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Abstract. This paper is devoted to the strong convergence of the S-iteration process of Halpern-type for
approximating a common element of the set of fixed points of a nonexpansive mapping and the set of
common solutions of variational inequality problems formed by two inverse strongly monotone mappings
in the framework of Hilbert spaces. We also give some numerical examples in support of our main result.

1. Introduction

The theory of variational inequalities, introduced in 1964 by the italian mathematician Stampacchia [1]
has emerged as a powerful tool in nonlinear analysis and optimization. During last three decades, this
theory has been developed in several directions using novel and innovative techniques; see for example
[2-7] and the references therein. Various kinds of iterative algorithms to solve the variational inequalities
have been developed by many authors. It is well known that the variational inequality problems are
equivalent to the fixed point problems as well as zero point problems; see for example [3, 8]. Due to this
equivalence formulation, the solution of variational inequalities can be computed by using the iterative
projection techniques; see for example [9-11]. Recently, some authors have computed the common elements
of the set of fixed points of nonexpansive mappings and the set of solutions of variational inequalities; see
[12-14] as well as solved the system of variational inequalities; see for example [15-17].

We consider the following variational inequality problem:

find x* € C such that (Ax",x —x*) > 0forall x € C, (1)
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where C is a nonempty closed convex subset of a real Hilbert space H and A : C — H is a monotone
mapping. The problem (1) is denoted by VI(C, A) and the solution set of the variational inequality problem
VI(C, A) is denoted by Q[VI(C, A)], i.e.,

QIVI(CA)] ={x"eC: (Ax",x —x") 2 0for all x € C}.

In 1967, Browder [18] and Halpern [19] independently proved the strong convergence of the path
[xt =tu+ (1 -1)Sx; : t € (0,1)} as t — 0" for nonexpansive mapping S on a bounded subset C in a Hilbert
spaces and in 1980, Reich [20] proved the strong convergence in uniformly smooth Banach spaces. In 1967,
Halpern [19] introduced an iteration process for approximation of fixed points of a nonexpansive mapping
5:C — Cas follows:

Xp+1 = autt + (1 — ay)Sx, for all n € IN, )

where u € C and {a,} is a sequence in [0, 1]. He proved that the iteration process (2) converges to the fixed
point of S under the choice of a;, = #, where 0 € (0,1). The iteration process (2) is called Halpern iteration
process. The strong convergence of the explicit iteration process (2) was further studied by Lions [21],
Shioji and Takahashi [22], Wong, Sahu and Yao [23] and many more under certain assumptions on iteration
parameter ay,.

For computing an element of Fix(S) N Q[VI(C, A)], in 2005, liduka and Takahashi [24] introduced an
iterative scheme:

Xp+1 = apx + (1 — a,)SPc(x, — AyAx,) for alln € IN, 3)

where A : C — H is an a-inverse strongly monotone mapping, {«,} is a sequence in (0,1) and {A,} is a
sequence in (0, 2a) and proved a strong convergence theorem. Chen, Zhang and Fan [25] considered an
iterative scheme by viscosity approximation method as follows:

Xps1 = Anf(x4) + (1 — ay)SPc(x, — AyAxy) foralln € IN, 4)

where f is a contraction mapping from C into itself. They proved that the sequence {x,} generated by
(4) converges strongly to x* € Fix(S) N Q[VI(C, A)], which is also a solution of the following variational
inequality:

((I- fx',x—x") = 0 for all x € Fix(S) N Q[VI(C, A)]. (5)

In 2010, Jung [26] introduced a composite iterative algorithm for finding an element in Fix(S) N Q[VI(C, A)]
as follows:

Xpe1 = (1= ﬁn)yn + ,BnSPC(yn - /\nAyn)/ ©6)
Yn = anf(xy) + (1 — ay)SPc(xy, — AyAxy) forallm € IN,

where {a,} € (0,1), {A,} C (0,2a) and {B,} C [0, 1) are some sequences. He proved the strong convergence
of the sequence {x,} generated by (6) to a point x* € Fix(S) N Q[VI(C, A)] satisfying (5). Recently, Cho, Li and
Kang [27] introduced a new iterative algorithm to solve the problem of finding a common solution to the
zero point problems involving two monotone operators and fixed point problems involving asymptotically
strictly pseudo-contractive mappings in Hilbert spaces. Following Jung [26], in 2017, Lin, Sharma, Kumar
and Gurudwan [28] introduced a viscosity approximation method for common fixed point problems of a
finite family of nonexpansive mappings.

On the other hand, Mann iteration [29] and Ishikawa iteration [30] are well known iteration processes
for approximating fixed points of nonexpansive mappings; see [31-33]. In 2007, Agarwal, O’'Regan and
Sahu [34] introduced the S-iteration process as follows:

Xpe1 = (1 — an)Sxn + xSy, (7)
Yn = (1 = Bu)xy + PuSx, foralln € N,
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where {a,} and {B,} are sequences in (0, 1) satisfying some suitable conditions. It is remarked that the S-
iteration process (7) is independent of the Mann [29] and Ishikawa [30] iteration processes. The S-iteration
process (7) is more applicable than the Picard [35], Mann [29] and Ishikawa [30] iteration processes because
it converges faster than these iteration processes for contraction mappings and also works for nonexpansive
mappings. In recent years the S-iteration process attracted many mathematicians as an alternate iteration
process for fixed point problems, common fixed point problems and other allied areas; see [36, 37].

Motivated by Halpern [19] and Agarwal, O'Regan and Sahu [34], in 2011, Sahu [38] introduced the
S-iteration process of Halpern-type as follows:

Xn+1 = BuSxn + (1 = Br)SYn,
Yn =i+ (1 —ay)x, foralln € N,

(®)

whereu € Cand {a,}and {B,} are some sequences in (0, 1) satisfying some suitable conditions. He proved the
strong convergence of the sequence {x,} generated by (8) to Rrixs)(1), where Rrix(s) is the sunny nonexpansive
retraction from C onto Fix(S) in the framework of uniformly convex Banach space.

Inspired and motivated by the results in [25, 26], the purpose of this paper is to introduce a new iterative
algorithm based on S-iteration process of Halpern-type (8) for solving the following variational inequality
problem:

(I = f)x',x —x*) > 0 for all x € Fix(S) N Q[VI(C, A)] N Q[VI(C, B)], )

where S : C — C is nonexpansive and A,B : C — H are inverse strongly monotone mappings. It is
interesting to note that algorithms (4), (6) and (7) are not applicable for solving variational inequality
problem (9). Our algorithm algorithm is applicable for solving variational inequality problem (9) and
hence it is an improvement upon algorithms (4), (6) and (7). We also provide some numerical examples to
show the implementation of our main result.

2. Preliminaries

This section contains some definitions and lemmas which will be needed in proof of our main result.

Let C be a nonempty subset of a real Hilbert space H with inner product (., .) and norm |[[.||, respectively.
We denote by — and — the strong convergence and weak convergence, respectively. The symbol IN stands
for the set of all natural numbers and I the identity mapping of H. A mapping T : C — H is called (see [39])

(i) monotone if
(Tx-=Ty,x—-y) >0 forallx,y € C,
(ii) n-strongly monotone if there exists a positive real number 7 such that
(Tx-Ty,x-y)>1 ||x - y”2 forallx,y € C,
(iif) a-inverse strongly monotone if there exists a positive real number a such that
(Ix-Ty,x-y)>a ||Tx - Ty”2 forallx,y € C,
(iv) k-Lipschitzian if there exists a constant k € [0, co) such that
||Tx - Ty“ <k “x - y” forall x,y € C,
(v) nonexpansive if
HTx - Ty” < ||x - y” forallx,y € C.

It is easy to see that an a-inverse strongly monotone mapping T is monotone and Lipschitz continuous.
A mapping T : C — Cis called A-strictly pseudocontractive if there exists a constant A with0 <A <1
such that
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|ITx = Ty|[" < ||x - y|[" + Al = T)x = (I = Tyl for all x, y € C.

Put A =1-T, where T : C — C is A-strictly pseudocontractive mapping. Then A is 152-inverse strongly
monotone (see [40]).

Let C be a nonempty closed convex subset of H. Then, for any x € H, there exists a unique nearest point
Pc(x) of C such that
llx = Pc()|l < lx — yll forall y € C.

The mapping Pc is called the metric projection [41] from H onto C. It is remarkable that the metric
projection mapping Pc is nonexpansive from H onto C (see Agarwal O’Regan and Sahu [32] for other
properties of projection mappings).

Lemma 2.1. ([42]) For the metric projection mapping Pc, the following properties hold:

(i) Pc(x) € Cforall x € H;

(ii) {(x — Pc(x),Pc(x) —y) = 0forall x e Hand y € C;
(iii) |lx — yI* > |lx — Pc(®)I? + lly — Pc(x)II? for all x € H and y € C;
(iv) (Pc(x) — Pc(y), x — y) > ||Pc(x) — Pc(y)||? for all x,y € H.

Lemma 2.2. ([43]) In a real Hilbert space H, there holds the following inequality:
llx + yl* < Il +2{y, x + y) forall x,y € H.

Lemma 2.3. ([42]) Let C be a nonempty closed convex subset of a real Hilbert space Hand T : C — H a nonexpansive
mapping. Then the mapping (I — T) is demiclosed on C, i.e., x, — x in H and (I — T)x, — y imply that x € C and
(I-Tx=y.

Lemma 2.4. ([44]) Let {s,,} be a sequence of nonnegative real numbers such that
Su+1 < (1 — ay)sy + By foralln € IN,
where {a,} and (B} satisfying the following conditions:
(i) {ay} € [0,1)and Y1 ay = oo,
(ii) limsup, i—: <0o0r Y, qBn < oo

Then lim;, 0 S, = 0.

3. Main result

Let C be a nonempty closed convex subset of a real Hilbert space H and let A, B : C — H be two a-inverse
strongly monotone and p-inverse strongly monotone mappings, respectively. Assume that f : C — Cisak-
contraction mapping and S : C — Cis anonexpansive mapping such that Fix(S)NQ[VI(C, A)INQ[VI(C, B)] #
(0. We introduce our iterative algorithm for solving the variational inequality problem (9) as follows:

Algorithm 3.1. (1) Initialization: Select x1 € C arbitrarily.
(2) Iterative step: Select {avy}, {Bn), {su} and {t,} as iteration parameters and compute the (n + 1) iteration as follows:

{ Xn+l = ﬁnSPC(xn =5, Ax,) + (1 - ,Bn)SPC(yn - tnByn)/

Yn = A f(xy) + (1 = ay)x, foralln € N, (10)

where {a,), {Bnl, {sn} and {t,} are real sequences satisfying

(SH1) {a,} € (0,1) and {B,} € (0,1) with0 <a < B, <b <1 forall n € N such that limy_,co y =0, Y,0rq @ty = 00;
(SH2) {s,} € (0,2a) and {t,} € (0,2B) with0 <c <5, <d <2a, 0 <I<t, <m<2p;
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(SHS) Z |an+1 - an| < o905 Z |ﬁn+1 _,Bn| < 090; Z Isn+1 - Sn| < 090; Z |tn+1 - tn| < 0.
n=1 n=1 n=1 n=1
Remark 3.2. If A = 0 and B = 0, then our algorithm (10) reduces to the iteration process S-iteration process of
Halpern-type defined by (8).

We now establish a strong convergence theorem which shows that the element of Fix(S) N Q[VI(C,A)] N
Q[VI(C, B)] can be approximated by Algorithm 3.1.

Theorem 3.3. Let C be a nonempty closed convex subset of a real Hilbert space H and let A,B : C — H be
a-inverse strongly monotone and B-inverse strongly monotone mappings, respectively. Assume that f : C — C
is a k-contraction mapping and S : C — C is a nonexpansive such that Fix(S) N Q[VI(C,A)] n Q[VI(C, B)] is
nonempty. Let {x,} be a sequence generated by Algorithm 3.1. Then the sequence {x,} converges strongly to
x* € Fix(S) N Q[VI(C, A)] N Q[VI(C, B)], which is the unique solution of variational inequality problem (9).

Proof. Setz, := Pc(x,—s,Ax,) and v, := Pc(y,—t,By,) foralln € N. Letq € Fix(S)NQ[VI(C, A)INQ[VI(C, B)].
Then g = Pc(q — swAq) = Pc(q — t4Bg). Since (I — s,A) and (I — ,B) are nonexpansive, we have

Iz = gll = [IPc(x — $2AX,) — Pc(q — snAg)ll < |Ix, — gll for alln € N

and
lon — qll < llyn — gll for all n € N.

We proceed with the following steps.
Step 1. {x,} is bounded.

From (10), we have

alf(xn) = qll + (L = an)llxn — gl

an(llf () = @I+ 11/ (@) = ql) + (1 = an)llx, = qll

an(kllxn = gll +11£(q) = qll) + (1 = aa)llxn — 4l

(1 = an(@ = k)llxn = gll + anllf(9) = 4lI (11)

From (10) and (11), we have

“yn - q”

ININ A

IXne1 =gl < BullSzn — gl + (1 = Bu)lISvy — 4lI
< ﬁn”zn - q” + (1 - ﬁn)”vn - 11||
< ﬁn”xn - qll + (1 - ﬁn)”yn - 6]||
< Bulltn = gll + (1 = B)((1 = au(@ = O)llxw — gl + ull £(q) — qll)
= (1= @ = B)(A=))llxs = gll + a1 = B)IIF(q) — 4l
< max{llxn 4l ﬁllf(q) - qll} forall 7 € N.

Hence {x,} is bounded. Observe that the sequences {y,}, {zx}, {v4}, {Ax,}, {Byu}, {Sz,} and {Sv,,} are bounded.

Step 2. |[xp41 — x| = 0asn — oo.

Note that
lzn = zu-all < (0 = 80Axn) = (Xu-1 = Su-1A%,1)l
= ”(xn - SnAxn) - (xn—l - SnAxn—l) + (xn—l - SnAxn—l) - (xn—l - Sn—len—l)”
<l = Xl + Isu-1 = sulllAxp—1]l.
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Similarly, we have

oy = vnall < lyn = Ynall + [t-1 = talllByn-all.

From (10), we have

Wyu = yuall = lanf(x) + (1 — an)xn — ap-1f(xn-1) = (1 = au-1)xp-1ll
= lanf(xn) = anf(xn-1) + @nf(xn-1) + (1 — @n)xn — (1 = an)xp-1 + (1 — an)xp-1
—u-1f(xn-1) = (1 = ap-1)x,-1ll
llan (f(n) = f(xn-1)) + (1 = @) (X0 — Xn=1) + (an — A1) (f(X=1) = Xn—1)l
ankllxy = xp-1ll + (1 = ap)llxy — X1l + lan — an-alll f(xn-1) — xp-1ll
(1 = a1 = )lIxn = x5l + lan — analllf(xa-1) = X1l (12)

IAN I

From (10) and (12), we have

”,anzn +(1- ,Bn)svn - ﬁn—lszn—l -(1- ,anl)svn—lu

= |IBuSzu = BnSzn-1 + BnSzn-1+ (1 = )S0s — (1 = B)SVu-1 + (1 = B1)SVs1
—Bn-15zn-1 — (1 = B—1)Sv;1l

151 (5z = Szp-1) + (1 = Bu)(SUn — SUn-1) + (Bn — Pr-1)(5Zn-1 — SUu-1)l|
Bullzn = zu-1ll + (1 = B)llon — vpall + 1Bn — Bu-1lllzu-1 — Vu-1ll

Bufllxn = xn-all + I8n-1 = sulll Axu-1ll} + (1 = B)lllYn — Yl

+tn-1 = tallBYu-1ll} + B = Bu-alllzn-1 — vnall

Brfllxn = Xp-1ll + I8n-1 = sulllAxy-11l} + (1 = B){(1 — (1 = k)l — 241
+ay = an-1lllf(eu-1) = Xu-1ll + [t-1 = EallBYu-1ll} + Bn — Bu-1lLs

(1 —a,(1=Bu)(1 - k))llxn = X1l + Isn-1 = SulllAxy-a |l + [t = tall Byy-1ll
+an = an-1lllf (eu-1) = Xu-1ll + |Bn = u-1lL1

(1= a1 = B)(X = K))lln = Xutll + Lalsius = ul + Loltu-t = bl

+Lalay — ap-1l + LBy — Pu-1l, (13)

11 = xall

INIA

IA IN

IA

where L; = sup{||z, — v4ll}, L2 = sup{l|Ax,l}, L3 = sup{||By,ll} and Ly = sup{||f(x,) — x.|}. Note ¥, a,, = c0.
nelN nelN nelN nelN
Therefore, from (13) and Lemma 2.4, we obtain that lim,,_, ||x,+1 — x,|| = 0. Moreover, from (12), we have

lim;, 00 ”yn+1 - yn” =0.
Step 3. ||By, — Bqll = 0 and ||Ax, — Agll = 0 as n — oo.

Note that v,, = Pc(I - t,B)y,. Hence, we have

llow —gl* = P — tyB)ys — Pc( — t,B)gl*
< “(yn - tnByn) - (11 - tnBQ)”2
= |I(yn — ) — ta(Byn — Bg)I?
= |ly. — ql* + £11By, — Bqll* - 2t, {y» — q, By, — Bq)
< lyn —qIF = ta(28 — t2)lBys — Bl
< Ay — ql* — 128 — m)| 1By, — BqlP*.

Similarly;,
lzn — gl < llxn — gl* = ca — d)||Ax, — Agl*.
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From (10), we have

I IANIN DA

<

11 — gl

Bullzy = gl + (1 = Bu)llon — gl

Bullxw = gl + (1 = B)(Ilyn — gl = 128 — m)||By, — Bql?)

Bulltw = gl + (1 = B)(@all F () — gl + (1 = @), — gl = 128 — m)|IBy., — Bql?)

[Br + (1= B)(1 = an)lllxn — gl + (1 = B)wall fxa) = gl = (1 = B)I(2B — m)||By, — Bl
(1= (1 = Bl = qlf* + (1 = Bl f(xn) = gI* = (1 = B)I2B — m)][By, - Bqll

Il = gl + all ) = gl = (1 = B.)I2B — m)lIBy, — BalP,

which immediately gives that

(1= Bu)I(28 — m)||By, — Bql’

<l = gl = v — gl + aallf () — qlI?
< (Il — gl + s = qllIx = xpeall + all f(x0) — g1

Since a, — 0 and |[|x,41 — x| = 0 as 1 — oo, we have ||By, — Bg|| — 0 as n — oo. Proceeding in the same
manner as above and using (10), we have

I IAIN DA

<

i1 — g1

Bullza = qlI* + (1 = Bo)llow — gl

Bulllxn — I = 5u(2a = s,)lIAx, = AgIR) + (1 = B)llyw — qIF

Bulllen = g1 = 5020 = s,)llAx, = AgIP) + (1 = B all Fx) = gl + (1 = @)y — g1
[Br + (1= Bu)(1 = @iy = g1 = Busu(2er = sl Ax, = Aql? + (1 = Bu)atall f(xn) = 41
(1= (1 = B = gl = Busu(2a = sp)lIAx, = Agl + (1 = B)aall () — gl

Il = gl + allf) = gl = Buc(2e — d)llAx, — AglP,

which immediately gives that

ﬁnc(Zoz —d)||Ax,, - AqHZ

<l — gl = lxner — gl + aallf(xa) — gl
< (Il — gl + s = qI)lIxg — xpeall + all f(x0) — gl%

Since a, — 0 and ||x,+1 — x|l = 0 as n — oo, we have ||Ax, — Ag|| —» O as n — co.
Step 4. ||y, — vnll = 0 and ||x, — z,|| = 0as n — oo.

Note that v, = Pc(I — t,B)y,. Therefore, we have

llon — 4II*
IPc(I = £,B)yn = Pc(I = t,B)ql?

< (U = tuB)yu — (I - t,B)q, v, — q)
= (I~ taB)y ~ (1= t,B)IP + 0w — qIP = T = £,B)y (I~ B)g — (o ~ )IP)
< Iy = alP + low = g = Iy~ 00) = 1By ~ BO)I)
- %(uyn =l + llow = qli* = llys = 0alP + 26(yn = 01, By = Bg) = £3]By. — BqlP),
which implies that

low =gl < llyn — gl = 1y — val?* + 2t,(ys — vu, By — Bq) — £2|By, — Bqll*.
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Similarly, we have

lze — gl < llxn = gI* = 10 — zalP* + 25, (X — 24, Ax, — Aq) — s3Il Ax,, — Aqll*.

Therefore, from (10), we have

ININ A

IA

IN

<

[lxy41 — ‘7”2

Bullzn — gl + (1 = B)llow — qlI*

Bullxn = gl* + (1 = Bu)llvn — gl

Bullxn = gl + (1 = Bu)(1yn = 4l = llyw = Oall® + 24 (Y = On, By, — Bq) — £[1By, — BqlF?)
Ballxn — ql* + (1 - ﬁn)(anllf(xn) — gl + (1 = anllxy — ql* = llyn — vall®

+2t, (Y — On, Byn — Bq) — £21|By, — BqlF?)

(B + (1= Bu)(1 = )l = g1 + call ) = gl = (1 = )y — 0l

+2t, (Yn — On, By — Bq) — t211By, — Byl

(1 - an(l - ﬁn))”xn - q||2 + an”f(xn) - ‘7”2 - (1 - ﬁn)“yn - Unllz + Ztn <yn — Un, Byn - Bq)
—t21By, — Bqll*

[l = 6]||2 + an”f(xn) - q||2 - (1 - ﬁn)”]/n - vn”z + 2t, (yn — Oy, Byn - Bq> - tiHByn - Bq”ZI

which immediately gives that

(1 - ﬁn)”]/n - Unllz

< an“f(xn) - ‘7”2 + “xn - q||2 - ||xn+1 - 6]||2 + 2tn<yn — Un, Byn - Bq>
—~t311By, — Bql?
< aullf () = ql” + (lew = gll + er = gIDlIxies — xall

+2tal1Yn = vallllBY» = Bqll = (1 = Ba)t3 1By, — Bll*.

Since ay, = 0, ||xy4+1 — x4/l = 0 and ||By,, — Bgl| = 0 as n — oo, we have

lim [y, — v, = 0. (14)

Proceeding in the same manner as above and using (10), we have

INIA A

<

[Ixy41 — 17”2

BuSzn + (1 = Pu)Svy — qlI*

Bullza — gl + (1 = B)llow — qlI*

Bulllxn = glI* = 1xn = zul® + 25, X — zn, Axy — Aq)y — s2llAx, — AqlP?) + (1 = B)llyn — 417
Bulllxn = gli* = 1xn — zul® + 25, {2 — zn, Axy — Aq) — s2llAx, — Aqll*)

+(1 = Bl f (xn) = glI* + (1 = a)llxy — qlI*]

(B + (1 = )1 = )iy = gl* = Bullxn = zull* + 2Busu {Xn — zu, Axy — Aq)

—BusallAxy — Agl® + (1 = Bu)anll f(x) — gl

(1= au(1 = Bu)llxn — ql* = Bullxn — zall* + 2Busn {xXn — 20, Axn — Aq) — BusillAx, — Aqll*

+(1 = Bu)anllf (xn) — gl

2w = gI* = Ballxn = zull* + 2ullxy — zallllAx, — Aqll = Busill Axy — Aqll® + auull f () — qlI%,

which immediately gives that

Bulltw = zalP < (I = qll + 11 = gDt = Xall + 250l = zallllAx, = Aqll

—BusallAx, — Agll* + anllf (xx) — qlI*.
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Since ay, — 0, [|X41 — x4l = 0 and ||Ax,, — Agl| = 0 as n — oo, we have
lim [}, = 2l = 0. (15)
Step 5. |[v, — Sv,l| = 0and ||z,, — Sz,|| = 0as n — oo.

Since vy, = ay f(x,) + (1 — an)x,, we have
lyn = xull = aull f(xn) — xull > 0 @s 1 — co.
From (14) and (15), we have
iz = oull < llzn = xull + llxn = Yull + lyn — vall > O as n — co.

From (10), we have

41 = Svall = BullSzn — Svull < bllzy — vull = 0 as n — oo.
It follows from Step 2, |lx, — Sv,|| = 0 as n — oo. Since |[x, — Svy|| = 0 and ||y, — x|l = 0 as # — oo, we have

lyn = Soull - < llyn — xull + 14 — Svall > 0 as n — co. (16)
Note that

¢ns1 = Szull = (1 = Bu)lISzn — Svull < Iz — vull = O @s n — oo,
Therefore by Step 2, we have

6w = Szull < 11Xn = Xpsll + lxns1 — Szull = 0as n — co. (17)
From (15) and (17), we have

1520 = zull < 1Szn = xull + llxn — zull = O as 1 — c0.

Similarly, from (14) and (16), we have

[1Sv, — vall < ||Sv, — yn” + ”yn —vyll > 0asn — oo.

Step 6. limsup (f(x") —x", y, —x") <0 forx* € F.

n—oo

Let us take a subsequence {v,, } of {v,} such that

limsup (f(q) = 4,50, = q) = lim {f(q) = 4, 5o, = q) -

n—oo

Since {vy,,} is bounded, there exists a subsequence {vnk/} of {v,,} such that Un, — 2 € H. Without loss of
generality, we may assume that v,, — z. Since

“Svnk - U?’lk” S ”Svl’lk - ]/nk” + “yi’lk - vl’lk” - 0/
we have Sv,, — z. Now, we show that z € . First we show that z € VI(C, B). Let

_ | Bu+Nc(v), if veC,
T”‘{@, if vgC

Then T is maximal monotone and 0 € Tv if and only if v € Q[VI(C, B)]. Let (v,w) € G(T). Then, we have
w € Tv = Bv+ N¢(v) and hence w — Bv € N¢(v). Thus, we have (v — u,w — Bv) > 0 forall u € C. Since v, € C,
therefore (v — v, w — Bv) > 0.
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On the other hand, from v, = Pc(y, — t,By,), we have (v —1v,,v, — (¥, — t,By,)) > 0, and hence

<v — Up, % + Byn> > 0. Therefore, from w — Bv € N¢(v) and v,,, € C, we have

(v =1y, w)y = (v-—0vy,Bv)
v, —
> (v-wv,,Bo) - <v — 0y ey Bynk>
03
v, —
_ <v ~ 0y, Bo - By, — k_lfk>
b,
B Ony = Yny
= <Z]—Unk,BU_BUnk>+<U_Unk/Bv1’lk _Byﬂk>_ U= Uy t
3
v, —
> <U_Unkernk _B]/nk> —<U—'an, "kt ynk>'
Ny

Hence, letting 1, — oo we obtain (v — z, w) > 0. Since T is maximal monotone, we have, z € T7'0 and hence
z € Q[VI(C, B)].
Similarly, we can show that z € Q[VI(C, A)]. On the other hand, by (16) and (14), we have

[[vy = Soall < [lv, = yn” + ||]/n = Sv,|| > 0asn — oo.

So by Lemma 2.3, we obtain that z € Fix(S) and hence z € Fix(S) N Q[VI(C, A)] n Q[VI(C, B)]. Note that

limsup (f(q) — 9, Sv, — q)

n—o0

Lim (£(q) = q,Svu, = ) = (f(@) ~ 4,52 = )
f@-g9z-g9)=(I-f)g,9—2)<0.

Thus, we have

limsup(f(q) =4, y» —q) < limsup{f(q) —q,yn — Sva) + limsup{f(q) — ¢, Svu — q)
< limsup|lf(4) - glllyn — Svall + limsup {f(9) — g, Svx, — q)
< 0.

Step 7. x, = gasn — oo,

Set A, = |lx, — an)/n = Zan(l - ﬁn)(l - k) and 0, = %l|yn — x| + ka(f('i) — 4, Yn — q> + za('il\_/[]:) for all
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n € IN. Then from (10), we have

A2 = e —qlP
< Ballzw = gl + (1 = Bu)llvy — gl
< Bullrw =gl + (1 = Bllya — gl
= Bullru = ql* + (1 = Blla(f(x) — 9) + (1 — @) (xu — @I
< Bullen = gl + (1= B)((1 = )l = gl + 200 (fGn) = 9, ¥n — 9))
= Bullvy — gl + (1 = Bu)((1 = @)l — gl + 20 (F() = £(@), Y — 7
+20, (f(@) =, Yu — 7))
< Bullew =gl + (1 - ,Bn)((l — ) llxn — qI* + 2a,kllx, — gllily, — gl
+20, (f(g) = 4, Yu — 7))
< Bullxe —ql* + (1 - ﬁn)((l — )2l = gl + 2aklixy = glI(ya = xall + llx2 = gll)

+20, (f(g) = 4, Yu — 7))

= (Bu+ (1= Bu)(1 = ) + 20 (1 = Bk )l — gl + 2ak(1 = Bl = gl —
+20,(1 = ) {f(@) = 4, Yy — 9)

= (1-2a,(1 =B =)lxy — gl + 2a,(1 = B)kllx — gllllys — x|
+200,(1 = ) (f(9) = 4, Y = 4) + (1 = Bl =4I

= U2+ g =l = 3l T ) = 0= 0+ s e

kM 1 ay,
< (L-yn)AL+ Vn{m”yn = Xl + 1-% Sf@D =g yn—q)+ 200 - k)Mz}

= (1 - yn)Ai + Vn(sn/

where M = supf{||x, — gll}. Note that lim, ey, =0, Y7o ¥» = o0 and limsup 6, < 0. Thus by Lemma 2.4,
neN n—oo
we obtain that x, — 4. m|

Now we provide some numerical examples in support of our main result.

Example 3.4. Let H = R with usual norm and C = [0,1]. Let S : C — C be a mapping defined by

1 1

_ 2 zfxe[ori]/

S(x)—{ x ifxe (3,11
Define A,B: C — Hby

[ x-Yifxe[0,i]; [0 ifxe[0,3];
A(x)_{ 0 3z'fx€(%,1i andB(X)—{ x_% ifxe(%jll].

It is easy to see that S is a nonexpansive mapping with Fix(S) = 3, 1]. We first show that the mapping A is a-inverse
strongly monotone mapping with a = 1.
Ifx,y €[0,3], then

(Ax - Ay, x - y) (x=1/3)=(y-1/3),x—y) = lx — yI*
l(x —1/3) = (y = 1/3)* > 1/3|(x = 1/3) - (y — 1/3)]?

1/3|Ax — Ayl
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Ifx€[0,%]and y € (3,1], then

(1/3-x)(y—x) = (1/3-x)(1/3 - x)
[(x = 1/3)]* > 1/3|(x — 1/3)* = 1/3|Ax — Ay[*.

(Ax — Ay, x - y)

Ifx,y € (3,11, then

(Ax - Ay, x — y) > 1/3|Ax — Ay.

Thus,

(Ax - Ay, x - y) > 1/3|Ax — Ay[* forall x,y € C.

Hence, A is a-inverse strongly monotone mapping with a = 3 and Q[VI(C, A)] = [3, 11.
Next, we show that the mapping B is p-inverse strongly monotone mapping with p = 3.

Ifx,y €0, 3], then

(Bx — By,x — y) > 1/2|Bx — By[*.

Ifx,y € (3,1], then
(Bx —By,x—y)

|(x =3/4) = (y = 3/4) = 1/2|(x = 3/4) — (y - 3/4)

1/2|Bx — By[*.

Ifxe[0,3]and y € (3,1], then

(y—3/9)(y—x)=(y-3/4)(y—3/4)
I(y — 3/4)I* > 1/2|(y — 3/4)]* = 1/2|Bx — By|*.

(Bx-By,x—-y) =

Thus

(Bx — By, x — y) > 1/2|Bx — By|* for all x,y € C.

Hence, B is p-inverse strongly monotone mapping with =  and Q[VI(C,B)] = [0, 3].
Note that Fix(S) N Q[VI(C,A)1 N Q[VI(C,B)] = [3,3]. Let f : C — C be defined by f(x) = 3 for all x € C. Then
f is a contraction mapping with contraction coefficient k = % Taking a, = ﬁ, Bu=3% su=yandt, = % for
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each n € IN. Observe that all the assumptions of Theorem 3.3 are satisfied. By Theorem 3.3, we conclude that the
Algorithm 3.1 converges strongly to x* = % € Fix(S) N Q[VI(C, A)]l N Q[VI(C, B)], which is also the solution of the
variational inequality problem (9).

The numerical values of x, for initial points x; = 0.6, x; = 0.8 and x; = 1.0 are given in Table 1 and the
convergence of {x,} generated by Algorithm 3.1 is shown in Figure 1.

Table 1: Numerical values of x;,.

xll

xn

xil

0.600000000000000
0.503703703703704
0.500045724737083
0.500000564502927
0.500000006969172
0.500000000086039
0.500000000001062
0.500000000000013
0.500000000000000
0.500000000000000

0.800000000000000
0.511111111111111
0.500137174211248
0.500001693508781
0.500000020907516
0.500000000258118
0.500000000003187
0.500000000000039
0.500000000000000
0.500000000000000

1.000000000000000
0.518518518518519
0.500228623685414
0.500002822514635
0.500000034845860
0.500000000430196
0.500000000005311
0.500000000000066
0.500000000000000
0.500000000000000
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1G>

—_—— xl=0.6
0.95 —e— x,=0.8
0.9 —— x1=1.0

0.85 -

0.75 -

terates x

0.65 -

0.64 b

0.55 -

0.5 €
10 10 10
Iterations (n)

Figure 1: Convergence of Algorithm 3.1.

Example 3.5. Let H = R? with usual norm and C = [0,1] X [0,1]. Let S : C — C be a mapping defined by

S(x,y) = (x;/ y(y4+ 2))for all (x,y) € C.

Define A,B: C — Hby

Ax,y) = (g,By)for all (x,y) € Cand B(x, y) = (3x, Zyz)for all (x,y) € C.

It is easy to see that S is a nonexpansive mapping with Fix(S) = {(0,0)}. We first show that the mapping A is a-inverse

strongly monotone with a = 1.

Let x = (x1,x2) and y = (y1,y2) € C. Then

X1 — W
(Ax = Ay,x—y) = <( 3 ,3x2—3y2),(xl—y1,x2—y2)>
X1 — 11)? x1 - y1)?
= By 2 B g, ey
A=) )1 1|y - 21 )
= A[FSE o - | = 5P 3 - 3| = gax- Ay

Thus, A is a-inverse strongly monotone mapping with a = £ and Q[VI(C, A)] = {(0,0)}.
Next we show that the mapping B is p-inverse strongly monotone with p = 1. Indeed,

(Bx—By,x-y) = ((Bx1—3y1,2x5 —2y5), (X1 — Y1, %2 — ¥2))
= 30— 1)* +203 — 13)(x2 — o)

9 9
= Z(xl — )+ (2 + 1) (5 — 1) — o) = Z(xl - )+ (05— 13)

1 1
= 1[9(361 — )’ +405 -1y’ = A_L”Bx - Byll*.
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Thus, B is p-inverse strongly monotone mapping with p =  and Q[VI(C, B)] = {(0,0)}.

and t, = t for each n € IN. Observe that all the assumptions of Theorem 3.3 are satisfied. By Theorem 3.3, we
conclude that the Algorithm 3.1 converges strongly to x* = (0,0) € Fix(S) N Q[VI(C, A)] N Q[VI(C, B)], which is
also the solution of the variational inequality problem (9).

The numerical values of x, for initial guess x1 = (x1,x}) = (1,1) are given in Table 2 and the convergence of {x,}

generated by Algorithm 3.1 is shown in Figure 2.

Table 2: Numerical values of x, = (x],x3).

xn

xn

n

x}l

x}l

1
1.000000000000000

2
1.000000000000000

16

1
0.000000000000000

2
0.000000008905465

0.174870731197417

0.223631493120197

18

0.000000000000000

0.000000000922560

0.005571987819672

0.056198981906925

20

0.000000000000000

0.000000000097244

0.000005803354507

0.014918912893891

22

0.000000000000000

0.000000000010402

0.000000000006408

0.004119061911208

24

0.000000000000000

0.000000000001127

0.000000000000000

0.001171544039026

26

0.000000000000000

0.000000000000123

0.000000000000000

0.000101081454992

28

0.000000000000000

0.000000000000014

0.000000000000000

0.000009269357794

30

0.000000000000000

0.000000000000002

Dl 8| oo G s | W[N] ==

0.000000000000000

0.000000887459075

32

0.000000000000000

0.000000000000000

—_
'S

0.000000000000000

0.000000087770792

34

0.000000000000000

0.000000000000000

)

n
(xl,x

Iterates x

Note that algorithms (4), (6) and (7) are not applicable for solving variational inequality problem (9)
whereas Algorithm 3.1 is applicable for solving variational inequality problem (9). In fact, Theorem 3.3 is
more general in nature. So, we can derive some existing and new results in the framework of Hilbert space.

n

Iterations (n)

Figure 2: Convergence of Algorithm 3.1.

In particular, we have the following:
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Theorem 3.6. Let C be a nonempty closed convex subset of a real Hilbert space H and let A : C — H be a-inverse
strongly monotone mapping. Assume that f : C — C is a k-contraction mapping and S : C — C is a nonexpansive
mapping such that Fix(S) N Q[VI(C, A)] is nonempty. Let {a,}, {8} and {s,} be sequences of real numbers satisfying
the conditions (SH1), (SH4) and (SH5), where

(SH4) {s,} € (0,2a) with0 <c <s, <d < 2u;

(SH5) Zl lovps1 — oyl < 005 Y, |,Bn+1 - ,Bn| < 00; ) |su+1 = Snl < o0.
n=

n=1 n=1

Then, the sequence {x,} generated by

{ Xus1 = BuSPc(xn — $4AX,) + (1 = Bu)SPc(Yn — $uAYn),

Yn = anf(xn) + (1 — an)x, foralln € N, (18)

converges strongly to x* € Fix(S) N Q[VI(C, A)], which is the unique solution of variational inequality problem (5).

Proof. The conclusion follows immediately from Theorem 3.3 by putting B = A and t, = s, foralln € N. O

The variational inequality problem (5) is studied by liduka and Takahashi [24], Chen, Zhang and Fan
[25] and Jung [26] by algorithms (3), (4) and (5), respectively. The algorithm (18) derived from Algorithm
3.1 also deals the problem of computation of solution of (5). The following examples show that the algorithm
(18) has better performance than (3), (4) and (6).

Example 3.7. Consider H, C, {ay}, {Bn}, {sn}, S, Aand f as in Example 3.4. Taking x = 0.2 € C for algorithm (3).
The comparision of numerical values of x,, for initial point x; = 1.0 is given in Table 3 and the convergence of {x,}

generated by algorithms (3), (4), (6) and (18) is shown in Figure 3.

Table 3: Numerical values of x;,.

Algorithm (3) Algorithm (4) Algorithm (6) Algorithm (18)

n Xy Xn Xn Xn

1 1.000000000000000 | 1.000000000000000 | 1.000000000000000 | 1.000000000000000
5 0.365835921350013 | 0.394787507655445 | 0.428347268851679 | 0.518518518518519
9 0.400000000000000 | 0.414950518522260 | 0.448131365981801 | 0.500076207895138
13 0.416794970566216 | 0.432770271162393 | 0.458159632994313 | 0.500000940838212
17 0.427239312489100 | 0.442872391524905 | 0.464053935718083 | 0.500000011615287
21 0.434534632929202 | 0.449561509359451 | 0.468038124989833 | 0.500000000143399
25 0.440000000000000 | 0.454397849187426 | 0.470957435722964 | 0.500000000001770
29 0.444291398546884 | 0.458098446921454 | 0.473212622917328 | 0.500000000000022
33 0.447776703213291 | 0.461044710044950 | 0.475021214455710 | 0.500000000000000
37 0.450680303808393 | 0.463460437812950 | 0.476512721359322 | 0.500000000000000
500 | 0.486583592135001 | 0.490808849816997 | 0.493928429745264 | 0.500000000000000
1000 | 0.490513167019495 | 0.493553060204337 | 0.495729585464782 | 0.500000000000000
1500 | 0.492254033307585 | 0.494754735388103 | 0.496521409299662 | 0.500000000000000
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Algorithm (1.3)
Algorithm (1.4)
—a— Algorithm (1.6)
—e&— Algorithm (3.9)

2

10

Iterations (n)

Figure 3: Comparision of algorithms (1.3), (1.4), (1.5) and (3.9).

Example 3.8. Consider H, C, {an}, {Bn}, {su}, S, Aand f asin Example 3.5. Taking x = (0.2,0.2) € C for algorithm
(3). The comparision of numerical values of x,, for initial guess x1 = (x;,x}) = (0.2,1.0) is given in Table 4 and the
convergence of {x,} generated by algorithms (3), (4), (6) and (18) is shown in Figure 4.

Table 4: Numerical values of x,, = (x;’,xg).

n Algorithm (3) Algorithm (4)
X} X X} X

1 0.200000000000000 | 1.000000000000000 | 0.200000000000000 | 1.000000000000000
2 0.146343589497924 | 0.182609465132951 | 0.075632911379270 | 0.276890369291158
3 0.119273006202942 | 0.125337749147151 | 0.022849110249241 | 0.068422341209616
4 0.102988458421964 | 0.107956340191707 | 0.005821951004222 | 0.015716694991604
5 0.091906076069271 | 0.097002982626770 | 0.001309699861365 | 0.003431037008519
6 0.083749665624756 | 0.088911870290293 | 0.000267767822418 | 0.000720804095126
7 | 0.077425944283068 | 0.082583021586976 | 0.000050622100014 | 0.000146863549130
16 | 0.050870601578035 | 0.055397131141985 | 0.000000000001535 | 0.000000000039371
17 | 0.049330672864302 | 0.053788615087180 | 0.000000000000186 | 0.000000000006911
18 | 0.047921881100105 | 0.052313817910224 | 0.000000000000022 | 0.000000000001203
19 | 0.046626646365907 | 0.050955123730570 | 0.000000000000003 | 0.000000000000208
20 | 0.045430517484575 | 0.049698008611091 | 0.000000000000000 | 0.000000000000036
21 | 0.044321491071669 | 0.048530375384853 | 0.000000000000000 | 0.000000000000006
22 | 0.043289503316867 | 0.047442055525472 | 0.000000000000000 | 0.000000000000001
23 | 0.042326045006761 | 0.046424430624345 | 0.000000000000000 | 0.000000000000000
24 | 0.041423865967635 | 0.045470140936651 | 0.000000000000000 | 0.000000000000000
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xﬂ

Algorithm (6)

X

xn

Algorithm (18)

X

NG WN RS

17
18

0.1200000000000000
0.051223052969662
0.010201070696216
0.001715678449267
0.000256234682173
0.000034880389219
0.000004394734035

0.000000000000003
0.000000000000000
0.000000000000000

2
1.000000000000000
0.196529992188561
0.034338207996757
0.005580845617547
0.000862643901349
0.000128354932410
0.000018524002272

0.000000000000223
0.000000000000028
0.000000000000003

0?200000000000000
0.010283803655225
0.000029798873416
0.000000000264259
0.000000000000000
0.000000000000000
0.000000000000000

0.000000000000000
0.000000000000000
0.000000000000000

2
1.000000000000000
0.093835177232416
0.008800193772739
0.000856336279976
0.000085773771238
0.000008776411684
0.000000912764987

0.000000000000002
0.000000000000000
0.000000000000000
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0.6
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Figure 4: Comparision of algorithms (1.3), (1.4), (1.5) and (3.9).

4. Consequences
The following theorem can be derived from Theorem 5.4 of [38] in real Hilbert space setting.

Theorem 4.1. Let C be a nonempty closed convex subset of a real Hilbert space H and let S : C — C be a
nonexpansive mapping such that Fix(S) # 0. Let {a,} and {B,} be sequences of real numbers in (0, 1) satisfying the
following condition:

ay p

(SH6) lim, e, =0, Y50, ay(1 = B,) = 00, limy 0o —— =1, lim, oo ~— =
Ap+l ﬁn+1

1.

For given u, x; € C, let {x,} be a sequence in C generated by (8). Then {x,} converges strongly to Prixs)(1t).

As the consequence of Theorem 3.3, we have the following strong convergence results for solving different
types of variational inequality problems.



D. R. Sahu et al. / Filomat 33:6 (2019), 1727-1746 1744

Corollary 4.2. Let C be a nonempty closed convex subset of a real Hilbert space H and let S : C — C be a
nonexpansive mapping such that Fix(S) # 0. Let {a,} and {B,} be sequences of real numbers in (0, 1) satisfying the
following condition

(SH7) 0<a<B,<b<1, limeay, =0, Yoqay =00, Y |ay1 —ayl < oo,
n=1

(o]
Z |,Bn+1 - ,Bn| < 0.
n=1

For given u, x; € C, let {x,} be a sequence in C generated by (8). Then {x,} converges strongly to Prixs)(1t).

Proof. The conclusion follows immediately from Theorem 3.3 by putting A = 0, B = 0 and f(x) = u, a
constant mapping. O

Remark 4.3. Theorem 4.1 is more general than Corollary 4.2 due to condition (SH6).

Theorem 4.4. Let C be a nonempty closed convex subset of a real Hilbert space H. Assume that f : C — Cisa
k-contraction mapping and S : C — Cis a nonexpansive mapping. Let T1, T, : C — C be Aq-strict pseudocontractive
and Ay-strict pseudocontractive mappings, respectively such that Fix(S) N Fix(Tq) N Fix(T) # 0. Let {a,}, {Bu), {sa}
and {t,} be sequences of real numbers satisfying (SH1), (SH3) and (SHS), where

(SH8) {sy} € (0,1 = A1) and {t,} € (0,1 - Ap) with0 <c<s,<d<1-Ay, 0<I<t, <m<1-A7A,
Then, the sequence {x,} generated by

Xne1 = PuS((1 = sp)xy + 5, T12x0) + (1 = Bu)S(A = t)yn + taToYn),
Yn = anf(xn) + (1 — a)x, foralln € N,

converges strongly to x* € Fix(S) N Fix(T1) N Fix(T,), which is the unique solution of variational inequality problem:

((I- f)x*',x —x") = 0 for all x € Fix(S) N Fix(T1) N Fix(T»).

Proof. PutA =1-Tiand B =1-T,. Then Ais 17;1 -inverse strongly monotone and B is 1;A2 -inverse strongly

monotone mapping. We also have Pc(x,, —s,Ax,) = (1—=5,)x, +5,T1x, and Pc(yn —t,Byn) = (1 =t,)yn +tu T2y
with Q[VI(C, A)] = Fix(T1) and Q[VI(C, B)] = Fix(T,). Therefore, the conclusion follows immediately from
Theorem 3.3. O

Theorem 4.5. Let H be a real Hilbert space. Assume that f is a k-contraction mapping, S is a nonexpansive mapping,
A is an a-inverse strongly monotone mapping and B is a B-inverse strongly monotone mapping on H into itself such
that Fix(S) N A~1(0) N B71(0) # 0. Let {av,}, {Bu}, {8n} and {t,,} be sequences of real numbers satisfying (SH1), (SH2)
and (SH3). Then the sequence {x,} generated by

Xn+l = ﬁns(xn —5,Ax,) + (1 - ﬁn)s(yn - tnByn)/
Yn = anf(xy) + (1 — a,)x, foralln € N,

converges strongly to x* € Fix(S) N A™1(0) N B~(0), which is the unique solution of variational inequality problem:
(1= f)x*,x —x*y > 0 for all x € Fix(S) N A™(0) N B7(0).

Proof. Put C = H. Then Pc = I, Q[VI(C, A)] = A7(0) and Q[VI(C, B)] = B}(0). Therefore, by Theorem 3.3,
we get the desired result. ]

5. Conclusion

In this paper, we have coupled S-iteration process with the Halpern iteration process and proposed an
algorithm to approximate a common element of the set of fixed points of a nonexpansive mapping and
the set of common solutions of variational inequality problems formed by two inverse strongly monotone
mappings in the framework of Hilbert spaces. We observed that the sequence generated by our proposed
Algorithm 3.1 converges strongly to x* € Fix(S) N Q[VI(C, A)] N Q[VI(C, B)], which is the unique solution
of variational inequality problem (9). It has been shown that a particular case of our proposed algorithm,
that is, the algorithm (18) has better performance than (3), (4) and (6); see Example 3.7. Some numerical
examples are given in support of our main results.



D. R. Sahu et al. / Filomat 33:6 (2019), 1727-1746 1745

References

(1]
[2]
(3]
(4]

[5]
(6]

(71
(8]

[9]
[10]

[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]
[33]
[34]
[35]

[36]

G. Stampacchia, Formes bilineaires coercivities sur les ensembles convexes, C. R. Acad. Sci. Paris 258 (1964) 4413-4416.

R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim. 14 (1976) 877-898.

D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications, Pure and Applied
Mathematics, vol. 88, Academic Press, London, 1980.

D. L. Zhu and P. Marcotte, Cocoercivity and its role in the convergence of iterative schemes for solving variational inequalities,
SIAM J. Optim. 6 (1996) 714-726.

Q. H. Ansari (ed.), Topics in Nonlinear Analysis and Optimization, World Education, Delhi, 2012.

Y. Liu, A modified hybrid method for solving variational inequality problems in Banach spaces, J. Nonlinear Funct. Anal. (2017)
Article ID 31.

A. Gibali, Two simple relaxed perturbed extragradient methods for solving variational inequalities in Euclidean spaces, ]J.
Nonlinear Var. Anal. 2 (2018) 49-61.

P. T. Harker and J. S. Pang, Finite dimensional variational inequality and nonlinear complementarity problems: A survey of
theory, algorithms and applications, Math. Programming 48 (1990) 161-220.

E. Zeidler, Nonlinear functional Analysis and Its Applications I, Springer-Verlag, New York, 1986.

M. V. Solodov and P. Tseng, Modified projection methods for monotone variational inequalities, SIAM J. Control Optim. 34 (1996)
1814-1830.

B. S. He, A class of projection and contraction methods for monotone variational inequalities, Applied Math. Optim. 35 (1997)
69-76.

W. Takahashi and M. Toyoda, Weak convergence theorems for nonexpansive mappings and monotone mappings, J. Optim.
Theory Appl. 118 (2003) 417-428.

L. C. Zeng and J. C. Yao, Strong convergence theorem by an extragradient method for fixed point problems and variational
inequality problems, Taiwanese J. Math. 10 (2006) 1293-1303.

N. Nadezhkina and W. Takahashi, Weak convergence theorem by an extragradient method for nonexpansive mappings and
monotone mappings, J. Optim. Theory Appl. 128 (2006) 191-201.

R. U. Verma, Projection methods, algorithms and a new system of nonlinear variational inequalities, Comput. Math. Appl. 41
(2001) 1025-1031.

H. Piri and R. Yavarimehr, Solving systems of monotone variational inequalities on fixed point sets of strictly pseudo-contractive
mappings, J. Nonlinear Funct. Anal. (2016) Article ID 19.

D. R. Sahu, S. M. Kang and A. Kumar, Convergence analysis of parallel S-iteration process for system of generalized variational
inequalities, J. Function Spaces (2017) Article ID 5847096, 10 pages.

E. E. Browder, Convergence of approximants to fixed points of nonexpansive nonlinear mappings in Banach spaces, Arch.
Rational Mech. Anal. 24 (1967) 82-90.

B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc. 73 (1967) 957-961.

S. Reich, Strong convergence theorems for resolvents of operators in Banach spaces, . Math. Anal. Appl. 75 (1980) 287-292.

P. L. Lions, Approximation de points fixes de contractions, C. R. Acad. Sci. Paris Ser. AB 284 (1977) 1357-1359.

N. Shioji and W. Takahashi, Strong convergence of approximated sequences for nonexpansive mappings in Banach spaces, Proc.
Amer. Math. Soc. 125 (1997) 3641-3645.

N. C. Wong, D. R. Sahu and J. C. Yao, Solving variational inequalities involving nonexpansive type mappings, Nonlinear Anal.
69 (2008) 4732-4753.

H.Iiduka and W. Takahashi, Strong convergence theorems for nonexpansive mappings and inverse-strongly monotone mappings,
Nonlinear Anal. 61 (2005) 341-350.

J. Chen, L. Zhang and T. Fan, Viscosity approximation methods for nonexpansive mappings and monotone mappings, Journal
of Mathematical Analysis and Applications 334 (2007) 1450-1461.

J. S.Jung, A new iteration method for nonexpansive mappings and monotone mappings in Hilbert spaces, J. Inequal. Appl. 2010
Article ID 251761.

S.Y. Cho, W. Li and S. M. Kang, Convergence analysis of an iterative algorithm for monotone operators, J. Inequal. Appl. (2013)
Article ID 199.

Y. C. Lin, B. K. Sharma, A. Kumar and N. Gurudwan, Viscosity approximation method for common fixed point problems of a
finite family of nonexpansive mappings, ]. Nonlinear Convex Anal. 18 (2017) 949-966.

W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953) 506-610.

S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc. 44 (1974) 147-150.

C.E. Chidume, Geometric properties of Banach spaces and nonlinear iterations, Lecture Notes in Mathematics, vol. 1965, Springer
Verlag, 2009.

R. P. Agarwal, D. O’'Regan and D. R. Sahu, Fixed Point Theory for Lipschitzian-Type Mappings with Applications, Topological
Fixed Point Theory and Its Applications, Springer, New York, NY, USA 2009.

D.R. Sahu, Q. H. Ansari and J. C. Yao, Convergence of inexact mann iterations generated by nearly nonexpansive sequences and
applications, Numer. Funct. Anal. Optim. 37 (2016) 1312-1338.

R.P. Agarwal, D. O’'Regan and D. R. Sahu, Iterative construction of fixed points of nearly asymptotically nonexpansive mappings,
J. Nonlinear Convex Anal. 8 (2007) 61-79.

E. Picard, Memoire sur la theorie des equations aux derivees partielles et la methode des approximations successives, J. Math.
Pures et Appl. 6 (1890) 145-210.

D. R. Sahu, J. C. Yao, V. K. Singh and S. Kumar, Semilocal convergence analysis of S-iteration process of Newton-Kantorovich
like in Banach spaces, Journal of Optimization Theory and Applications 172 (2016) 102-127.



[37]
[38]

[39]
[40]

[41]
[42]
[43]

[44]

D. R. Sahu et al. / Filomat 33:6 (2019), 1727-1746 1746

R. Pant and R. Shukla, Approximating fixed points of generalized a-nonexpansive mappings in Banach spaces, Numer. Funct.
Anal. Optim. 38 (2017) 248-266.

D. R. Sahu, Applications of the S-iteration process to constrained minimization problems and split feasibility problems, Fixed
Point Theory and Applications 12 (2011) 187-204.

W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000.

S. Thianwan, Strong convergence theorems by hybrid methods for a finite family of nonexpansive mappings and inverse-strongly
monotone mappings, Nonlinear Analysis: Hybrid Systems 3 (2009) 605-614.

A. Latif, D. R. Sahu and Q. H. Ansari, Variable KM-like algorithms for fixed point problems and split feasibility problems, Fixed
Point Theory and Applications (2014) 2014:211.

K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, vol. 28 of Cambridge Studies in Advanced Mathematics,
Cambridge University Press, Cambridge, UK, 1990.

L. C. Ceng, Q. H. Ansari and J. C. Yao, Some iterative methods for finding fixed points and for solving constrained convex
minimization problems, Nonlinear Anal. 74 (2011) 5286-5302.

H. K. Xu, An iterative approach to quadratic optimization, Journal of Optimization Theory and Applications 116 (2003) 659-678.



