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Abstract. In the literature, the most authors modify the viscosity methods or hybrid projection methods
to construct the strong convergence algorithms for solving the pseudomonotone equilibrium problems. In
this paper, we introduce some new extragradient methods with non-convex combination to solve the pseu-
domonotone equilibrium problems in Hilbert space and prove the strong convergence for the constructed
algorithms. Our algorithms are very different with the existing ones in the literatures. As the application,
the fixed point theorems for strict pseudo-contraction are considered. Finally, some numerical examples
are given to show the effectiveness of the algorithms.

1. Introduction

Let H be a real Hilbert space and C be a nonempty closed and convex subset of H. Let f : C X C — R be
a bifunction with f(x, x) = 0 for all x € C. The equilibrium problem [1-3] for f is to find z € C such that

flz,y) =0, VyeC.

Many problems in physics, optimization, and economics can be reduced to find the solutions of equi-
librium problems. The set of all solutions of the equilibrium problem is denoted by EP(f, C), i.e.,

EP(f,C)={zeC: f(z,y) 20,Vy € C}.
The bifunction f is said to be pseudomonotone if

f(x,y)>20= f(y,x) <0, Vx,yeC.
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In 2008, Tran et al. [4] introduced an extragradient method to solve a pseudomonotone equilibrium problem
in R". The extragradient method is: given xy € C, find successively y, and x,.1 by

, 1
Yn = argmin, . {Auf(xu, y) + Slly - ),
. 1
Xn+1 = argmlnyeC{Anf(y”/ ]/) + E”y - x"Hz}’

where {A,} € (0,1] and f satisfies a Lipschitz-type condition. The authors proved that the iterative scheme
{xn} converges to some x* € EP(f,C).

In [5], Anh introduced the following algorithm to find a solution of equilibrium problem for pseu-
domonotone bifunction f which is also the fixed point of a nonexpansive mapping T in Hilbert space:

. 1
Yn = argmin, o {Auf e, y) + 5lly - ),

. 1
tp, = argmln}/ec{)\nf(]/nz ]/) + E”]/ - xn||2},
Xnt1 = anXo + (1 — )Tty
where x( € Cis a fixed point, {a,}, {A,} € (0, 1), and f satisfies a Lipschitz-type condition. The author proved
the strong convergence of {x,} provided limy_,« [[Xs+1 — %4|| = 0 and some assumptions on {a,} and {A,}.
In 2012, Vuong et al. [6] constructed a hybrid projection algorithm for finding the common element of

fixed point set of a pseudo-contraction S and solution set of an equilibrium problem on pseudomonotone
bifunction f by the following manner: x; € C and

_ 1
Yn = argmin, c{AufCen, y) + 5lly - ),

i 1
Zy = argmlnyec{/\nf(ynr y) + EH}/ - anZ}/
ty = anx, + (1 - an)[ﬂnzn +(1- ,Bn)szn]r
Co=1{zeC:|lty — 2l < llxy — zlI},
D,={zeC:{x,—2z,xy—x,) =0},

Xu+1 = Pc,np, X0,

where {a,}, {8:},{An} € (0,1), and f satisfies a Lipschitz-type condition. The strong convergence of {x,} was
proved.

In [7], Anh and Thi constructed an Armijo-type method for pseudomotone equilibrium problems in
Hilbert spaces. Note that the bifunction f is not required to satisfy the Lipschitz-type condition. Very re-
cently, Dinh and Kim [8] introduced the strong and weak convergence algorithms to solve the equilibrium
problem. It is especially worthy to mention that in the results of Dinh and Kim, any restriction of mono-
tonicity on the bifunction is not required. On the recent results for pseudomotone equilibrium problems,
the interested readers also may refer to [9-12].

In the literatures, most of authors modify the hybrid projection methods or viscosity methods to obtain
the strong convergence of the iterative algorithms for pseudomonotone equilibrium problems; see [6, 9—
18]. In [19], a non-convex combination iterative algorithm for pseudomonotone equilibrium problem and
fixed point problem was introduced and the strong convergence was proved. In this paper, we construct
two new extragradient methods with non-convex combination to solve the pseudomonotone equilibrium
problems in Hilbert space and prove the strong convergence for the constructed algorithms. The algorithms
designed in this paper are very different with the existing ones in the literatures. As the application, the
fixed point theorems for strict pseudo-contraction are considered. Finally, some numerical examples are
given to illustrate the constructed algorithms.
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2. Preliminaries

Let H be a Hilbert space and C be a nonempty closed subset of H. Let f : C X C — R be a bifunction. f
is said to be

(al) y-strong monotone (y > 0) on C if for each x, y € C, one has

oo y) + f(y,x) < —yllx =yl

(a2) monotone on C if for each x, y € C, one has

fe,y) + f(y,x) <0;

(a3) pseudomonotone on C if for each x, y € C, one has

f(x,y) >0 implies f(y,x)<0;

Obviously, we have (a1) = (42) = (a3).

The bifunction f is said to satisfy a Lipschitz-type condition [20] on C if there exist the constants ¢; > 0
and ¢, > 0 such that

f(x,2) < f(x,y) + f(y,2) + cillx — yI* + caolly — zI?, Vx,y,z€C

Let F : C — H is an L-Lipschitz continuous mapping. Then f(x, y) = (F(x), y — x) satisfies the Lipschitz-
type condition with the constantsc; = ¢, = % ;see [4,5,20]. Another example is the following Cournot-Nash
oligopolistic market equilibrium model:

fx,y) =Px+Qy+q,y—x), Yx,yeR",

where P € R™" and Q € R™" is symmetric positive semidefinite and Q — P is negative semidefinite. Then
f satisfies the Lipschitz-type condition with the constants c; = ¢; = %IIP — Q|l; see [4].

In this paper, assume the bifunction f satisfies the following conditions:
(A1) f(x,x) =0forall x € C and f is pseudomonotone on C;
(A2) f satisfies a Lipschitz-type condition on C;
(A3) for each x € C, y — f(x, y) is convex and subdifferentiable;
(A4) f(x, y) is jointly weakly continuous on C x C.
It is easy to prove that EP(f, C) is weakly closed and convex under the conditions (A1), (A3) and (A4).

Example 21 Let H = R" (n > 2)and C = {(xq,---,%x5) : x1,---, X%, 2 1}. Define f : CxC — R by
fx,y) = Yo (yi — x)lIxll for each x = (x1,+++ ,x4), ¥ = (1, -+ , Yu) € C. Obviously, f is pseudomonotone but
not monotone. We show that f satisfies a Lipschitz-type condition. In fact, forall x, y,z € C(z = (z1, - , zu)),
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we have . . .,
foz) =Y = xldl = ) =yl + Y (i = )l
i=2 i=2 i=2
n n n
= Y=yl = gl + Y (s = xlldl + )z = yollyl
=2 i=2 i=2
n n n
<Y =il =yl + Y =l + ) - yollyl
i=2 i=2 i=2
< (= Dlz =yl = yll + Y (i = x)llcll+ Yz = yllyl
i=2 i=2
n-1 2 5 - .
< Uz =yl” + e =yl + ;(yi — xj)llxll + ;(zi = yallyll
n-1 2 5
= 5=yl + Il = yIP) + fx, ) + £y, 2).
It follows that f satisfies the Lipschitz-type condition with the constants ¢c; = ¢; = %! and satisfies the

above conditions (A1)-(A4).

Lemma 2.1 ([4, 5, 19, 21] ) Assume that EP(f,C) # 0. Let x € C. Assume that y,t € C are the solutions of the
following strongly convex problems:

y= argmin{%llz — x> + Af(x,z):z€C},

t= argmin{%lla — x|+ Af(y,a):aeC},

where A > 0. Then, the following hold:

AMf(x,z) = fix, )] 2{y—x,y—2z), Vze(,

and
It = wl* < llx — wl* = (1 = 2Ac1)llx — yI* = (1 = 2Aex)lit — yIP?, Yw € EP(f, C).

Lemma 2.2 For each point x € H, there exists a unique nearest point of C, denoted by Pcx, such that ||x—Pcx|| < [|x—yl|
forall y € C. Such a Pc is called the metric projection from H onto C. For x € Hand z € C, z = Pcx if and only if
(x—z,z-y)=0, forall y € C.

The more information of EP(f,C) on the metric projection can be found in [22, Section 3].
Lemma 2.3 Let H be a real Hilbert space. For all x,y € H, the following hold:

(b1) [lx + ylI* < [Ixl® + 2¢y, x + y);
(b2) [ltx + (1 = OyIP* = HixI* + A = Bliyl> = t(1 = Ollx = yIi?, for all t € [0,1].

Lemma 2.4 ([23]) Let {a,} be a sequence of nonnegative real numbers. Suppose that
A1 < (1 - Vn)an + Vnénr Vn e N/

where {y,} C (0,1) and {0,} C R satisfy the conditions:

lim y, =0, Z)/,, = 0o, and limsup 6, < 0.

n—oo | n—oo
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Then lim,— a, = 0.

Lemma 2.5 ([24]) Let {a,} be a sequence of real numbers such that there exists a subsequence {n;} of {n} such that
Ay, < An+1 for all i € IN. Then there exists a nondecreasing sequence {my} C IN such that my — co ask — oo and the
following properties are satisfied by all (sufficiently large) numbers k € IN:

Ay < Amye+1 and ax < Amg+1-

In fact, my = max{j < k:a; <aj}.

3. Main results

Let H be a real Hilbert space and C C H be a nonempty closed convex subset. Let f : CxXC — Rbe a
bifunction satisfying the conditions (i)-(iv). Assume that EP(f,C) # (. Put x* = Pgp(;,c)0, where 6 denotes
the zero element in H.

We first give the following algorithm that strongly converges to the element x".

Algorithm 3.1 Initialization Choose {A,} C [61,02] with 0 < 61 < 0, < min{z%l, 2172}, {yn} C [y, 1) with y > 0,
{a,} € (0,1). Take x; € C. Setn = 1.

Step1 Solve the strongly convex problems:

.1
yn = argmin{3lly = x| + Auf(n, y) 1y € Cl,
ty = argmin{%llt — xal? + Auf(yu, t) : t € C).

Step2 It y, = x,, then x, € EP(f, C), stop; otherwise, go to Step 3.
Step 3 Generate x,41 = Pcla,(1 — yu)xn + (1 — ap)ty]. Setn =n+1 and go to Step 1.

Remark 3.1 Obviously, if y, = x, for some n € N, from Lemma 2.1 it follows that f(x,,z) > 0forallz € C
and hence x, € EP(f,C).

In the next process of showing the convergence of Algorithm 3.1, assume that the stop criterion at Step
2 can not be satisfied for all n € IN.

Lemma 3.1 Assume that {x,} is bounded. If ||x, — yn|| = 0 as n — oo, then

lim sup(—x", x, —x") < 0.

n—oo

Proof. Since {x,}is bounded, then we can choose a subsequence {x,, } of {x,} such that {x,, } weakly converges
to some x € C and
lim sup{—x",x, — x*) = ’}im(—x*,xnk —x") =(=x",x —x%). (3.1)

n—o00

Since |lx, — ¥4l = 0, we have
Yn, — X, ask — oo,

where — denotes the weak convergence. By Lemma 2.1 with x = x,, and y = y,,, we have

1
fCn2) = FCn Yn) 2 7 (Y = Xn Y —2), V2 €C.

L3
Letting k — oo, by the hypothesis on {1,}, (i) and (iv) we get

flx,z) 20, VzeC
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It follows that x € EP(f, C). Finally, by (3.1) and Lemma 2.2 we get

lim sup(—x", x,, — x*) = lim(—x", x,,, —x") = (=x", x — x")
k—oo

= (0 — Pep(s,0)0, x — Pep(s,0)0)
<0.
This completes the proof. [J

Theorem 3.1 If the sequence {cv,} satisfies the following conditions:

(9]

lima, =0 and a, = o,
n—oo 1
n=

then {x,} converges strongly to the element x".

Proof. We first show that {x,} is bounded. By Lemma 2.1 and Lemma 2.3 (b2) we have

1241 — x*||2 |PC[an(1 - Vn)xn + (1 - an)tn] - PCX*H2
(04

=|
< lan(1 = yu)xn + (1 = ay)t, — x|
< anll(1 = yu)xy = 1P + (1= )ity = x°I2
< (1= yllea = X1IP + yullIP] + (1 = @)l = 1P
= (1= 22e)llxn = yall? = (1 = 24ue2)llyn — ]
= (1 =yl = % 1P+l = (1= @)((1 = 2Aue1)l = gl
+ (1= 22,02)lly — talP)

< max{llx, = x|, I} < - -+ < max{llx = x|, X}, ¥n e N.

It follows that {x,} is bounded. So are {y,} and {t,}.
Put

Mo = sup {yulle'I? + (1 = 24,e0)l%, = vl + (1= 24462)llyn — tal : 1 € N},

By (3.2) and (3.3) we get

(1= 2Anen)lPs = Yull® + (1 = 245€2) 1y = tal

< Ity = X1 = llxper = XI° + @uMo, ¥n € N.
Set h, = ayx, + (1 — ay)t, for each n € IN. By Lemma 2.1 and Lemma 2.3 (b2) we have
Iy = 1P < aalley = %I + (1= a)lity = x| < vy — X7, VneN.

Note that

Xn+1 = PC[hn - anynxn]
= Pcl(1 = anyn)hn + ayyn(1 — an)(t, — x,), VYneN.

1682

(3.2)

(3.3)

(3.4)

(3.5)
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From Lemma 2.3 (b1) and (3.5) it follows that
241 — x*HZ = ”PC[(l - anyn)hn + anyn(l - an)(tn - xn)] - prYr”2
. 12

<@ = awyn) (i = ) + @yl = )ty — x4) = x°]
< (1= anylihn = 1P + 2,701 = ) (ta = x4) — X7, (1 = )

+ (1l — ay)(ty — x,) — x%)
=(1- an)/n)”hn - x*Hz + 20(,1)/”(1 —ay )ty — xp, (1= an)/n)hn

+ (1 — ay)(ty — xn) — XY + 20,y {(—=x", (1 — o )(t, — X)

+ (1= anyn)x, — x7) (3.6)
= (1 - Ofn)/n)”hn - x*Hz + ZOann(l — )ty — Xp, (1 - Ofn)/n)hn

+ anyn(1 = an)(tn = x0) = x7) + 200,y n(1 = an)(=2", ty = X)
+ 200, =X, X = X + 2( Y )X, X )
< (1= anyn)ln = X1 + 200 yn(1 = )ty = X, (1 = tn )i
+ (1 = an)(tn = x0) = x°7) + 200 Yn(1 — an)(=X", ty = xp)
+ 20, V=X, Xy = XY + 2 yn) XX, x,),  YneN.
The rest of the proof will be divided into the following parts:

)

Case 1. Suppose that there exists g € IN such that {|lx, — x*[[};,,, is nonincreasing. In this situation,
{llx, — x*||} is convergent. This together with the hypothesis on {A,}, {a,} and (3.4) gives

32’1(’)10”sz - yn” = r}g{}o ”yn —tl[=0

and hence
Xy = tall < I, — yn” + ”yn —tyll = 0, asn — co. (37)

By llx, = yull = 0 and Lemma 3.1 we have

lim sup{(—x", x, —x") < 0. (3.8)

The conclusion follows from the hypothesis on {a,}, {y,}, (3.6), (3.7), (3.8) and Lemma 2.4.

Case 2. Suppose that there exists a subsequence {n;} of {n} such that
[, — X[ < [lxt,41 — X7

forall i € N.
Then, by Lemma 2.5 there exists a nondecreasing sequence {m} C IN such that m; — oo,

I, = 27 < Mt =27 and e — 27| < (X — 271
for all k € IN. This with (3.4) gives

(1 - 2/\ka1)||ka - ]/mkHZ + (1 - zAkaZ)”ymk - tmk”Z
< |, = X2 = a1 = X + @ Mo, Yk € N.

By the hypothesis on {A,} and {a,}, we have
I}l_?; ”xmk - ]/mkH = I}l—{?o “ymk - tmk” =0. 3.9)

Hence
”xmk - tmk” S ”xmk - ymk” + ”]/mk - tmk” - 0/ as k — ©o0. (310)
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By (3.9) and Lemma 3.1 we get
lim sup{(—x", x,, — x*) < 0. (3.11)

k—o0

Now from (3.6) we have

”xmk+1 - x*HZ < (1 - amkymk)”xmk - X*HZ + Zamkymk(l - amk)<tmk = Xngs (1 - amkymk)hmk
+ amk)/mk(l - amk)(tmk - xmk) - x) + Zamkymk(l - anzk)<_X*/ by — xmk> (3.12)
+ 20, Vi (=X, Xy, — X7) + Z(amkymk)2<x*,xmk), Yk € N.

Since [|xy,, — x*|| < [|Xym+1 — X*||, we have

W Vo X, — X7
<y = X NP = Igar = XN + 200, Vi (1 = @ )b, = Xy, (1= Qi Vi Y,
+ W Vi (1 = @ )by, — Xom) — X7 + 2000, Vi, (1 = @ (=X, by, — X))
+ 200, Vi (=X, X, — XY + 20, Vi )X, X, )
< 20, Vi (1 = )ty = X (1 = W ViV, + @ Vi (L= @ )y, = X)) — X7
+ 20, Vi (1 = Qg X=X, by — X ) + 200, Vi (=X, Xy, — X7)
+ 2@, Vi )X, X ), Yk € N

Since ay, ym, > 0, we get

”xmk - X*Hz < 2(1 - amk)<tmk - xmk/ (1 - amkymk)hmk + amkymk(]- - amk)(tmk - xmk) - x*>
+2(1 = p (=X, by, = X ) + 2{=X", X, — XY + 200, Vi (X7, X, ), Yk € INL

Since a,,, — 0, it follows from (3.10), (3.11) that ||x,,, —x*|| = 0 as k — oo. This with (3.10)-(3.12) implies that
Jim 1,1 = 1] = 0.

But [lxx — x*|| < [|xm+1 — x7|| for all k € IN. So, we conclude that xx — x* as k — oo. The proof is complete. [J

Remark 3.2 In [25], the authors introduced an iterative algorithm for solving a pseudomonotone equilibrium
problem and fixed point problem and proved a strong convergence theorem for the proposed algorithm. If
both the demicontractive mapping S and Lipschitz continuous and strongly monotone mapping F are the
identity mapping I, i.e., F = § = I, then x,.1 = B,(1 — ax)t, + (1 = B)ta(:= (1 — anfu)t,) in Algorithm 1 of [25].
The manner of computing x,.,1 at each step is similar with the one of Algorithm 3.1 that they are computed
by a non-convex combination.

By a light modification on Algorithm 3.1, we give the following algorithm:

Algorithm 3.2 Initialization Choose {A,} C [61,02] with 0 < 61 < 02 < min{zicl, 2172}, {ynl C [y, 1) with y > 0,
{an}, Bn} € (0,1). Take x; € H. Setn = 1.

Step1  Solve the strongly convex problems:
.1 2
Yn = argmin{Z|ly = Pexull” + Anf(Pcxn, y) - y € Cl,
ty = argmin{%llt — Pexall* + Auf(yn,t) 1t € Cl

Step2 1Ify, = x,, then x, € EP(f, C), stop; otherwise, go to Step 3.
Step 3 Generate X,41 = ay(1 — V)X + (1 — an)(Butn + (1 = fn)x,). Set n = n +1 and go to Step 1.
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Remark 3.3 Obviously, if y, = x,, for some n € N, then x,, € C and hence y, = Pcx,. By Lemma 2.1 it follows
that
fxn,2z) = f(Pcxn,2z) 20, VzeC

Hence x,, € EP(f,C).

In the next process of showing the convergence of Algorithm 3.2, assume that the stop criterion at Step
2 can not be satisfied for all n € IN.

Lemma 3.2 Assume that {x,} is bounded. If ||[Pcx, — yull = 0 and ||x, — yul|l = 0asn — oo, then

lim sup{—x",x, — x*) < 0.

n—-oo

Proof. Since {x,}is bounded, then we can choose a subsequence {x,, } of {x,} such that {x,, } weakly converges
to some x € H and
lim sup(—x", x, —x") = I}im(—x*,xnk - X"y ={(=x",x —x"). (3.13)

n—oo

Since |lx, — yull = 0 as n — oo and {y,} C C, it follows that y,, — x € C as k — co. Further by the
hypothesis that ||[Pcx, — .|| = 0 we have Pcx,, — x as k — co. From Lemma 2.1 it follows that

1
f(Pcxn, 2) = f(PcXn, Yn,) 2 A—(ynk — Pcn, Y, —2), ¥z €C.
Nk

Letting k — oo, by the hypothesis on {1,}, (i) and (iv) we get
flx,z) 20, VzeC

It follows that x € EP(f, C). Finally, by (3.13) and Lemma 2.2 the desired result is obtained. This completes
the proof. O

Theorem 3.2 If the sequences {a,,} and {B,,} satisfy the following conditions:
lim @, =0, ) aty = o0 and liminf (1 f,) >0,

n—oo
n=1

then {x,} converges strongly to the element x*.

Proof. We first show that {x,} is bounded. By Lemma 2.1 and Lemma 2.3 (b2) we have
I = X2 = llan (1 = ) = x) + (1= @) Baltn = x) + (1 = Ba) (s = x)IP
< all( = yu)xn = X2 + (1= @) [Bullts — %12 + (1= Bo)llxy — x|
= Bu(1 = B)llty = x4l
< [ =yl = X1 + yull'IR] + (1 = @) llen — x|
= (1= 24u€1)BallPcy = Yl = (1 = 24,2)Bullyn — talP (3.14)
= Bu(1 = B)llty = x4l
= (1= apyn)lixy = X1 + @ yullI? = (1= )| (1 = 2A5e0)BullPexs = yull?
+ (1= 2202)Bullyn = tall® + Bu(1 = B)lltw — x4l
< max{l, — xIP, [P} < -+ < max{lley — I3 11|12}

for all n € IN. It follows that {x,} is bounded. So are {y,} and {t,}.
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By (3.14) we get

(1- 2Ancl)ﬁn”Pan - ynuz +(1- ZAnCZ)ﬁn”yn - tn”2 + ,Bn(l - ﬁn)”tn - xn“2

*112 112 (3-15)
<l = X7 = llxper = X717 + Mo, ¥n € N,

where
My = sup {)/nllx"ll2 + (1 = 24,01)BullPcxn = yull® + (1 = 24,02)Ballyn — tall®

+Ba(L = Bu)llty — xull? i1 € ]N},

Set h, = ayx, + (1 — a,)v,, where v, = But, + (1 — By)xy, for each n € N. By Lemma 2.1 and Lemma 2.3
(b2) we have
Iy = X7 < allcy = 1P + (1 = ap)llo, — x|

< aylly = 1P + (1 = ) (Bulltn = 1P + (1 = Bl — x°IP)

(3.16)
< by = X1 + (1 = ) (Bullr = X1 + (1 = Bl — x°IP)
= |lx, —x|?, VneN.
Note that
Xn+1 = hy — QnYnXn
= (1 = anyw)hn + anyn(l — ay)(0n —xz), Yn€N.
From Lemma 2.3 (b1) and (3.16) it follows that
et = X 1P = (L = @ny)hn + anyn(l = an)(On = xy) = x|
= [t = @)t = x) + @l (1 = )@, — 50) — 2|
< (1= anywlltn = X NP + 200 yn(1 = )0 = Xu, Xps1 — X°)
+ 20,y (—X", Xpi1 — X7) (3.17)

< (1 - anyn)||xn - X*”2 + Zanyn(l - an)<vn = X, Xn+1 — x*>
+ 200y n(=X", X1 — X7)

=(1- an)/n)”xn - X*”Z + 20(,1)/”(1 - an)ﬁn<tn — Xp, Xps1 — X7
+ 200, Y u(=X", Xps1 — X7).

The rest of the proof will be divided into the following parts:

Case 1. Suppose that there exists ngp € IN such that {|lx, — x*[[};,,, is nonincreasing. In this situation,
{llx, — x*||} is convergent. This together with the hypothesis on {A,}, {ax}, {8} and (3.15) gives

Hm [Py = yull = lim [y, = tall = lim [lx, —t,]| = 0. (3.18)
By (3.18) that shows ||x, — y,|| — 0 and Lemma 3.2 we have

lim sup{—x", x, —x") < 0. (3.19)

n—o0

Now, by (3.17)-(3.19) and Lemma 2.4 we can conclude that [|x, — x*|| = 0 as n — oo.
Case 2. Suppose that there exists a subsequence {n;} of {n} such that

[, — X7 < [lxt,41 — X7]]
for all i € N. Then, by Lemma 2.5 there exists a nondecreasing sequence {m;} C IN such that m, — oo,

m, = 27l < llxmr = XNl and [l = 27| < [lxm 1 — X7



S. H. Wang et al. / Filomat 33:6 (2019), 1677-1693 1687

for all k € N.
Under this case the proof process is similar with Case 1 and Case 2 in the proof lines of Theorem 3.1.
Hence we omit the rest proof lines. This completes the proof. [

Remark 3.4 In Algorithm 3.2, at each step x,.1 is not necessary in the subset C since the non-convex
combination of x, with t, is involved. However, the sequence {x,} is proved to asymptotically fall into
the subset C and converge to the solution of the pseudomonotone equilibrium problem. The manners of
constructing the algorithms in this paper are new and different with the existing ones in the literature.

4. Applications

Let H be a Hilbert space and C be a nonempty closed and convex subset of H. Let T : C — C be a
mapping. T is said to be a x-strict pseudo-contraction [26] if there exists a constant « € (0, 1) such that

ITx = Tyl < llx = yI? + xll(x = T) = (v = TY)IP, Vx,y€C, (4.1
which is equivalent to

1-

=l =T - (= TYIE, Vx,yeC. (42)

(Tx—Ty,x—y) < llx —yl* -

Example 4.1 Let H = > and C = {x = (x1,xp,-* ,Xy,--) € 2 :x1 > 0,x; € R, Vi = 2,3,---}. Define the
mapping T : C = Cby Tx = (’(2—1,—3x2, —3x3,---) for all x = (xq,x2,x3,-- ,%Xy,-+-) € C. Then T is a %—strict
pseudo-contraction. In fact, for each x = (xq,x2,- -+, xy,-=*), ¥y = (Y1, Y2+ , Yn, ) € C, we have

X1 — W
2

_ (xl - yl)z 2
== +9;(xi—yi)

1
<l =yl + ST =Tx - (I - TylP.

”TX - Ty”z = “( ,3(.7(2 - ]/2)/ e IS(xn - yﬂ)/ T )”2

Hence T'is a %-strict pseudo-contraction.

Denote the set of fixed points of T by Fix(T). In [27, 28], the authors proved that Fix(T) is closed and
convex. Many fixed point theorems for strict pseudo-contractions have been introduced in the literature;
see [29-32].

Let f(x,y) = (x = Tx,y — x) for all x,y € C. It is easy to see that EP(f,C) = Fix(T). If T is weakly
continuous, then f satisfies the conditions (A4). Obviously, f satisfies the condition (A3). We prove that f
is pseudomonotone on C. Assume that x, y € C are such that f(x, y) = (x — Tx, y — x) > 0. By (4.2) we have

fy,x)=y-Tyx—y=y-—x+x-Tx+Tx-Ty,x—y)
= —||x—y||2 +{x-Tx,x—y)y +{Ix-Ty,x—y)
< —|lx - yll2 +(ITx—-Ty,x—y) (since{x—Tx,y—x)>0)

1-x
< —llx =yl + llx — yI* - ll(x = Tx) = (y - Ty)I?

2
1-—
= -l =T~ (y - Ty
<0.

Hence f is pseudomonotone. It is clear that f(x,x) = 0 for all x € C. It follows that f satisfies the condition
(A1).
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Now we show that f satisfies the condition (A2). Since T is 2=£-Lipschitzian continuous [27], we have

fx,z2)=x—Tx,z=x) =(x—-Tx,y—x) +{(x—Tx,z—y)
=fxy+fly2)+x-Tx+Ty—-y,z-y)
< fy) + f(y,2) + (lx = yll + [Ty = TxIDllz = yll

Sﬂ%w+fWJ%HM—WM—yW+2_

ﬂw—wm—yn

< floy) + fly,2) + (IIx yI? + iz — yl?) + 5 (e = ylP + Iz - yIP)

2(1 K)

= f, Y+ f,2) + =0——x—yl* + 1z - ylI*), Vx,y,z€ C.

-2«
( K)
Hence f is Lipschitz-type continuous on C with the constants ¢; = ¢, =
condition (A2).

In Algorithm 3.1, at Step 1 the strongly convex programs needed to solve are of the forms

3-2K
2(1-x) "

Therefore, f satisfies the

o1
Yo = argmm{illy — x| + Auf(xn,y) 1 y € C}
= argmln{%”:y - xn||2 + An<xn - TXn/y - xn) . y € C}

o1
= argmin{3[ly = (¥ = Au(x, = Tx))I 1y € C}
= Pe((1 = Ap)xn + A Tx) = (1= Aty + An Tty

and

ty = argmin{%llt — XulP? + Auf(yn, t) : t € C)

2
I

= argmin{%llt = Xl + Al = TYn, t = x0) + Ay — TYn, X0 — Yu) 1 t € C}

L = 2l 4+ Ay = Tyt = 20 : £ € C)

= arg min{ 5

1
= argmin(Z 1t = (5, = Au(o = Ty I £ € C)
= Pc(xtn — An(yn - Tyn))'
By the results in Section 3, we get the following fixed point theorems:

Theorem 4.1 Let C be a nonempty closed convex subset of a Hilbert space H and T : C — C be a weakly continuous
K-strict pseudo-contraction with Fix(T) # 0. Generate the sequence {x,} by the following manner: x, € C and

=1 -A)x, + Ay Txy,
th = PC(xn - /\n(]/n - Tyn))r (43)
Xp+1 = Pcla,(1 - Vn)xn + (1 = an)tal,

where {A,} C [01, 0] with0 < 61 < 6, < 4(1 K), lyn} Cly, D) withy >0, {a,} € (0,1). If {0} satisfies the following
conditions:

)

lim «,, = 0 and o, = o0,

n—oo
n=1

then the sequence {x,} generated by (4.3) strongly converges to the element x* = Pryy1)0, where 6 denotes the zero
element in H.
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Theorem 4.2 Let C be a nonempty closed convex subset of a Hilbert space H and T : C — C be a weakly continuous
K-strict pseudo-contraction with Fix(T) # 0. Generate the sequence {x,} by the following manner: x, € H and

Yn = (1= Au)Pcxy + AyTPcxy,
th = PC(xn - /\n(yn - Tyn))/ (44)
a1 = (1 = yu)xn + (1 - an)(ﬁntn +(1- ,Bn)xn)/

where {A,} C[01,0,] with0 < 61 < Oy < 4(1 k), {yn) C Iy, 1) withy > 0, {an), {Bn} € (0,1). If {a,} and {B,} satisfy
the following conditions:

lim @, =0, ) ay = oo, and liminf B,(1 - B,) >0,

n—0o0
n=1

then the sequence {x,} generated by (4.4) strongly converges to the element x* = Prixr)0, where O denotes the zero
element in H.

Remark 4.1 In [33], the authors introduced an iterative algorithm in which a non-convex combination is
involved to approximate the fixed point of a strict pseudo-contraction. However, the subset C is required
tobe a cone in [33] . In Theorems 4.1 and 4.2, the subset C is not restricted to be a cone. From the viewpoint,
Theorems 4.1 and 4.2 are the improvement of the result of [33].

5. Numerical examples

In this section, we give some examples to illustrate the algorithms in this paper. We perform the
algorithms by Matlab R2008a running on a PC Desktop with Core(TM) i3CPU M550 3.20GHz with 4GB
Ram.

First we give the following example to illustrate the effectiveness of Algorithm 3.1 and Algorithm 3.2.

Example 5.1 Let H = R® and C = {(x1,--- ,%5) : 1 > -1, x; > 1,i = 2,--- ,5}. Let flx,y) = Zfzz(yi — x;)||x]|
for all x = (x1,x2,-++ ,%5), ¥ = (y1, Y2, ,¥5) € C. Then f is Lipschitz-type continuous with the constants
c1 = ¢ = 2 and satisfies the conditions (i)-(iv). Obviously, EP(f, C) = {(x1,1,---,1) : x3 > -1}.

For given € > 0, if r, = |lx, — yull £ € we call x,, an e-solution of the pseudomonotone equilibrium
problem. The program will stop when r,, <e. In this example, we take e=10""

Put the sequences a, = g, fu = 1+ 2, Vn = 5 + 2> and A, = 35 + 5 forall n > 1. The Table 1 and Table 2
show that the programs stop after 28 steps and 104 steps for Algorithm 3.1 and Algorithm 3.2, respectively.

Table 1 Algorithm 3.1 with € = 10* and x; = (2,3,2,5,2)

Iter (n) x} x2 x x: X
1 2.00000 3.00000 2.00000 5.00000 2.0000
2 1.96500 255768 1.57518 4.52268 1.57518
3 1.95395 227261 1.29564 4.22656 1.29564
4 194797  2.04093 1.06693 3.98889 1.06694
5 1.94402 1.83651 1.00000 3.78053 1.00000
6 1.94110 1.64989 1.00000 3.59099 1.00000
7 1.93881 1.47664 1.00000 3.41546 1.00000
26 1.92286 1.00000 1.00000 1.09982 1.00000
27 1.92246 1.00000 1.00000 1.00361 1.00000
28 1.92207 1.00000 1.00000 1.00000 1.00000

Cpu times 3.065262 s
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Table 2 Algorithm 3.2 with € =10~ and x; = (2,3,2,5,2)

Iter (n) x! xZ x; X x;,
1 2.00000 3.00000 2.00000 5.00000 2.0000
2 1.96500 255768 1.57518 4.52268 1.57518
3 1.95395 227261 1.29564 4.22656 1.29564
4 1.94797 2.04093 1.06693 3.98889 1.06694
5 1.94402 1.83651 0.99825 3.78053 0.99825
6 1.94111 1.64989 0.99849 3.59099 0.99849
7 1.93883 147663 0.99881 3.41546 0.99881
8 1.93695 1.31412 0.99903 3.25105 0.99903
9 1.93537 1.16052 0.999918 3.09589 0.99918
10 1.93397 1.01460 1.00000 2.94859 1.00000
100 1.90916 0.99995 0.99995 0.99995 0.99995
101 1.90906 0.99995 0.99995 0.99995 0.99995
102 1.90887 0.99995 0.99995 0.99995 0.99995
103 1.90887 0.99995 0.99995 0.99995 0.99995
104 1.90878 0.99995 0.99995 0.99995 0.99995

Cpu times 12.350364 s
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Example 5.2 We consider the classical Cournot-Nash model (see [34]) and use the same H, C, f, A, x, i, a

with [7, Example 1] for the comparison. That is, let H = R>,

xe]Ri,

X1+ X2 + X3+ 2x4 + x5 < 10,
2x1 + X3 — x3 + x4 + 3x5 < 15,
X1+ X2 +x3+x4 +0.5x5 >4,

and f(x,y) = (Bx + x>(y + x) + u — @,y — x), where

os]

I
== =xx o
=== ox
== o= =
= o= ==
o= = = =

x=3a=1(2222, Z)T and y = (3,4,5,7, 6)T. It is known that f is Lipschitz-type continuous with the

constants c; = ¢; = 6 and f satisfies the conditions (A1)-(A4).

In [7, Example 1], the initial point chosen is x; = (1,2,1,1,1)T € C and € = 10%. For the comparison, we
also use the same x; and €. We perform Algorithm 3.1 with the following cases of the sequences {a,}, {y,}

and {A,.}:

. -1 =141 =14 1.
Case 1: an—m\/ﬁ,yn—5+2nand/\n—30+30n,

. _ 1 _ o _ ln(2+l) .
Case2: ay =y, Vn= 10, Adn = —55
. - 1L - _n = _n_
Case3:  aw = g5, Vn = Tr An = -

The following tables show the iterative results and cpu times.

Table 3 Computed results and cpu times for Algorithm 3.1 with Case 1
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1

2

3

4

5

Iteration (n) x, x; x; x, X,
1 1.00000  2.00000 1.00000 1.00000 1.00000
2 0.93582  0.97076 0.93190 0.92799 0.46705
3 0.94634 094613 0.94229 0.93825 0.45394
4 0.94692 094495 0.94281 0.93869 0.45326
5 0.94695 094490 0.94283 0.93872 0.45320
Cputimes  0.282469 s

Table 4 Computed results and cpu times for Algorithm 3.1 with Case 2

1

2

3

4

5

Iteration (n) X, x; x; x; X,
1 1.00000  2.00000 1.00000 1.00000 1.00000
2 0.86208  1.13102 0.86208 0.86208 0.56551
3 0.93861  0.95602 0.93658 0.93454 0.46851
4 0.94489 094404 0.94213 0.93938 0.45909
5 0.94547 094404 0.94242 0.93931 0.45751
Cputimes 1.355334s

Table 5 Computed results and cpu times for Algorithm 3.1 with Case 3

1

2

3

4

5

Iteration (n) X, x; x; x; x;
1 1.00000  2.00000 1.00000 1.00000 1.00000
2 0.92605 099371 0.92226 0.91845 0.47905
3 0.94616  0.94682 0.94204 0.93786 0.45424
4 0.94692 094489 0.94285 0.93870 0.45326
5 0.94689  0.94490 0.94282 0.93876 0.45326
6 0.94696 094497 0.94286 0.93863 0.45314
Cputimes 1.568336 s

The Table 1 from [7, Example 1] shows that after 9 iterations the approximate solution is

X9 = (0.9467,0.9447,0.9426,0.9405, 0.4510).

1691

From the Table 3-Table 5 we see that the result x, is very near with the one in [7, Example 1] when the

program stops.

On the other hand, for each n € IN, let s, = inf,ec f(x;, y), where each x, is generated by Algorithm 3.1.
It is easy to see that for x,, € EP(f,C) if and only if s, = 0 and x,, ¢ EP(f, C) if and only if s, < 0. Comparing
with {r,}, {s,} is also an important data by which we can obtain direct the sense of x,, approximating the
solution of the pseudomonotone equilibrium problem. For given 6 < 0, we will stop program if s, > 6 and
call x, a 6-approximate solution. In this example, put 6 = —107%. The following table gives the cpu times
and total iteration steps for {s,,} with the initial point x; = (1,2,1,1, 1)T and different {a,}, {yn} and {A,}.

Table 6 Cpu times and total iteration steps for {s,} with 6 = —1078 and different {«,,}, {yn} and {A,}
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Cpu times (s) Total iteration steps
A==t =% 4.849255 35
M=y =t A, = % 1.979621 22
a, = 15%1/7" = %//\n = 31_0 1.553208 16
=5 Vi = 2, A = % 0.875901 9
a, %,Yn = % + SLn,)\n = % + 3(1)_;1 3.261556 37
an=2, =1+ N =5+ 4 3.056605 34
=t yu=te A=A L 2.649645 29
=, y=t+b 0, =4+ L 2.865101 32
U=, V=t +2, Ay =55+ 50 3.042921 32
=1, yn=t+b =4+ L 2.365104 24
a, = 15%1,7,” = % + 15%1//\” = 31_0 + ﬁ 1.548552 16
=5 =1+ 0, =5+ L 1.275078 14

Since the rate of {s,} converging to 0 describes the convergence rate of Algorithm 3.1, from the Table 6 we
can roughly see that the convergence rate of Algorithm 3.1 has the more closed relation with {a,} rather
than {y,} and {A,}. That is, the faster {a,} converges to 0, the better the convergence rate of Algorithm 3.1 is.

6. Conclusion

In this paper, we have proposed two new extragradient methods with non-convex combination to solve
the pseudomonotone equilibrium problems in Hilbert space. Under some simple conditions on the control
sequences, the strong convergence for the constructed algorithms is obtained. The algorithms introduced
in this paper are very different with the present ones in the literatures. As the application, we proved some
fixed point theorems for strict pseudo-contractions. The efficiency of the proposed algorithms has been
illustrated by some numerical experiments.
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