≤i, j≤n =

n∏
k=1

xk
s+k. (4)

This proposition plays a central role in our paper. As an example, we let
(n

k
)

and
[n

k
]

q be the binomial
coefficients and their q-analogues, respectively. Both of them are specializations of the complete symmetric
functions [12], that is

hk(1, 1, . . . , 1︸     ︷︷     ︸
n

) =

(
n + k − 1

k

)
,

hk(1, q, . . . , qn−1) =

[
n + k − 1

k

]
q
.
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Thus, the following identities are special cases of Proposition 2.1, namely,

det
((

s + i + j
s + j

))
0≤i, j≤n

= 1,

det

[s + i + j
s + j

]
q


0≤i, j≤n

= q
1
6 n(n+1)(2n+1)+s(n+1

2 ),

where s and n be the nonnegative integers.

As further applications of Proposition 2.1, some results for the evaluations of the determinants of the
matrices consisting of the numbers of the Stirling-type including the Stirling numbers of the second kind,
the r-Whitney numbers of the second kind and their generalizations will be given in the third section.
Our main idea follows from Merca’s interesting works [12, 16]. Recently, Merca [12, 16] obtained some
convolution formulas for the complete and elementary symmetric functions. By the convolutions, he
discovered and proved many combinatorial identities involving r-Whitney numbers, Stirling numbers,
binomial coefficients, Bernoulli numbers and some of their generalizations.

In order to prove Proposition 2.1, we need the following lemmas.

Lemma 2.1. Let p, q and t be nonnegative integers. There holds

hp+q−t(x0, x1, . . . , xt) =

min{t,p}∑
k=max{0,t−q}

hp−k(x0, x1, . . . , xk)hq−t+k(xk, xk+1, . . . , xt). (5)

Proof. First of all, we claim that if n ≥ 0, then

xn =

n∑
k=0

hn−k(x0, x1, . . . , xk)
k−1∏
i=0

(x − xi). (6)

We proceed by induction on n. Obviously, the equality holds for n = 0, 1. Assume that the equality holds
for n, and let us prove it for n + 1.

xn+1 = x
n∑

k=0

hn−k(x0, x1, . . . , xk)
k−1∏
i=0

(x − xi)

=

n∑
k=0

hn−k(x0, x1, . . . , xk)
k∏

i=0

(x − xi) +

n∑
k=0

xkhn−k(x0, x1, . . . , xk)
k−1∏
i=0

(x − xi)

=

n+1∑
k=1

hn+1−k(x0, x1, . . . , xk−1)
k−1∏
i=0

(x − xi) +

n∑
k=0

xkhn−k(x0, x1, . . . , xk)
k−1∏
i=0

(x − xi)

= x0hn(x0) +

n∑
k=1

hn+1−k(x0, x1, . . . , xk)
k−1∏
i=0

(x − xi) + h0(x0, x1, . . . , xn)
n∏

i=0

(x − xi).

The last equality holds because of (3). Since hn+1(x0) = x0hn(x0) and h0(x0, x1, . . . , xn) = h0(x0, x1, . . . , xn+1) = 1,
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(6) is true. Thus we have

xp+q = xq
p∑

k=0

hp−k(x0, x1, . . . , xk)
k−1∏
i=0

(x − xi)

=

p∑
k=0

hp−k(x0, x1, . . . , xk)
k−1∏
i=0

(x − xi)
q∑

j=0

hq− j(xk, xk+1, . . . , xk+ j)
j−1∏
i=0

(x − xk+i)

=

p∑
k=0

q∑
j=0

hp−k(x0, x1, . . . , xk)hq− j(xk, xk+1, . . . , xk+ j)
k+ j−1∏

i=0

(x − xi).

Replacing k + j by t yields

xp+q =

p+q∑
t=0

t−1∏
i=0

(x − xi)
min{t,p}∑

k=max{0,t−q}

hp−k(x0, x1, . . . , xk)hq−t+k(xk, xk+1, . . . , xt). (7)

On the other hand, it follows clearly from (6) that

xp+q =

p+q∑
t=0

hp+q−t(x0, x1, . . . , xt)
t−1∏
i=0

(x − xi). (8)

By (7) and (8) we have

p+q∑
t=0

hp+q−t(x0, x1, . . . , xt)
t−1∏
i=0

(x − xi)

=

p+q∑
t=0

t−1∏
i=0

(x − xi)
min{t,p}∑

k=max{0,t−q}

hp−k(x0, x1, . . . , xk)hq−t+k(xk, xk+1, . . . , xt). (9)

Equating the coefficients of
∏t−1

i=0(x − xi) on both sides of (9) yields (5).

By Lemma 2.1 we obtain the LU factorization of the matrix whose entries are the complete symmetric
functions hi(x0, x1, . . . , xs+ j).

Lemma 2.2. Let s and n be nonnegative integers. Then
h0(x0, x1, . . . , xs) h0(x0, x1, . . . , xs+1) · · · h0(x0, x1, . . . , xs+n)
h1(x0, x1, . . . , xs) h1(x0, x1, . . . , xs+1) · · · h1(x0, x1, . . . , xs+n)

...
...

. . .
...

hn(x0, x1, . . . , xs) hn(x0, x1, . . . , xs+1) · · · hn(x0, x1, . . . , xs+n)


=


h0(x0, x1, . . . , xs) 0 · · · 0
h1(x0, x1, . . . , xs) h0(x0, x1, . . . , xs+1) · · · 0

...
...

. . .
...

hn(x0, x1, . . . , xs) hn−1(x0, x1, . . . , xs+1) · · · h0(x0, x1, . . . , xs+n)


×


h0(xs) h0(xs, xs+1) · · · h0(xs, xs+1, . . . , xs+n)

0 h1(xs+1) · · · h1(xs+1, xs+2, . . . , xs+n)
...

...
. . .

...
0 0 · · · hn(xs+n)

 . (10)
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Proof. By taking p = s + i, q = j and t = s + j in (5) we have

hi(x0, x1, . . . , xs+ j) =

s+min{i, j}∑
k=s

hs+i−k(x0, x1, . . . , xk)hk−s(xk, xk+1, . . . , xs+ j).

Replacing k by s + k yields

hi(x0, x1, . . . , xs+ j) =

min{i, j}∑
k=0

hi−k(x0, x1, . . . , xs+k)hk(xs+k, xs+k+1, . . . , xs+ j),

which is equivalent to (10) and this completes the proof.

It is worth noting that the above lemma will not only serve as a tool to prove Proposition 2.1 but it is also
interesting on its own.
The proof of Proposition 2.1. Since h0(x0, x1, . . . , xi) = 1 for i ≥ 0 and hk(xs+k) = xk

s+k for k ≥ 1, by (10) we
obtain Proposition 2.1 directly.

3. Determinants involving the numbers of the Stirling-type

According to Proposition 2.1 we here give some results for the evaluations of the determinants of the
matrices whose entries are the numbers of the Stirling-type.

3.1. Stirling numbers of the second kind and their q-analogue, (p, q)-analogue
Let S(n, k) the Stirling number of the second kind [7]. It is well known that the following relation

holds:

S(n, k) = hn−k(0, 1, . . . , k).

Thus, according to Proposition 2.1, we have

Theorem 3.1. Let s and n be nonnegative integers. Then

det
(
S(s + i + j, s + j)

)
0≤i, j≤n =

n∏
k=1

(s + k)k. (11)

It is not difficult to obtain the following relation:

S̃q(n, k) = hn−k([0]q, [1]q, . . . , [k]q).

Thus, by Proposition 2.1 we recover the following determinant identity involving the q-Stirling numbers of
the second kind S̃q(s + i + j, s + j).

Theorem 3.2 ([9]). Let s and n be nonnegative integers. Then

det(S̃q(s + i + j, s + j))0≤i, j≤n =

n∏
k=1

[s + k]k
q. (12)

Since Sq(n, k) = q(k
2)S̃q(n, k) and

(s+i
2
)

=
(s+i+1

3
)
−

(s+i
3
)
, it is easy to obtain the following:

Theorem 3.3 ([3]). Let s and n be nonnegative integers. Then

det(Sq(s + i + j, s + j))0≤i, j≤n = q(s+n+1
3 )−(s

3)
n∏

k=1

[s + k]k
q. (13)
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Let Sp,q(n, k) be the (p, q)-Stirling numbers of the second kind [27] which satisfy

Sp,q(n, k) = pk−1Sp,q(n − 1, k − 1) + [k]p,qSp,q(n − 1, k),

where [k]p,q = pk−1 + pk−2q + · · · + pqk−2 + qk−1. Similarly, we have obtain the following relation:

Sp,q(n, k) = p(k
2)hn−k([0]p,q, [1]p,q, . . . , [k]p,q).

Therefore, it is clear that Proposition 2.1 allows us to obtain a new identity for the (p, q)-Stirling numbers of
the second kind.

Theorem 3.4. Let s and n be nonnegative integers. Then

det(Sp,q(s + i + j, s + j))0≤i, j≤n = p(s+n+1
3 )−(s

3)
n∏

k=1

[s + k]k
p,q. (14)

3.2. Legendre-Stirling numbers and Jacobi-Stirling numbers of the second kind

Let JS(k)
n (z) be the Jacobi-Stirling numbers of the second kind [2, 10, 15, 22]. It was shown that the

JS(k)
n (z) are determined by the recurrence

JS(k)
n (z) = JS(k−1)

n−1 (z) + k(k + z)JS(k)
n−1(z),

with initial conditions

JS(0)
n (z) = JS(k)

0 (z) = 0, JS(0)
0 (z) = 1.

Equivalently, they are determined by the identity

xn =

n∑
k=0

JS(k)
n (z)

k−1∏
i=0

(x − i(i + z)).

Mongelli [23] has shown that the Jacobi-Stirling numbers of the second kind are specializations of the
complete symmetric functions, that is

JS(k)
n (z) = hn−k(0, 1 + z, . . . , k(k + z)).

Using the above relation, we have

Theorem 3.5. Let s and n be nonnegative integers. Then

det
(
JS(s+ j)

s+i+ j(z)
)

0≤i, j≤n
=

n∏
k=1

(s + k)k(s + k + z)k. (15)

In particular, when z = 1, the Jacobi-Stirling numbers of the second kind JS(k)
n (z) reduce to the Legendre-

Stirling numbers of the second kind [1] denoted by PS(k)
n . Therefore, it is natural that we have the following

theorem.

Theorem 3.6. Let s and n be nonnegative integers. Then

det
(
PS(s+ j)

s+i+ j

)
0≤i, j≤n

= (s + n + 1)n
n∏

k=1

(s + k)2k−1. (16)
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3.3. r-Whitney numbers of the second kind and their (p, q)-analogue

Let W(n, k; m, r) be the r-Whitney numbers of the second kind [6, 8, 13, 14, 17–20, 28]. Then we have
the following identity [16]:

W(n, k; m, r) = hn−k(r,m + r, . . . ,mk + r).

This relation leads to a determinant identity involving the r-Whitney numbers of the second kind due to
Xu and Zhou [28].

Theorem 3.7 ([28]). Let s and n be nonnegative integers. Then

det
(
W(s + i + j, s + j; m, r)

)
0≤i, j≤n =

n∏
k=1

(m(s + k) + r)k. (17)

In particular, when r = 1, we can easily obtain the evaluations of the similar determinants involving the
Whitney numbers of second kind.

Let Wp,q(n, k; m, r) be a (p, q)-generalization of the r-Whitney numbers of the second kind [11, 24, 25]. It
was shown in [11] that the Wp,q(n, k; m, r) are determined by the identity

(mx + [r]p)n =

n∑
k=0

mkWp,q(n, k; m, r)[x]k
q,

where the falling factorial

[x]i
q =

{
x(x − [1]q) · · · (x − [i − 1]q), i ≥ 1,

1, i = 0.

Equivalently, they are determined by the generating function

∑
n≥k

Wp,q(n, k; m, r)xn =
xk

(1 − ([r]p + m[0]q)x) · · · (1 − ([r]p + m[k]q)x)
, k ≥ 0,

which leads to an explicit formula for the Wp,q(n, k; m, r):

Wp,q(n, k; m, r) =
1

mk[k]q!

k∑
j=0

(−1)k− jq−(
j
2)− j(k− j)

[
k
j

]
q
(m[ j]q + [r]p)n.

It is easy to obtain the following relation:

Wp,q(n, k; m, r) = hn−k([r]p,m[1]q + [r]p, . . . ,m[k]q + [r]p). (18)

By (18) and Proposition 2.1, a determinant identity involving the (p, q)-generalization of the r-Whitney
numbers of the second kind can be derived.

Theorem 3.8. Let s and n be nonnegative integers. Then

det(Wp,q(s + i + j, s + j; m, r))0≤i, j≤n =

n∏
k=1

(m[s + k]q + [r]p)k. (19)
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