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Abstract. In this paper, we study a class of convex type interval-valued functions on the domain of the
product of closed subsets of real numbers. By considering LW order relation on the class of closed intervals,
we proposed some optimal solutions. LW convexity concepts and generalized Hukuhara differentiability
(viz. delta and nabla) for interval-valued functions yield the necessary and sufficient conditions for interval
programming problem. In addition, we compare our results with the results given in the literature. These
results may open a new avenue for modeling and solve a different type of optimization problems that
involve both discrete and continuous variables at the same time.

1. Introduction

The uncertainty of parameters is predominantly modeled using fuzzy, stochastic, grey/inexact program-
ming approaches and hybrid of all these approaches provide insight of these approaches with representative
literature, specific advantages and limitations, see for example [2, 3, 6–9, 14, 15, 19]. Interval analysis is
a particular case and it has relevant applications in the treatment of the uncertainty that appears in the
modeling of some real-world problems [7, 10, 11, 13, 17, 20]. In this direction, recently Yadav et al. [20]
presented interval-valued facility location model.

Discrete and continuous analysis and optimizations are closely related, yet they are usually treated
separately. Convex optimization on mixed domains have been investigated by Adivar et al. [1]. Re-
cently, Luplescu in [12] develop calculus for interval-valued functions on time scales, using the concept of
generalized Hukuhara difference provided by Stefanini and Bede [18].

A simultaneous presentation of two theories under the umbrella of time scales might provide a new
perspective and easiness for modeling and solving optimization of interval-valued functions on general
domain

In the main part of this paper, we develop a convex analysis for interval-valued functions on mixed
domains and we consider new type of order relation to study theoretical and practical solution method for
interval-valued objective functions considering LW order relationship between two closed intervals in R.
The results are illustrated with number of examples.

2. Definitions, notations and prerequisites

For a self-contained presentation of our study, we recall briefly the necessary background material.
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2.1. Calculus on time scale

Let T be a time scale. As usual, for t ∈ T ⊂ R, σ (t) := inf {s ∈ T : t < s} , ρ(t) := sup {s ∈ T : t > s},
µ(t) := σ (t) − t and ν (t) := t − ρ (t) defined, which denote its forward jump operator, backward jump operator,
forward graininess function and backward graininess function respectively.

A point t ∈ T, is called right-scattered (right-dense), left-scattered (left-dense) and isolated (dense), if σ(t) > t
(σ(t) = t), ρ(t) < t

(
ρ(t) = t

)
, and σ(t) > t > ρ(t)

(
σ(t) = t = ρ(t)

)
respectively.

Two sets Tk and Tk are derived from a time scale T: if T has a right-scattered minimum m, then
Tk = T − {m} and if T has a left-scattered maximum M, then Tk = T − {M}, otherwise Tk = Tk = T.

For a function f : T→ R, the delta derivative f ∆ is defined at a point t ∈ Tk by

f ∆(t) = lim
s→t

s,σ(t)

f (σ(t)) − f (s)
σ(t) − s

and nabla derivative f∇ is defined at a point t ∈ Tk by

f∇(t) = lim
s→t

s,ρ(t)

f (ρ(t)) − f (s)
ρ(t) − s

.

Hereafter, we use the notation Λn to denote the product T1×T2× · · · × Tn of the time scales.
A set S in Λn, is called convex in Λn, if

∑m
i=1 λixi

∈ S for all x1, x2, · · · , xm
∈ S and λ1, λ2, · · · , λm ∈ [0, 1]

such that
∑m

i=1 λi = 1 and
∑m

i=1 λixi
∈ Λn.

As usual, for a convex set S ⊂ Λn, cclΛn (S) = convRn (S)∩Λn, cintΛn (S) = ̂convRn (S)∩Λn and cbdyΛn (S) =
∂convRn (S) ∩ Λn defined, which denote the convex-closure, convex-interior and convex-boundary respectively,
where convRn (S), ̂convRn (S), and ∂convRn (S) indicates the closure, interior and boundary of convex hull
convRn (S) of S in Rn, respectively.

For any convex set S in Λn, a function f : S → R is said to be convex on time scales if f
(∑m

i=1 λixi
)
≤∑m

i=1 λi f
(
xi
)
. Clearly, this generalizes the inequality

f (a + λ (b − a)) ≤ f (a) + λ
(

f (b) − f (a)
)

for all a, b ∈ S and λ ∈ [0, 1] such that a + λ (b − a) ∈ Λn. However, the converse of this statement may not
be true in multidimensional case (see e.g., [1, Example 7 and Remark 3]).

A point ζ in Rn is called the subgradient of f at x̄ ∈ S if

f (x) ≥ f (x̄) + 〈x − x̄, ζ〉 , for all x ∈ S,

where 〈·, ·〉 denote dot product on Rn. If for every point x̄ ∈ cintΛn (S), there exists a subgradient vector ζ
such that f (x) ≥ f (x̄) + 〈x − x̄, ζ〉 for all x ∈ S, then f is convex on cintΛn (S).

Moreover, subgradient may not be unique for a convex function defined on arbitrary time scales (see
e.g., [1, Theorem 13]).

For a function f : Λn
→ R, the partial delta derivative ∂ f (x)

∆ixi
with respect to xi ∈ Tk

i is defined by

∂ f (x)
∆ixi

= lim
si→xi

si,σi(xi)

f (x1, · · · , σi(xi), · · · , xn) − f (x1, · · · , si, · · · , xn)
σi(xi) − si

and partial nabla derivative ∂ f (x)
∇ixi

is defined at a point xi ∈ (Ti)k by

∂ f (x)
∇ixi

= lim
si→xi

si,ρi(xi)

f (x1, · · · , ρi(xi), · · · , xn) − f (x1, · · · , si, · · · , xn)
ρi(xi) − si

.
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For a point x ∈ Λn, a frame Fx := ∪n
i=1Bi

(
x, h±i

)
, where

Bi

(
x, h±i

)
=

sei +

n∑
j=1
j,i

x je j : s ∈ N±i
(
x, h±i

)
and

N+
i

(
x, h+

i

)
=

{
{xi, σi(xi)} if µi(xi) > 0[
xi, xi + h+

i

)
if µi(xi) = 0

N−i
(
x, h−i

)
=

{ {
xi, ρi(xi)

}
if νi(xi) > 0(

xi − h−i , xi

]
if νi(xi) = 0

are the open balls and neighborhoods at point x ∈ Λn. For the existence of partial derivatives at a point
x ∈ S one has to assume that Fx ⊂ S, which also implies that x ∈ cintΛn (S).

Lemma 2.1. [1, Theorem 14]Let S be a nonempty convex set in Λn. Let f : S→ R has all the partial derivatives ∂ f (x)
∆ixi

and ∂ f (x)
∇ixi

at x̄ ∈ cintΛn (S) with Fx ⊂ S.

1. If f is convex on S, then there exist scalars λi (x̄) ∈ [0, 1], such that a vector

ζ (x̄) =

n∑
i=1

(
λi (x̄)

∂ f (x)
∆ixi

∣∣∣∣∣
x=x̄

+ (1 − λi (x̄))
∂ f (x)
∇ixi

)
ei

is a subgradient of f at x̄ ∈ cintΛn (S) with Fx ⊂ S.
2. Suppose that cintΛn (S) = {x̄ ∈ S : Fx̄ ⊂ S}. Then f is convex on cintΛn (S) provided that ζ (x̄) is subgradient of

f at x̄.

Lemma 2.2. [1, Theorem 15]If a convex function f : S→ R has all the partial derivatives ∂ f (x)
∆ixi

and ∂ f (x)
∇ixi

at x̄ ∈
cintΛn (S) with Fx ⊂ S. Then f (x) ≥ f (x̄) for all x ∈ S if and only, if there exist scalars λi (x̄) ∈ [0, 1], such that a
vector

ζ (x̄) =

n∑
i=1

(
λi (x̄)

∂ f (x)
∆ixi

∣∣∣∣∣
x=x̄

+ (1 − λi (x̄))
∂ f (x)
∇ixi

∣∣∣∣∣
x=x̄

)
ei

is zero subgradient for f at x̄.

2.2. Interval analysis on time scales

Let Ic be the set of all nonempty compact intervals of R. As usual, for A,B ∈ Ic such that A = [a−, a+] ,
B = [b−, b+] and λ ∈ R, A + B = [a− + b−, a+ + b+],

λA =

{
[λa−, λa+] if λ ≥ 0,
[λa+, λa−] if λ < 0;

and A	1 B = [min {a− − b−, a+
− b+
} ,max {a− − b−, a+

− b+
}] defined, which denote Minkowski addition, scalar

multiplication and generalized Hukuhara difference of two intervals, respectively.
Also, let H denote the Pompeiu-Hausdorff distance between two compact sets, and in particular between

two closed intervals A,B ∈ Ic is as follows

H (A,B) = max
{∣∣∣a− − b−

∣∣∣ , ∣∣∣a+
− b+

∣∣∣} .
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An interval-valued function F : T → Ic such that F(t) = [ f−(t), f +(t)] has a T-limit A ∈ Ic at t0 ∈ T if for
every ε > 0, there exist δ > 0 such that H

(
F (t) 	1 A, {0}

)
≤ ε for all t ∈ UT (t0, δ) := (t0 − δ, t0 + δ) ∩T. If limit

A exists then it must be unique and is denoted by limitt→t0 F (t) . Moreover, if limitt→t0 F (t) ∈ Ic exists and
limitt→t0 F (t) = F (t0) , then F is called continuous at t0 ∈ T.

For an interval-valued function F : T→ Ic, the delta 1H-derivative F∆, is defined at a point t ∈ Tk by

F∆ (t) = lim
s→t

s,σ(t)

F (σ (t)) 	1 F (s)
σ (t) − s

,

and the nabla 1H-derivative F∇, is defined at a point t ∈ Tk

F∇ (t) = lim
s→t

s,ρ(t)

F
(
ρ (t)

)
	1 F (s)

ρ (t) − s
.

provided limit exists.
If the real-valued functions f− and f + are delta differentiable (resp., nabla differentiable) at t0 ∈

Tk (t0 ∈ Tk) , then interval-valued function F is delta 1H-differentiable (resp., nabla 1H-differentiable) and

F∆ (t0) =
[
min

{(
f−

)∆ (t0) ,
(

f +)∆ (t0)
}
,max

{(
f−

)∆ (t0) ,
(

f +)∆ (t0)
}]

(
resp., F∇ (t0) =

[
min{

(
f−

)∇ (t0) ,
(

f +)∇ (t0)},max
{(

f−
)∇ (t0) ,

(
f +)∇ (t0)

}]
,
)

but the converse is not true. However, under the l-monotonicity (i.e.,t 7→ len (F (t)) :=
(

f +
− f−

)
(t) is

monotone) converse condition holds provided that F∆(t0)
(
resp., F∇(t0)

)
exists.

For a fixed x∗ = (x∗1, x
∗

2, ..., x
∗
n) ∈ Λn, let hi : Ti → Ic such that hi(xi) := F(x∗1, x

∗

2, ..., x
∗

i−1, xi, x∗i+1, ..., x
∗
n). If hi is

delta(resp., nabla) 1H-differentiable at x∗i , then we say that F has the ith partial delta(resp., nabla) 1H-derivative
at x∗ and denoted by ∂F

∆ixi

(
resp., ∂F

∇ixi

)
. Moreover, F is continuously delta(resp., nabla) 1H-differentiable at x∗, if

all the partial delta(resp., nabla) 1H-derivatives ∂F
∆ixi

(
resp., ∂F

∇ixi

)
exists on some neighborhood of x∗ and are

continuous at x∗(in the sense of interval valued function).
Since Ic is not totally order set. To compare the images of interval-valued functions in the context of

optimization problems, several partial order relations exist in Ic, which is summarized as below.
For A,B ∈ Ic, such that A = [a−, a+] , B = [b−, b+] , we say that:

1. A �LU B(or A �LR B), if and only if a− ≤ b− and a+
≤ b+, A ≺LU B if A �LU B and A , B.

2. A �LC B if and only if a− ≤ b− and m (A) ≤ m (B) , A ≺LC B if A �LC B and A , B, where m (A) = a−+a+

2 .

3. A �UC B if and only if a+
≤ b+ and m (A) ≤ m (B) , A ≺UC B if A �UC B and A , B.

4. A �CW B if and only if m (A) ≤ m (B) and w (A) ≤ w (B) , A ≺CW B if A �CW B and A , B, where
w (A) = a+

− a−.
5. A �LW B if and only if a− ≤ b− and w (A) ≤ w (B) , A ≺LW B if A �LW B and A , B.
6. A �UW B if and only if a+

≤ b+ and w (A) ≤ w (B) , A ≺UW B if A �UW B and A , B.

Let�∗∈ P = {�LU,�LC,�UC,�CW ,�LW ,�UW} be a special set of partial orders on Ic.Then an interval-valued
function F : X ⊂ Rn

→ Ic is called �∗-convex at x∗, if F (λx∗ + (1 − λ) x) �∗ λF (x∗) + (1 − λ) F (x) , λ ∈ (0, 1) and
x ∈ X.

3. Convexity of interval-valued functions on Λn

Now we turn our attention to the convex functions and its properties on a convex set in Λn.
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Definition 3.1. Let S be a convex set in Λn and �∗∈ P. Then F : S → Ic is said to be �∗-convex interval-valued
function at x∗i ∈ S if and only if

F


m∑

j=1
i, j

λ jx j + λix∗i

 �∗
m∑

j=1
i, j

λ jF(x j) + λiF
(
x∗i

)
(1)

for all x j ∈ S, j = 1, 2, ...m, and λ j ∈ [0, 1], j = 1, 2, ...m, such that
∑m

j=1 λi = 1 and
∑m

j=1 λixi ∈ Λn.

Clearly, inequality (1), implies that, for a �∗-convex function F : S ⊂ Λn
→ Ic, it follows that

F
(
λ1x∗1 + λ2x2

)
�∗ λ1F(x∗1) + λ2F (x2) (2)

holds for all x∗1, x2 ∈ S, and λ1, λ2 ∈ [0, 1] such that λ1 + λ2 = 1 and λ1x∗1 + λ2x2 ∈ Λn. However, the converse
of this statement may not be true. For example, examine the following example:

Example 3.2. For Λn = Z ×Z; S = {(−1, 0) , (0,−1) , (0, 0) , (0, 1) , (1, 0) , (1, 1)} and �∗=�LU, let F : S → Ic as
follows: F (−1, 0) = F (0,−1) = F (0, 1) = F (1, 0) = [1, 2] , F (0, 0) = [0, 2] and F (1, 1) = [−3, 2] . It is easy to see
that F is LU-convex if and only if, f− and f + are convex functions on time domain S. However, f− is not convex on S
because, in the case when λ1 = λ2 = λ3 = 1

3 , we have,

−1 +
2
3
< f−

(1
3

(−1, 0) +
1
3

(0,−1) +
1
3

(1, 1)
)

= f− (0, 0) = 0.

On the other hand, the inequality (2) is satisfied for all x∗1, x2 ∈ S, and λ1, λ2 ∈ [0, 1] such that λ1 + λ2 = 1 and
λ1x∗1 + λ2x2 ∈ Z ×Z.

Corollary 3.3. Let S be a convex set in Λn. If the interval-valued function F : Rn
→ Ic is �∗-convex on convRn (S),

then the restricted function F̂ := F|S is �∗-convex on S.

Lemma 3.4. Let P1 : = {�LU,�LC,�UC,�CW ,�UW} . If A �LW B, then A �∗ B for all �∗∈ P1.

Proof. For A,B ∈ Ic, such that A = [a−, a+] ,B = [b−, b+] ,we have a− ≤ b− and a+
−a− ≤ b+

−b−.By adding these
two inequalities, it follows that a+

≤ b+ and furthermore, m (A) ≤ m (B) . Hence A �∗ B, for all �∗∈ P1.

Lemma 3.5. Let P2 : = {�UC,�UW} . If A �CW B, then A �∗ B for all �∗∈ P2.

Proof. For A,B ∈ Ic, such that A = [a−, a+] , B = [b−, b+] , we have a− + a+
≤ b− + b+ and a+

− a− ≤ b+
− b−. By

adding these two inequalities, it follows that a+
≤ b+. Hence A �∗ B, for all �∗∈ P2.

Lemma 3.6. Let A,B,C ∈ Ic. If A �LW B and len (A) ≥ len (C) , then A 	1 C �LW B 	1 C.

Proof. For A,B,C ∈ Ic such that A = [a−, a+] ,B = [b−, b+] and C = [c−, c+] , we have a− ≤ b− and a+
− a− ≤

b+
− b−. Since len (A) ≥ len (C) , moreover len (B) ≥ len (A) ≥ len (C) , it follows that A 	1 C = [a− − c−, a+

− c+]
and B 	1 C = [b− − c−, b+

− c+] . By using the fact a− ≤ b− and a+
− a− ≤ b+

− b− implies that a− − c− ≤ b− − c−

and a+
− a− − (c+

− c−) ≤ b+
− b− − (c+

− c−) . Hence, we obtain that A 	1 C �LW B 	1 C.

The following corollaries are direct implications of Lemma 3.4 and 3.5.

Corollary 3.7. If A �LU B, then A �LC B and A �UC B.

Corollary 3.8. If A �CW B, then A �UC B and A �UW B.

Corollary 3.9. If A �UW B, then A �UC B.
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However, the converse of above implications may not be true. To illustrate this we give the following
examples:

Example 3.10. For A = [1, 4] , and B = [3, 5] , A �LU B, but A �CW B,A �LW B and A �UW B.
If A = [1, 4] , and B = [3, 3.5] , then A �LC B, but A �∗ B for all {�LU,�LW ,�UC,�CW ,�UW} .

[1, 2] �UC

[
1
2 , 4

]
, but [1, 2] �LU

[
1
2 , 4

]
and [1, 2] �LC

[
1
2 , 4

]
, furthermore,

[
2, 7

2

]
�UC [3, 4] ,

[
2, 7

2

]
�∗ [3, 4] , for

all {�LW ,�CW ,�UW} .
Moreover, for A = [1, 2] , and B =

[
1
2 , 5

]
, A �CW B,A �LU B,A �LC B and A �LW B.

Finally, let A = [3, 4] , and B =
[

1
2 , 5

]
, then A �UW B,A �LU B,A �LC B, A �LW B and A �CW B.

Remark 3.11. For Lemma 3.4 and 3.5, the related corollaries also holds for �∗-convex interval-valued functions as
defined in Definition 3.1. Moreover, from Lemma 3.4, it follows that if F : S→ Ic is �LW-convex, then F is �∗-convex
for all �∗∈ P1, but converse may not true in some cases as mentioned in Example 3.10. However, class of �LW-convex
interval-valued functions covers all other convex function classes.

Let F : [a, b]T → Ic be a �LW-convex, then the inequality (2) can be written as

F
(
λx + (1 − λ) y

)
�LW λF(x) + (1 − λ) F

(
y
)

(3)

for all a ≤ x < y ≤ b and λ ∈ [0, 1] .
Now onward, let us assume that F : S ⊂ Λn

→ Ic is interval-valued �LW-convex function, then Definition
3.1 implies that f− and lenF are real-valued convex functions on S, and vise versa.

Theorem 3.12. For a nonempty convex set S in Λn. Let F : S → Ic be an interval-valued function such that the
partial derivatives ∂ f−(x)

∆ixi

∣∣∣∣
x=x̄

, ∂ f +(x)
∆ixi

∣∣∣∣
x=x̄

, ∂ f−(x)
∇ixi

∣∣∣∣
x=x̄

and ∂ f +(x)
∇ixi

∣∣∣∣
x=x̄
, i = 1, 2, ...,n, exist at any point x̄ = (x̄1, x̄2, ..., x̄n) ∈

cintΛn (S) satisfying Fx ⊂ S.
If F is interval-valued �LW-convex function on S, then there exist scalars λ−i (x̄), λl

i(x̄) ∈ [0, 1], i = 1, 2, ...,n, such
that the vectors

ξ−(x̄) =

n∑
i=1

(
λ−i (x̄)

∂ f−(x)
∆ixi

∣∣∣∣∣
x=x̄

+ (1 − λ−i (x̄))
∂ f−(x)
∇ixi

∣∣∣∣∣
x=x̄

)
ei (4)

and

ξl(x̄) =

n∑
i=1

(
λl

i(x̄)
∂lenF(x)

∆ixi

∣∣∣∣∣
x=x̄

+ (1 − λl
i(x̄))

∂lenF(x)
∇ixi

∣∣∣∣∣
x=x̄

)
ei (5)

are the subgradients of f− and lenF at any point x̄ ∈ cintΛn (S) satisfying Fx ⊂ S, i.e.,

f−(x) ≥ f−(x̄) + ξ−(x̄)T(x − x̄) for all x ∈ S (6)

and

lenF(x) ≥ lenF(x̄) + ξl(x̄)T(x − x̄) for all x ∈ S. (7)

Proof. From �LWconvexity of F on S, it implies that f− and lenF are real-valued convex on S, then by using
Lemma 2.1 there exist scalars λ−i (x̄), λl

i(x̄) ∈ [0, 1],∈ [0, 1], i = 1, 2, ...,n, such that the vectors

ξ−(x̄) =

n∑
i=1

(
λ−i (x̄)

∂ f−(x)
∆ixi

∣∣∣∣∣
x=x̄

+ (1 − λ−i (x̄))
∂ f−(x)
∇ixi

∣∣∣∣∣
x=x̄

)
ei (8)

and

ξl(x̄) =

n∑
i=1

(
λl

i(x̄)
∂lenF(x)

∆ixi

∣∣∣∣∣
x=x̄

+ (1 − λl
i(x̄))

∂lenF(x)
∇ixi

∣∣∣∣∣
x=x̄

)
ei

are the subgradients of f− and lenF at any point x̄ ∈ cintΛn (S) satisfying Fx ⊂ S. This completes the proof.
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Remark 3.13. For a LW-convex interval-valued function F : S→ Ic, such that F (x) =
[

f− (x) , f + (x)
]
, the vectors

1rad∆ f− (x̄) =

n∑
i=1

∂ f−(x)
∆ixi

∣∣∣∣∣
x=x̄

ei (9)

1rad∇ f− (x̄) =

n∑
i=1

∂ f−(x)
∇ixi

∣∣∣∣∣
x=x̄

ei (10)

1rad∆lenF (x̄) =

n∑
i=1

∂lenF(x)
∆ixi

∣∣∣∣∣
x=x̄

ei (11)

and

1rad∇lenF (x̄) =

n∑
i=1

∂lenF(x)
∇ixi

∣∣∣∣∣
x=x̄

ei (12)

may not be subgradient of f− and lenF at a point satisfying Fx ⊂ S. To see this, one may consider the following
interval-valued function F : Z ×Z→Ic such that

F (x) =


[
(x1 − x2 − 1/2)2 , (x1 − x2)2

]
, if x1 < x2[

(x1 − x2)2 , (x1 − x2 − 1/2)2
]
, if x1 ≥ x2.

It is easy to see that

lenF (x) =

{
x1 − x2 − 1/4, if x1 < x2
x2 − x1 + 1/4, if x1 ≥ x2.

Therefore, F is LW-convex function. Moreover

1rad∆ f− (x̄)T =

{
(2x1 − 2x2, 2x2 − 2x1 + 2) , if x1 < x2
(2x1 − 2x2 + 1, 2x2 − 2x1 + 1) , if x1 ≤ x2;

1rad∇ f− (x̄)T =

{
(2x1 − 2x2 − 2, 2x2 − 2x1) , if x1 < x2
(2x1 − 2x2 − 1, 2x2 − 2x1 − 1) , if x1 ≥ x2;

and

1rad∆lenF (x̄)T = 1rad∇lenF (x̄)T =

{
(1,−1) , if x1 < x2
(−1, 1) , if x1 ≥ x2.

It is easy to see that 1rad∇lenF (x̄) is subgradient for lenF at the point (0, 0) , however, neither 1rad∆ f− (x̄) nor
1rad∇ f− (x̄) is subgradient for f− at origin. On the other hand, for λ = 1 and λ̌ = 0, the vector

ξ−(x1, x2) = (λ (2x1 − 2x2) + (1 − λ) (2x2 − 2x1 + 2)) e1

+
(
λ̌ (2x1 − 2x2 − 2) + (1 − λ̌) (2x2 − 2x1)

)
e2

is a subgradient of f− at the point (x1, x2) with x1 = x2.

Note that if the point x̄ = (x̄1, x̄2, ..., x̄n) ∈ S mentioned in above theorem is a point having dense
components, i.e., σi(x̄i) = ρi(x̄i) = 0 for all i = 1, 2, ...,n, then

∂ f−(x)
∆ixi

∣∣∣∣∣
x=x̄

=
∂ f−(x)
∇ixi

∣∣∣∣∣
x=x̄

=
∂ f−(x)
∂xi

∣∣∣∣∣
x=x̄

(13)
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and

∂ f +(x)
∆ixi

∣∣∣∣∣
x=x̄

=
∂ f +(x)
∇ixi

∣∣∣∣∣
x=x̄

=
∂ f +(x)
∂xi

∣∣∣∣∣
x=x̄
. (14)

From (13) and (14), it follows that

∂F(x)
∆ixi

∣∣∣∣∣
x=x̄

=
∂F(x)
∇ixi

∣∣∣∣∣
x=x̄

=
∂F(x)
∂xi

∣∣∣∣∣
x=x̄
, (15)

where

∂F(x)
∂xi

=

[
min

{
∂ f−(x)
∂xi

,
∂ f +(x)
∂xi

}
,max

{
∂ f−(x)
∂xi

,
∂ f +(x)
∂xi

}]
is called gradient of F in classical sense [14].

Corollary 3.14. Let S be a nonempty convex set in Rn and x̄ = (x̄1, x̄2, ..., x̄n) ∈ cintRn (S) a point satisfying
σi(x̄i) = ρi(x̄i) = 0 for all i = 1, 2, ...,n. Let F : S→ Ic be an interval-valued function such that the partial derivatives
∂ f−(x)
∂xi

∣∣∣∣
x=x̄

and ∂ f +(x)
∂xi

∣∣∣∣
x=x̄
, exist for all i = 1, 2, ...,n. If F is �LW-convex on S, then

1rad f−(x̄) =

n∑
i=1

∂ f−(x)
∂xi

∣∣∣∣∣
x=x̄

ei

and

1radlenF(x̄) =

n∑
i=1

∂lenF(x)
∂xi

∣∣∣∣∣
x=x̄

ei

are the gradients of f− and lenF at any point x̄ ∈ cintΛn (S).

4. Optimality of interval-valued functions

For the given function F : Λn
→ Ic and convex set S ⊂ Λn, consider the following interval-valued

optimization problem

(IVP): Minimize F subject to x ∈ S, (16)

where S denotes the feasible set of primal problem (IVP).

Definition 4.1. A feasible point x∗ ∈ S is called LW (resp., strongly LW) optimal solution of (IVP), if there exist no
x ∈ S such that F(x) ≺LW F(x̄) (resp., F(x) �LW F(x̄)).

Let us consider two corresponding scalar problems for (IVP) as follows

(LIVP): Minimize f− subject to x ∈ S (17)

and

(WIVP): Minimize lenF subject to x ∈ S. (18)

From the definition of optimal solution, it is easy to obtain the following result.

Lemma 4.2. If x̄ is an optimal solution of problems (17) and (18) simultaneously, then x̄ is LW solution of (16).
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Remark 4.3. The converse of Lemma 4.2 is not true in general. For example, consider the following interval-valued
function F : [0, 1]T → Ic such that F (x) =

[
x2, x2 + 1

]
. Clearly, x̄ = 0 is the unique LW optimal solution. On the

other hand lenF ≡ 1, and it does not have unique optimal solution. However, problem (16) cannot be equivalent to
problems (17) and (18). Based on Lemma 4.2, problems (17) and (18) can just be regarded as the auxiliary problems
for the problem (16).

Theorem 4.4. Let S be a convex set in Λn and F : S → Ic is a LW-convex interval-valued function such that the
partial derivatives ∂ f−(x)

∆ixi

∣∣∣∣
x=x̄

, ∂ f +(x)
∆ixi

∣∣∣∣
x=x̄

, ∂ f−(x)
∇ixi

∣∣∣∣
x=x̄

and ∂ f +(x)
∇ixi

∣∣∣∣
x=x̄
, i = 1, 2, ...,n, exist at any point x̄ = (x̄1, x̄2, ..., x̄n) ∈

cintΛn (S) satisfying Fx ⊂ S. Then x̄ is an optimal solution of problems (17) and (18) if and only if there exist scalars
λ−i (x̄), λl

i(x̄) ∈ [0, 1],∈ [0, 1], i = 1, 2, · · · ,n, such that the vectors

ξ−(x̄) =

n∑
i=1

(
λ−i (x̄)

∂ f−(x)
∆ixi

∣∣∣∣∣
x=x̄

+ (1 − λ−i (x̄))
∂ f−(x)
∇ixi

∣∣∣∣∣
x=x̄

)
ei (19a)

and

ξl(x̄) =

n∑
i=1

(
λl

i(x̄)
∂lenF(x)

∆ixi

∣∣∣∣∣
x=x̄

+ (1 − λl
i(x̄))

∂lenF(x)
∇ixi

∣∣∣∣∣
x=x̄

)
ei (20)

are the zero subgradient for f− and lenF respectively at x̄.

Proof. Convexity of F implies that f− and lenF are real-valued convex on S. Since partial derivatives ∂ f−(x)
∆ixi

∣∣∣∣
x=x̄

,
∂ f +(x)
∆ixi

∣∣∣∣
x=x̄

, ∂ f−(x)
∇ixi

∣∣∣∣
x=x̄

and ∂ f +(x)
∇ixi

∣∣∣∣
x=x̄
, i = 1, 2, ...,n, exist at any point x̄ = (x̄1, x̄2, ..., x̄n) ∈ cintΛn (S) satisfying Fx ⊂ S,

it follows that, the vectors ξ−(x̄) and ξl(x̄) are well define.
From Lemma 2.2, it implies that x̄ is an optimal solution of problems (17) and (18) if and only if ξ−(x̄)

and ξl(x̄) are the zero subgradient for f− and lenF respectively at x̄. This completes the proof.

Remark 4.5. Theorem 4.4, implies that for all i = 1, 2, ...,n

∂ f−(x)
∇ixi

∣∣∣∣∣
x=x̄
≤ 0 ≤

∂ f−(x)
∆ixi

∣∣∣∣∣
x=x̄

(21)

and

∂lenF(x)
∇ixi

∣∣∣∣∣
x=x̄
≤ 0 ≤

∂lenF(x)
∆ixi

∣∣∣∣∣
x=x̄

(22)

turns into necessary conditions. By using these conditions, one may find the critical points which are candidates to
be the optimal solution to the problem (16).

If F becomes real-valued functions, i.e., f− (x) = f + (x) for all x ∈ S and x̄ ∈ S is a point such that σi(x̄i) = ρi(x̄i) = 0
for all i = 1, 2, ...,n, then the conditions (21) and (22) turn into a sufficient conditions guaranteeing optimality of x̄.
However in the case when σi(x̄i) = ρi(x̄i) = 0 is not true for any i = 1, 2, ...,n, the conditions (21) and (22) are only
necessary conditions for the optimality of x̄.

By assuming the additional assumption, conditions (21) and (22) turn into the necessary and sufficient
conditions for the optimality of x̄ ∈ S.

Theorem 4.6. Let S be a convex set in Λn and F : S → Ic is a LW-convex interval-valued function such that
the partial derivatives ∂ f−(x)

∆ixi

∣∣∣∣
x=x̄

, ∂ f +(x)
∆ixi

∣∣∣∣
x=x̄

, ∂ f−(x)
∇ixi

∣∣∣∣
x=x̄

and ∂ f +(x)
∇ixi

∣∣∣∣
x=x̄
, i = 1, 2, ...,n, exist at any point x̄ ∈ cintΛn (S)

satisfying Fx̄ ⊂ S. Suppose that the gradients defined by (9), (10), (11) and (12) are subgradients for f− and lenF at
x̄ ∈ S. Then x̄ is an optimal solution of problems (17) and (18) if and only if the conditions (21) and (22) hold.
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Example 4.7. Let Λ2 = Z ×Z and F : Λ2
→ Ic be defined by

F (x1, x2) =

[(
x1 −

1
3

)2

+
(
x2 −

1
4

)2

, x2
1 + x2

2

]
, for x1 ≥ −x2.

It is easy to see that the vectors

1rad∆ f− (x1, x2)T =
(
2x1 +

1
3
, 2x2 +

1
2

)
1rad∇ f− (x1, x2)T =

(
2x1 −

5
3
, 2x2 −

3
2

)
and

1rad∆lenF (x1, x2)T = 1rad∇lenF (x1, x2)T =
(2

3
,

1
2

)
are subgradients for f− and lenF at the point (0, 0) . Since the inequality (21) holds at the point (0, 0), the optimal
solution to the problem (17) is (0, 0) whenever S =

{
(x1, x2) ∈ Λ2 : x1 ≥ −x2

}
. On the other hand, inequality (22)

does not holds at the point (0, 0), the optimal solution to the problem (18) is not (0, 0) . It implies by Lemma 4.2 that
(0, 0) is not LW optimal solution of (16).

Conclusion: In this paper, we have introduced convex type interval-valued functions on the domain of the
product of closed subsets of real numbers. Comparison between different partial orders are presented. We
obtained necessary and Sufficient optimal conditions for interval -programming problems. In addition, we
compared our results with the results given in the literature, therefore the optimality conditions obtained
are applicable to a wider range of functions. As result, many classical optimzation results (when you have
non interval-valued functions) are particular instances of the ones presented here. Moreover future research
is oriented to consider the multiobjective programming problem for interval-valued convex functions on
mixed as well as discrete domains.
Acknowledgments. The authors would like to thank the referees for careful reading and valuable sugges-
tions that has improved the paper in its present form.
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