<

Filomat 33:6 (2019), 1701-1714
https://doi.org/10.2298/FIL1906701V

Published by Faculty of Sciences and Mathematics,
University of Nis, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

The Exact Spectral Asymptotic of the Logarithmic Potential on
Harmonic Function Space

Djordjije Vujadinovié?

* University of Montenegro, Faculty of Natural Science and Mathematics, DZordZa Vasingtona bb, 81000 Podgorica, Montenegro

Abstract. In this paper we consider the product of the harmonic Bergman projection P, : L*(D) — L3(D)

and the operator of logarithmic potential type defined by Lf(z) = —5- fD In|z — &|f(E)dA(E), where D is the
unit disc in C. We describe the asymptotic behaviour of the eigenvalues of the operator (P,L)"(P;L). More

precisely, we prove that
=
lim #?s,(P,L) = o 1.
n—+co 3

1. Introduction and Notation

In connection with the Green function for the unit ball the logarithmic potential type operator appears as
an important singular integral operator. Its properties, such as a norm boundedness, singular numbers and
many others were investigated in numerous of papers in various Lebesgue space settings. Let D = {z||z| < 1}
be the open unit disc in the complex plane C. By L*(D) we denote the space of all complex-valued functions

f defined on D such that the norm
i = ( [ eraac)
D

is finite. Here dA denotes Lebesgue measure on D. The logarithmic potential type operator is then defined
as

1
Lf(z) = ~5m f In|z — &|f(E)AA(E). (1.1)
™ Jp
It is known that the operator L : L>(D) — L?(D) is bounded. Moreover, it is not hard to show that the

operator L : L2(Q) — L?(Q) is a compact operator in the case where Q is a bounded domain in complex
plane C (see [2]). Moreover, L is a self-adjoint compact operator.
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Let us mention the relation between the operator L and the operator induced by the Green function.
First of all, recall that Green’s function of D is defined as

_ 1 1-2z&
9(e,6) = o In|[ 2

Tl z,£ €D

and related integral operator induced by g is

GHE) = fD 92, )FEAE).

The relation between the logarithmic potential L and the operator G is then given by

1
11—z

Harmonic Bergman projection. Throughout the paper by Lﬁ(D)(Lf(D)) we denote the harmonic (ana-
lytic) subspace of L?(D). Let Pj,(P,) be the orthogonal projection of L*(D) onto L(D)(L3(D)). The orthogonal
projection Pj, represents the famous integral operator known as Bergman (harmonic) projection (for more
details see [4]).

The kernel of the operator P is given by

LG = GHE + 5= [ Incz fenAC)

(- EPIEP? 2 [zPIEP
nll-z&F w1 —zEP’

K(z,¢) =

z, & €D.

Singular numbers. If A is a compact operator on some Hilbert space H, then by s,(A) we denote the
sequence of eigenvalues of the operator (A*A)? in decreasing order (including multiplicity). The numbers
su(A) are known as the singular numbers (values) of the operator A. By S. we will denote the space of all
compact operators on the Hilbert space H.

An operator T : H — H is said to belong to the Schatten class S,, if IITII; =Yy SZ(T) < co. The "weak S,
ideal” denoted by S, is defined to be a space of all compact operators T such that

IT1lp,c0 = sup (nﬁsn(T)) < oo
n

For1 <p < o, 5, is a complete metric space.

Asymptotic behaviour of s,(L). Since the operator L : L?(D) — L?*(D) is Hilbert-Schmidt, the question
of the asymptotic behaviour of its singular number was a topic explored by many authors.

Let us recall some famous results. For instance, in [2] and [3] the following asymptotic relations were
established:

1 1 1
sn(L) < EI sn(LP,) < ﬁ/ $u(PaLP,) = ﬁ

- 3 n n
Here, a,, < b, means inf, N ;- >0 and sup, oL < 0.

Latter, Dostani¢ proved in [6] and [7] the next general results

1991\”
4 |7

lim ns,(L) = @, lim n%s,(P,L) = (
n—+0c0 4717 n—+oo

where Q is a simply connected domain in complex plane and |Q and |JQ)]| are the area and the length of the
boundary of Q.

The natural continuation of the previous investigations is the consideration of the singular numbers
asymptotic for the product of the harmonic Bergman projection and the logarithmic potential type operator.
In this manner, we state the following main result of this paper.
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Theorem 1.1. Let Py, : L*(D) — L(D) be the Bergman harmonic projection and L : L*(D) — L*(D) the operator of
logarithmic potential type. Then

2
lim #2s,(PL) = | -~ 1. 1.2)
n—+o0o 3

Remark 1.2. Here, we should point out the relation between s,(PyL) and s,(LPy). Namely, the facts that the
logarithmic potential operator L is a self-adjoint operator and that the harmonic Bergman kernel K(z, w) satisfies the

relation K(z, w) = K(w, z) imply
$n(PnL) = su((PrL)") = $u(LPp).

4 2
lim n2s,(LP;) = | — — 1.
n—-+oco 3

Remark 1.3. It is interesting to notice the relation of asymptotic behaviour between s,(P,L) and s,(PyL) for the
special case when Q) = D. We will denote by Py, : LY(D) — L3(D) the natural projection from the L* space of
harmonic functions onto the analytic subspace.

Keeping in mind the known inequality for any bounded operator B and a compact operator A defined on the Hilbert
space H,

So,

su(BA) < |IBllsn(A), su(AB) < ||B|lsx(A),

we get 5,(P,L) = 5,(PyaPyL) < 5,(PpL).
The last inequality corresponds to the obtained main result. Namely, the result by Dostani¢ result mentioned for

Q = D implies iy, oo n25,(PoL) = 1, while Timy, oo n%5,(LPy) = /42 — 1 ~ 3,487.

Similarly,
[472
lim sup n*s,(P,LP;) < 4% -1
n—+oo

Theorem 1.1 confirms the studied phenomenon of the “faster” decrease of the singular numbers of the
operator L multiplied by Bergman’s projection P, and generalizes the corresponding results from [3].
The next corollary is an easy consequence of Theorem 1.1.

Corollary 1.4. P,L € S1/2,00, aid 512,00 15 the smallest ideal containing PyL.

2. Preliminaries

At the beginning let us recall that any compact operator T on a Hilbert space H admits a Schmidt
expansion.

Namely, the polar decomposition of the operator T = UA and the fact that A is a self-adjoint operator
give a uniformly convergent representation

"A)

A= Z AA) (- 07) by, (2.1)

=1

where ¢, is an orthonormal system of eigenvectors of the operator A which is complete in R(A) (the range
of the operator A) and r(A) is the dimension of R(A) such that

A= Ai(A)j, j=1,.,1(A).

By (-, -) we mean the inner-product pairing related to H. It is clear that s;(T) = A;(A).
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Applying the unitary operator U to both sides of (2.1), we obtain

1)

T= Z si(T) (- ¢;) Ugp;. 2.2)

j=1

Since the set {U¢;} is still orthonormal, we have that any compact operator T can be represented in the
following manner (Schmidt expansion):

1)

T=) 5D~ 9;) (2.3)

j=1

for a certain orthonormal systems {¢;} and {1;}. The series (2.3) converges in the uniform norm.
In the sequel, we will work with the functions

+o00
_ 1 2|z |z|*
— n 2(5 1) —_
Pn(x) =2 ; s(s + el (Z(n +s+1) 2(s+n+2) - 2 +n+3))’ 24
and
+00
|Z|2(s+1)
W(2)=2"Y ——— zeD. 2.

n(2) ZZ;ls+n+3 z€ 25)

Estimating the L? norms of the functions ,(z) and ¢, (z) will play a significant part in our final results.
The functions ,(z) and ¢, (z) were introduced in [10]. More precisely, the functions @,, 1, (denoted by
@ and ¢ respectively in [10]) were defined in a similar manner as

( |Z|2(m7n) 2|Z|2(m7n+1) |Z|2(m7n+2)

Pu(z) = 2" Z m(m — n)

m+2 m+3 m+4 )
m>n

and

_ |Z|2(m—n+1)

— ~Nn

Pu(2) =2 ;‘1—7’”3 :

Obviously, ¢, = ¢,.
In [10] (Lemma 3.1) it was established that,
Tt
”N”2 ~ Y, N — +09,
PO T )

and
1 . =
—— < lim Vallgullizp) <

1
4V6 o 2V6
Here the notation a,, ~ b,, means

. a a
lim — =1 (0<c¢; £ — <y < ).
n—oo by, b,

The next lemma is a refinement of Lemma 3.1. For the sake of completeness we will repeat some steps
of the proof of mentioned lemma.
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Lemma 2.1. For the functions defined by (2.4) and (2.5) the following asymptotic relations hold:

732
lpnlli2py) ~ ——=, n — +oo, (2.6)
3(n+3)
1 |m
[nllr2py ~ 5 A/ P n— +oo, (2.7)
and
T
(Qu, Pu)y ~ oy e, (2.8)

where {Qp, Pn) = fD ©n(2)(2)dA(2) denotes the usual inner product in L*(D).

Proof. Formula (1.8) follows immediately from [10], i.e.,
3/2

T
lpull2py ~ ——=, n — +o0.
3(n + 3)

By using polar coordinates z = |z|e’ and Parseval’s formula one obtains

Wl = f |z|2”( Y s(s + mPE D £ |z|)] dA(2)
s>1

f |z|2"( s(s+n)|z|2<s D) | dAGz)
s>1

(2.9)

: ZXk(kw)(s ~Rs =k ) [ B f(ELEAR)
s=1

-3

s=1 k=1

)

k(s = k) fD P2 (K + 1) fillZD)((s = Kk + 1) for(121)dA(2)

22,
2(s+n+1) T 2(s+n+2) 2(s+n+3)*

where by f;(|z]), s € IN we denote the function f;(|z]) =
By direct calculation one obtains

| (3a-12P7 - 6+ mige)ac
D
Tt
- 1+n+s)2+n+s)3+n+s)

>0, selN.

Then by using elementary transformations and the mean value theorem for definite integrals we have
f P2k + 1) fillZD)(s = k + 1) fooi(12])dA(2)
D

1
<3 f 22621 — |z dA(z), 1<k<s.
D

Thus,

S

gk

1 _
“17b"”L2(D 1 k(s — k) L |Z|2(s+n 2)(1 _ |Z|2)4dA(Z)

S

»n =

k(s — k)
(“1+n+s)n+s)(L+n+s)2+n+s)3+n+s)

i !

Il
N

T
k=1
(s—1)s(1+5) i

S;( l+n+s)n+s)(1+n+s)2+n+s)3+n+s) :4(1+n)'

Il
|
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The last identity can be obtained by the transformation of the general term

(s—=1s(1+5s)
(-l+n+s)(n+s)1+n+s)2+n+s)3+n+s)
_nd-n +—n3—9n2—26n—24+ —n® +3n? - 2n

6(s +n) 24(s +n+3) 24(s+n-1)
—n3—3n2—2n+n3+6n2+11n+6
4(s+n+1) 6(n+s+2)

and by proving (induction) the formula

(s —1)s(1+5s)
— (-1+n+s)n+s)(1+n+s)2+n+s)(3+n+s)
3 NN -1)(N + 1)(N +2)
An+1IN+n)(N+n+1)(N+n+2)(N+n+3)

It is easy to verify the inequality (s + 1) fs(|z]) > 5 si:ﬁrl) (1 - 1z1%)?,z € D. Therefore,

> y (5 = Kk + m)(s — ke + m) f 2s+1-2)(1 _ 12}
Wil 5 ; i (k+n+1)s-k+n+1) Jp I (1 - |z *dAG)
© s
= 411 Z k(s — k)f |Z|2(s+n72)(1 _ |Z|2)4dA(z)
s=1 k=1 D
= k(s - k) o s
+4;k=1 (k+”+1)(5—k+n+1)f|z| (1- 2P dA()
— 1 o s k(s 2o+n2) s
2; 1k+n+1f|| (1 - |2 dA(z)
= L + I1i(n) — I(n)
T yTen VT RO
where
1SS k(s — k) S -
Zsz‘ 1(k+”+1)(5—k+n+1) I (1 - [z1)*dA(z)
67
_— 2(s+n-2) 1- 2\4 A
4(n PR f . (ke = 4(n +2)°n(1 +n)(3 + n)
and

Li(n) < I(n)

Ivy
DY e [ R - A

s=1 k=1
S

8

1 _ 2s+1-2) (1 _ [12\4 _ Tt
SIMIC Qﬁm (1= AR =

=

=1
Finally, we get

. 2 _ E
nlj)rpmnllll}n||Lz(D) - 4
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Further, by using the same type of inequalities as before we obtain

- k k
[ wem@iae = [[epeny Y IR ¢ i

s=1 k=1

0o

1 : s — _
=5 Z m f |Z|2(s+n 1)(1 - |Z|2)2dA(Z)
=1

s=1

A

8

_ Z4k1k+n+2
_ng(n+s)(l+n+s)(2+n+s)

_ni Zklk+;+2 S

- 1(n+s)(1+n+s) — nm+s)(I+n+s)(s+n+2)

s+n+2
nin T2 Tt

n+s)(1+n+s) _2(n+1)

+00 nln(x;zzz p
<Aw) +j; T o0+t e D)

<

where A(n) = O(n72),n — +oco. Therefore,

+00 nln x+n;2 n
1 ) < 1 n+ J——
im sup (Pu, ) a1 fo (n+x)(1+n+x) ax 2

+00
_ f 1n(1+x)dx_zzz‘
o (x+1)? 2 2

(2.10)

On the other hand,
—_— 00 S
— 2(s+n-1) (s=k)(s—k+n)
j;%(z)(Pn(z)dA(z) f 4 ; sz T ferl)AAR)

Z 2(s+n-1) . (s=k)(s—k+mn) Y
2f|Z| ;‘kz;(k+n+2)(s k+n+1)(1 l27)"dA(2)
1S e (s+n+2)(1—ﬁ )

== (s+n-1) (1 _ 112)2
ZZZ k+n+2 j,;'z| (1= z1)°dA(z)

s=1 k=1

Iy n+l v 1 _— s

+§S_ s+2n+3 =1s—k+n+1fl;|z| (1 - |zI7)°dA(z)

Jin (5252

00 —
TS Z (1 s+2n+3

B — (n+s)(1+n+s)(2+n+s)2n n+s)(1+n+s)

s=1

n+1)In s;’fgl) e

+T(;(s+2n+3)(n+s)(1+n+s)(2+n+s) C2(1+n)

It is not hard to show that

©0 + 11 s+n+1
(n ) n n+2 ( ) n— oo

(s+2n+3)(n+s)(1+n+s)(2+n+s)

and
00 s+n+2

1
Z SRR =o(n™), n-— oco.

(s+2n+3)n+s)(1+n+s)

s=1
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The last conclusion implies

L | e ln (HH2) d 2.11
> 575 .
Lrﬂln n <<Pn/ ¢n> n_{rﬂonﬁ n+x)(1+n+x) * 2 2’ ( )

which together with (2.10) yields (2.8). O

Remark 2.2. Taking into account (2.6) and (2.7) and applying the Cauchy-Schwarz inequality we get

2
lim supn <(Pnr an> < 1111’1 nH(PnHLZ D)||77bn||L2(D)

TU
n—+oo 2 \/§'

a less precisely asymptotic upper bound for (@, ¥, ) compared with the obtained result.

3. The proof of the main result

We begin this section by first resolving the principle problem of finding an explicit formula for the kernel
of the operator Pj,L : L*(D) — L*(D). Recall that the operator P,L acts as the integral operator

PALf(z) = fD H(z, &) f(©)IAE)

where

HE 8 = -5 [ K w)inlé - oldA),
Lemma 3.1. The kernel of the operator PyL is

H(z, &) = A(z, &) + B(z, &) + C(z, &), where
1 _
Az, &) =— —|5|2(1n|5| +In|1 - z¢&)),

B(z,&) = Zk2|z|2<’< D (16 In 1A ( 12llED) + Aok, 2]) — 1EP* Ak, 1E]12D)]

2k+2
' Z (l'f'+ e [ = 20+ 2P mlel - 1], (3.1)
Clz, &) =— 2 Re (ZT) Y s(s+ R [Ar(s, 2D) — [EP AL, 211D

k=1 s=1

1 _ 2 2y _ 1_—|Z|2

s (lnll zé|(lz| (1-1&F) ln(l —|§|2|z|2)))'

Here,
1 242 xt
Al(k X) Zk 2k +2 + m’ xe[0,1],
2 4
Anlh,x) = — = : €101,

202 T Qk+22 T Qk+4

Proof. As we have stated above,

H(z, &) = iflnlé w|K(z, w)dA(w).
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Let & = pe'?. Then by using polar coordinates w = re we have

—flnlé — w|K(z, w)dA(w)
D

2 P ) ) .
—f dtf In|pe® — re|K(z, re"yrdr
0 0

271 1
—f dtf In|pe® — re|K(z, re")rdr (3.2)

270
f dtf [ln p+ ln' L gitt=0)
P
—f dtf [lnr+ln‘1 —el0- t)” K(z, re*)rdr.
0 P

Let us introduce the notations
27 Y ro.
—f dtf [lnp + ln‘l — —¢lt=0)
0 0 P
27T 1 p ) )
—f dtf [lnr + ln’1 - —el(g_””K(z, re)rdr.
0 p r
Then

271 0 . 27 0 .
L = —hlpf dtf K(z, re"yrdr — f dtf In ‘1 - =79
0 0 0 0 p

=-Inp K(z, 0)dA(w) - f In '1 - %‘K(z, w)dA(w)

} K(z, re")rdr

] K(z, re*)rdr,

and

K(z, re*)rdr

lwl<p lwl<p
= —Plnp-p? f In[1 - 'K(z, pe®a’)dAW') (33)
lw’|<1
=—p*Inp - p? In|1 - @'[K(zpe™, w")dA(w')
Jw’|<1
= —p’Inp - p*In[l — zpe | = —[EF(In|&] + In 1 - z&)),
where w = éw'.
Further,
27 1 ) 1 27 1
ILh=- f dtf rInrK(z, re')dr — = f dtf In(1- 1(9 NK(z, ret)rdr
0 p 2 0 (3 4)

1 270 1
- —f dtf In(1- ’(t NK(z, re*)rdr.
2 Jo P T

The first integral in (3.4) can be represented as

270 1
—f dtf rinrK(z, re")dr
0
2n 2.2\2
— lzf°r )
=—— dt In 3.5
3 fr A=z 9
on 2,2
=2
— dt Inr
i f f ' |1—zre”|2
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Since
kklkll(kl)t )
|1—zre”|4 Z z
we have
o 15[242)2
—1f dtfrln—( s )dr
T p |1 — zreit|*
(o] 27T
— _l Z kmz™" -1 k 1f rk+m—1(1 _ |Z|21’2)21nl’d1"f ei(k—m)tdt
n 4 o 0
—2)" PR f P11~ 2P Inrdr
k=1
Z 226D 1 In 1A (k, I2ll€D) + Aok, [2]) = 16 Ax Kk, IE]12D)]
Here,
1 21zPER | l2fEl
Ak =——
b EIE) = 5 = S a Y kv e
1 2|z |zI*
As(k = - .
2k = Gr " ke T ks ap
27 1 2,2
Ef dtf r |z|_r Inrdr
T Jo p |1 —zret?
o 1
:4ZIZ|Zk+2f #2543 11 rdr
k=0 P
i [ 2k+4 2k+4
= P = 2(k + 2l Iné] - 1]
2
— (k+2)
Further

1 (e 1 . 1 — L22Y2
——f dtf In (1 - pe’(e_t))wrdr
21 Jo p r 1 —zreit|

2 1400 Pk
21 Jo P k 1 — zreit]*
+

k=1
1 pheld & 2n 1
- Z smz" 1Zs 1f e—zkte(m s)ltdtf s+m—k 1(1 |Z|21’2)2d1’
2n k=1 k s,m=1 0 P
AT - T 2.2\2
= —z Zs(s+k)|z| ¢ >f =1(1 — 2212 )2dr
k=1 s=1 p
+00

1710

(3.6)

(3.7)
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1 (2" 1 A 2,2
—f dtf ln(l - Eel(g_t))err
Jo p T 1 — zreit|?

2 1 400 Pk
T Jo 0 k |1 — zret|?

k=1
1 +o keikQ & 271 1
__* Z Y |Z|2 Z S s efikte(m—s)itdt rs+m—k+3dr
k
n k=1 s,m=0 0 p

+o0 _ o
Zkék |Z|25+2

_ 25+4
=) ), et -

k=1 s=0

_ i(ln(l _Zé)(|2|2(1 _ |£|2)_h’1( 1- |Z|2 )))

l2l? 1—1EPIzP

Since

1711

: :
L»a n( t) (& D240 f|t|>|5| n( t) (z, HAA(t)

the remaining integrals can be computed in a similar manner. [J

Proof. [Proof of the Theorem 1.1] Let us consider the orthogonal sets 1,(£) = &" and 7,(&) = & neNin

L2(D).

The fact that any harmonic function / in D can be represented as a sum /1 = f + g, where the function f is
analytic and gis anti-analyticin the unit disc, implies the completeness of the sequences {1,,(£)}, U{7], (&)}, 1 €

N in L7(D) and consequently in the range set R(P,L).
First of all, let us note that for n > 0 we have

PuL()() = fD Az O (EMAE) + fD Clz, E)a(EAAE)
~ o1 ed +oo |Z|2s+2
T 4n(n+2) 2"(”+1);os+”+3

n Foo

-5 s(s + n)zIPC D [A1(s, |z]) — As(s, n, |z])]
s=1

21 21 oo |Z|25+2
- 4dn(n +2) N 2n(n+1);)ts+n+3

Zn +00
—————— Y s+ )P VA (s +n+1,z)
2n(n+1) ;

= Sn(z) - (Z) (Z)r

1 1
2n(n + 1)(P" C 2n(n + 1)¢"

where
1 2)z[?

(3.8)

J2I*

A3(S/ n, |Z|) = (

21 +n+s) 26+1)s+n+2)  2Q+s)n+s+3)
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and 9,(z) = ﬁ, and similarly

PLL(T)() = fD Ale, ETEIAE) + fD Clz, O)T(EAAE)

_ b ~ s +oo |Z|25+2
dn(n+2) 2n(n+1) = s+n+ 3 3.9)
Z_,'H +00 ) )
I s(s + )|z "V [Ax(s, [2]) — As(s,n, [2])] -
s=1

The mentioned representation for the harmonic function P,Lf implies

PiLFE) = ) (PiLE, M) 1@ + ), (PLS, ) a(2).

n>0 n>0
On the other hand, for f € L?(D) let { f,} be a sequence of continuous functions with compact support which
converge to f in L%(D).
Then Fubini’s theorem gives

lim (PyLfin, n)

~tim [ [ 460+ a0 feaonEiae
= tim [ [ 49+ e ) nEMELEAE)
= (PuLilu, f).

Further, for a function g € L*(D) we denote by g*(z) = || gllz}(D) g(z), the "normalized” function g. Thus,

PiLfZ) =), (PuLf, Y (@) + Y (PuLf, 1) (@)
n>0 “ n“LZ(D) n>0 “ ”“LZ(D)
=Y (PuLn, FY () + Y | (PuLn, f) 1n(2)
n>0 “nn“LZ(D) n>0 ” n”LZ(D

B Z IPLL1lr2(p)

= Nallezo)

o Y R0 gy, A )

= nalleao

((@uL2))™, )1 (@)

If we denote by V : LA(D) — L%(D) the isometry Vf(z) = f(z), then
PyLn,
PLVf=Y" ”J”& (PALTDY", )15 @) + (PrLna))™, ) T (@),
>0 T]n”LZ(

and s, (PyLV) = s,(PyL).
Let us point out that the action of the adjoint operator (P;LV)" is then given by

(PhLV)() = LPy(")

PypLnll2
_y ! S — ’|’| W00 (i, 3 P + () (PrLa)).
n>0
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Itis clear that by the appropriate numeration of the indices 1 the fractions ”P‘;M"”sz ! are the singular numbers
r]n”LZ(D)
for the operator P,L.
We have
IPLul,
||T]n||i2(D)
n+1 1 1 2
= |19,(z) - ————— R
T n(2) 2n(n + 1)(P"(Z) 2n(n + l)l’b”(z) 12()
_ntl e 1 2 2
= T||‘9n||Lz(D) + m“@n“Lz(D) + m”%%”mm
1 1
—— S put )+ —————{Pn, Uu) -
2nn< w Put ) 4drn?(n + 1) (P )
By a direct calculation one obtains,
N
9ullizp) = ——————, (3.10)
o) dn(n+2)Vn+1
and
5n
9 + = — 11
< nr (p” lp”) 871(7’1 +2)2 (3 )
According to the Lemma (2.1) and (3.10), (3.11) we have
7’14”PLT],1||%2(D) 7‘(2 1
m ————=——-—. (3.12)
n—+eo Hn”“LZ(D) 1216
Finally, setting that (PyL) = sp,(PyL) = IPidlzo) s 1 impli
inally, setting that sp—1(PpL) = s24(PsL) = = o™=, n > 1 implies
472
-1
Sy (PyL) ~ >, 1 — +oo.
n
O
o IPLmal . .
Remark 3.2. From the proof of the Theorem 1.1 it is clear that T E IN is a double eigenvalue of the operator
"NL2(o)

(LPy)*(LPy,) = PyL2Py, and that the corresponding eigenspace is spanned by 1, and j,,.

Remark 3.3. In case we consider a general bounded domain Q C C and P,L : L>(Q) — L*(Q), it stays an open
problem to determine the exact asymptotic behavior of s,(PyL). Specifically, in [11] a simply connected domain Q
(with analytic boundary dQ) was introduced and a two-side asymptotic estimate was given for the singular numbers
of Cauchy’s operator restricted to harmonic function space (Theorem 1.1). According to the mentioned work, the
natural way of approaching the problem would be transferring the above procedure through the Riemann mapping
theorem on the unit disc.
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